BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev. 2014;79-80:107-118. [PMID: 24819216 DOI: 10.1016/j.addr.2014.05.005] [Cited by in Crossref: 147] [Cited by in F6Publishing: 138] [Article Influence: 18.4] [Reference Citation Analysis]
Number Citing Articles
1 Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, Tao W, Mei L, Huang L, Zeng X. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science 2016;463:279-87. [DOI: 10.1016/j.jcis.2015.11.001] [Cited by in Crossref: 137] [Cited by in F6Publishing: 111] [Article Influence: 22.8] [Reference Citation Analysis]
2 Carboni EJ, Bognet BH, Bouchillon GM, Kadilak AL, Shor LM, Ward MD, Ma AWK. Direct Tracking of Particles and Quantification of Margination in Blood Flow. Biophys J 2016;111:1487-95. [PMID: 27705771 DOI: 10.1016/j.bpj.2016.08.026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
3 Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, He F, Zhao J. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine 2015;10:1223-33. [PMID: 25709444 DOI: 10.2147/IJN.S77837] [Cited by in Crossref: 68] [Cited by in F6Publishing: 20] [Article Influence: 9.7] [Reference Citation Analysis]
4 Liu T, Yang Y, Chiang W, Hung C, Tsai Y, Chiang C, Lo C, Chiu H. Radiotherapy-Controllable Chemotherapy from Reactive Oxygen Species-Responsive Polymeric Nanoparticles for Effective Local Dual Modality Treatment of Malignant Tumors. Biomacromolecules 2018;19:3825-39. [DOI: 10.1021/acs.biomac.8b00942] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
5 Md Ali MA, Ostrikov K(, Khalid FA, Majlis BY, Kayani AA. Active bioparticle manipulation in microfluidic systems. RSC Adv 2016;6:113066-94. [DOI: 10.1039/c6ra20080j] [Cited by in Crossref: 19] [Article Influence: 3.2] [Reference Citation Analysis]
6 Yang Y, He J, Zhu W, Pan X, Yazd HS, Cui C, Yang L, Li X, Li L, Cheng L, Feng L, Wang R, Liu Z, Chen M, Tan W. Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics 2020;10:4030-41. [PMID: 32226537 DOI: 10.7150/thno.43581] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wang Y, Bahng JH, Che Q, Han J, Kotov NA. Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids. ACS Nano 2015;9:8231-8. [DOI: 10.1021/acsnano.5b02595] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
8 Huo M, Li W, Chaudhuri AS, Fan Y, Han X, Yang C, Wu Z, Qi X. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy. Carbohydrate Polymers 2017;171:173-82. [DOI: 10.1016/j.carbpol.2017.05.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
9 Jing T, Li T, Ruan Z, Cheng Q, Yan L. Imaging-Guided pHe and Glutathione Dual Responsive Polypeptide Nanogel for Smart Drug Delivery. Macromol Mater Eng 2018;303:1800060. [DOI: 10.1002/mame.201800060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Kato N, Kato N. High-yield hydrothermal synthesis of mesoporous silica hollow capsules. Microporous and Mesoporous Materials 2016;219:230-9. [DOI: 10.1016/j.micromeso.2015.08.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
11 Wang M, Xiao Y, Li Y, Wu J, Li F, Ling D, Gao J. Reactive oxygen species and near-infrared light dual-responsive indocyanine green-loaded nanohybrids for overcoming tumour multidrug resistance. Eur J Pharm Sci 2019;134:185-93. [PMID: 31026507 DOI: 10.1016/j.ejps.2019.04.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
12 Xing L, Zhang J, Zhou T, He Y, Cui P, Gong J, Sun M, Lu J, Huang Z, Jin L, Jiang H. A novel design of a polynuclear co-delivery system for safe and efficient cancer therapy. Chem Commun 2018;54:8737-40. [DOI: 10.1039/c8cc03720e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
13 Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell MV. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev 2017;46:6553-69. [PMID: 28902203 DOI: 10.1039/c7cs00536a] [Cited by in Crossref: 69] [Cited by in F6Publishing: 23] [Article Influence: 17.3] [Reference Citation Analysis]
14 Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 2015;219:43-60. [PMID: 26407671 DOI: 10.1016/j.jconrel.2015.09.038] [Cited by in Crossref: 105] [Cited by in F6Publishing: 79] [Article Influence: 15.0] [Reference Citation Analysis]
15 Khandker SS, Shakil MS, Hossen MS. Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy. Curr Drug Metab 2020;21:579-98. [PMID: 32520684 DOI: 10.2174/1389200221666200610173724] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Pinho JO, Amaral JD, Castro RE, Rodrigues CM, Casini A, Soveral G, Gaspar MM. Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine 2019;14:835-50. [DOI: 10.2217/nnm-2018-0388] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
17 Liu X, Wang J, Xu W, Ding J, Shi B, Huang K, Zhuang X, Chen X. Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model. Int J Nanomedicine 2015;10:6587-602. [PMID: 26543363 DOI: 10.2147/IJN.S90000] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
18 Choi JH, Lee J, Shin W, Choi JW, Kim HJ. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. Nano Converg 2016;3:24. [PMID: 28191434 DOI: 10.1186/s40580-016-0084-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
19 Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res 2015;166:193-226. [PMID: 25895870 DOI: 10.1007/978-3-319-16555-4_9] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 8.9] [Reference Citation Analysis]
20 He W, Yan J, Jiang W, Li S, Qu Y, Niu F, Yan Y, Sui F, Wang S, Zhou Y, Jin L, Li Y, Ji M, Ma PX, Liu M, Lu W, Hou P. Peptide-Induced Self-Assembly of Therapeutics into a Well-Defined Nanoshell with Tumor-Triggered Shape and Charge Switch. Chem Mater 2018;30:7034-46. [PMID: 32982042 DOI: 10.1021/acs.chemmater.8b02572] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
21 Braunger JA, Björnmalm M, Isles NA, Cui J, Henderson TMA, O'connor AJ, Caruso F. Interactions between circulating nanoengineered polymer particles and extracellular matrix components in vitro. Biomater Sci 2017;5:267-73. [DOI: 10.1039/c6bm00726k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
22 Qureshi OS, Kim HS, Zeb A, Choi JS, Kim HS, Kwon JE, Kim MS, Kang JH, Ryou C, Park JS, Kim JK. Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. J Microencapsul 2017;34:250-61. [PMID: 28557649 DOI: 10.1080/02652048.2017.1337247] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
23 Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug Chem 2016;27:2225-38. [PMID: 27547843 DOI: 10.1021/acs.bioconjchem.6b00437] [Cited by in Crossref: 395] [Cited by in F6Publishing: 339] [Article Influence: 65.8] [Reference Citation Analysis]
24 Genevois C, Hocquelet A, Mazzocco C, Rustique E, Couillaud F, Grenier N. In Vivo Imaging of Prostate Cancer Tumors and Metastasis Using Non-Specific Fluorescent Nanoparticles in Mice. Int J Mol Sci 2017;18:E2584. [PMID: 29194371 DOI: 10.3390/ijms18122584] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
25 Magalhães M, Figueiras A, Veiga F. Smart micelleplexes. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 257-91. [DOI: 10.1016/b978-0-12-813627-0.00007-7] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
26 Walker JM, Zaleski JM. Magnetically Triggered Radical-Generating Fe 3 O 4 Nanoparticles for Biopolymer Restructuring: Application to the Extracellular Matrix. Chem Mater 2015;27:8448-56. [DOI: 10.1021/acs.chemmater.5b04134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
27 Zhang K, Yang P, Zhang J, Wang L, Wang H. Recent advances of transformable nanoparticles for theranostics. Chinese Chemical Letters 2017;28:1808-16. [DOI: 10.1016/j.cclet.2017.07.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
28 Wang Z, Wu P, He Z, He H, Rong W, Li J, Zhou D, Huang Y. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum( iv ) prodrug for liver cancer therapy. J Mater Chem B 2017;5:7591-7. [DOI: 10.1039/c7tb01704a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
29 Mi P, Cabral H, Kataoka K. Ligand‐Installed Nanocarriers toward Precision Therapy. Adv Mater 2020;32:1902604. [DOI: 10.1002/adma.201902604] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 25.7] [Reference Citation Analysis]
30 Han K, Zhang W, Zhang J, Lei Q, Wang S, Liu J, Zhang X, Han H. Acidity-Triggered Tumor-Targeted Chimeric Peptide for Enhanced Intra-Nuclear Photodynamic Therapy. Adv Funct Mater 2016;26:4351-61. [DOI: 10.1002/adfm.201600170] [Cited by in Crossref: 93] [Cited by in F6Publishing: 79] [Article Influence: 15.5] [Reference Citation Analysis]
31 Wang Q, Zhang P, Li Z, Feng X, Lv C, Zhang H, Xiao H, Ding J, Chen X. Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics 2019;9:1426-52. [PMID: 30867842 DOI: 10.7150/thno.31683] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
32 Han B, Qu C, Park K, Konieczny SF, Korc M. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Lett 2016;380:319-29. [PMID: 26688098 DOI: 10.1016/j.canlet.2015.12.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
33 Khadjavi A, Stura I, Prato M, Minero VG, Panariti A, Rivolta I, Gulino GR, Bessone F, Giribaldi G, Quaglino E, Cavalli R, Cavallo F, Guiot C. 'In Vitro', 'In Vivo' and 'In Silico' Investigation of the Anticancer Effectiveness of Oxygen-Loaded Chitosan-Shelled Nanodroplets as Potential Drug Vector. Pharm Res 2018;35:75. [PMID: 29484487 DOI: 10.1007/s11095-018-2371-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
34 Melamed JR, Riley RS, Valcourt DM, Day ES. Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy. ACS Nano 2016;10:10631-5. [PMID: 28024339 DOI: 10.1021/acsnano.6b07673] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
35 Sun B, Xia T. Nanomaterial-Based Vaccine Adjuvants. J Mater Chem B 2016;4:5496-509. [PMID: 30774955 DOI: 10.1039/C6TB01131D] [Cited by in Crossref: 43] [Cited by in F6Publishing: 11] [Article Influence: 7.2] [Reference Citation Analysis]
36 Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules 2020;25:E5649. [PMID: 33266162 DOI: 10.3390/molecules25235649] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
37 He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Adv Mater 2019;31:1902409. [DOI: 10.1002/adma.201902409] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 22.7] [Reference Citation Analysis]
38 Nguyen DD, Lai J. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem 2020;11:6988-7008. [DOI: 10.1039/d0py00919a] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
39 Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021;18:205-27. [PMID: 32969740 DOI: 10.1080/17425247.2021.1828339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
40 Badea I. New strategies in melanoma therapy: can nanoparticles overcome chemoresistance? Nanomedicine 2017;12:1623-6. [DOI: 10.2217/nnm-2017-0145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
41 Karamanou K, Perrot G, Maquart F, Brézillon S. Lumican as a multivalent effector in wound healing. Advanced Drug Delivery Reviews 2018;129:344-51. [DOI: 10.1016/j.addr.2018.02.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
42 Saneja A, Nehate C, Alam N, Gupta PN. Recent Advances in Chitosan-Based Nanomedicines for Cancer Chemotherapy. In: Dutta PK, editor. Chitin and Chitosan for Regenerative Medicine. New Delhi: Springer India; 2016. pp. 229-59. [DOI: 10.1007/978-81-322-2511-9_9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
43 Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J Stem Cells 2019; 11(7): 398-420 [PMID: 31396368 DOI: 10.4252/wjsc.v11.i7.398] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
44 Akhter MH, Ahsan MJ, Rahman M, Anwar S, Rizwanullah M. Advancement in Nanotheranostics for Effective Skin Cancer Therapy: State of the Art. CNANOM 2020;10:90-104. [DOI: 10.2174/2468187308666181116130949] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
45 Kumari S, Advani D, Sharma S, Ambasta RK, Kumar P. Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021;1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
46 Huang Z, Yao Q, Wei S, Chen J, Gao Y. Enzyme-Instructed Self-assembly in Biological Milieu for Theranostics Purpose. CMC 2019;26:1351-65. [DOI: 10.2174/0929867324666170921104010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Yang DH, Kim HJ, Kim JK, Chun HJ, Park K. Preparation of redox-sensitive β-CD-based nanoparticles with controlled release of curcumin for improved therapeutic effect on liver cancer in vitro. Journal of Industrial and Engineering Chemistry 2017;45:156-63. [DOI: 10.1016/j.jiec.2016.09.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
48 Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2021;18:1-24. [PMID: 32905714 DOI: 10.1080/17425247.2020.1822321] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
49 Lv S, Tang Z, Song W, Zhang D, Li M, Liu H, Cheng J, Zhong W, Chen X. Inhibiting Solid Tumor Growth In Vivo by Non-Tumor-Penetrating Nanomedicine. Small 2017;13. [PMID: 28079981 DOI: 10.1002/smll.201600954] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
50 Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, Sohail M, Thu HE, Ramli NA, Sarfraz RM, Abourehab MAS. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021;335:130-57. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Reference Citation Analysis]
51 Li M, Sun W, Tian R, Cao J, Tian Y, Gurram B, Fan J, Peng X. Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials 2021;269:120532. [PMID: 33228992 DOI: 10.1016/j.biomaterials.2020.120532] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
52 Ozcelikkale A, Shin K, Noe-Kim V, Elzey BD, Dong Z, Zhang JT, Kim K, Kwon IC, Park K, Han B. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. J Control Release 2017;266:129-39. [PMID: 28939108 DOI: 10.1016/j.jconrel.2017.09.024] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
53 Fu S, Zhao Y, Sun J, Yang T, Zhi D, Zhang E, Zhong F, Zhen Y, Zhang S, Zhang S. Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf B Biointerfaces 2021;201:111623. [PMID: 33636597 DOI: 10.1016/j.colsurfb.2021.111623] [Reference Citation Analysis]
54 Tian X, He X, Yao A, You Y, Yang F, Chen K, Zhu C, Zeng M, Shi Q, Tang W, Fan X, Tao X. The properties of cholesterol-modified pullulan nanoparticles with different PEG coatings and their anti-hepatoblastoma cell effects. Materials Technology. [DOI: 10.1080/10667857.2022.2029288] [Reference Citation Analysis]
55 Zhou Z, Murdoch WJ, Shen Y. Synthesis of an esterase-sensitive degradable polyester as facile drug carrier for cancer therapy. J Polym Sci Part A: Polym Chem 2016;54:507-15. [DOI: 10.1002/pola.27798] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
56 Lu Y, Liang L, Shen G, Yao W, Zhang C, Huang D, Xuan Z, Li J, Liu J. Theoretical investigation of Chitosan-Assisted Controlled Release of Digestive System Antitumor Drug Fluorouracil. J Pharm Sci 2022:S0022-3549(22)00044-2. [PMID: 35122829 DOI: 10.1016/j.xphs.2022.01.034] [Reference Citation Analysis]
57 Sarfraz M, Shi W, Gao Y, Clas S, Roa W, Bou-chacra N, Löbenberg R. Immune response to antituberculosis drug-loaded gelatin and polyisobutyl-cyanoacrylate nanoparticles in macrophages. Therapeutic Delivery 2016;7:213-28. [DOI: 10.4155/tde-2015-0007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
58 Hauert S, Bhatia SN. Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol 2014;32:448-55. [PMID: 25086728 DOI: 10.1016/j.tibtech.2014.06.010] [Cited by in Crossref: 56] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
59 Ghorbani M, Hamishehkar H, Hajipour H, Arsalani N, Entezami AA. Ternary-responsive magnetic nanocarriers for targeted delivery of thiol-containing anticancer drugs. New J Chem 2016;40:3561-70. [DOI: 10.1039/c5nj03602j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]
60 Wang HH, Fu ZG, Li W, Li YX, Zhao LS, Wen L, Zhang JJ, Wen N. The synthesis and application of nano doxorubicin- indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma. Int J Nanomedicine 2019;14:623-38. [PMID: 30697046 DOI: 10.2147/IJN.S191069] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
61 Wu M, Mao Z, Chen K, Bachman H, Chen Y, Rufo J, Ren L, Li P, Wang L, Huang TJ. Acoustic Separation of Nanoparticles in Continuous Flow. Adv Funct Mater 2017;27:1606039. [PMID: 29104525 DOI: 10.1002/adfm.201606039] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
62 Chen Y, Gao D, Wang Y, Lin S, Jiang Y. A novel 3D breast-cancer-on-chip platform for therapeutic evaluation of drug delivery systems. Anal Chim Acta 2018;1036:97-106. [PMID: 30253842 DOI: 10.1016/j.aca.2018.06.038] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
63 Nabil G, Bhise K, Sau S, Atef M, El-Banna HA, Iyer AK. Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discov Today 2019;24:462-91. [PMID: 30121330 DOI: 10.1016/j.drudis.2018.08.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
64 Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials (Basel) 2021;11:2579. [PMID: 34685018 DOI: 10.3390/nano11102579] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018;10:E181. [PMID: 30304861 DOI: 10.3390/pharmaceutics10040181] [Cited by in Crossref: 46] [Cited by in F6Publishing: 33] [Article Influence: 11.5] [Reference Citation Analysis]
66 Shi C, Gao F, Gao X, Liu Y. A novel anti-VEGF165 monoclonal antibody-conjugated liposomal nanocarrier system: physical characterization and cellular uptake evaluation in vitro and in vivo. Biomed Pharmacother. 2015;69:191-200. [PMID: 25661357 DOI: 10.1016/j.biopha.2014.11.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
67 Cheng Y, Zeng X, Cheng D, Xu X, Zhang X, Zhuo R, He F. Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids and Surfaces B: Biointerfaces 2016;145:217-25. [DOI: 10.1016/j.colsurfb.2016.04.051] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
68 Pal S, Rakshit T. Folate-Functionalized DNA Origami for Targeted Delivery of Doxorubicin to Triple-Negative Breast Cancer. Front Chem 2021;9:721105. [PMID: 34485245 DOI: 10.3389/fchem.2021.721105] [Reference Citation Analysis]
69 Simard JC, Vallieres F, de Liz R, Lavastre V, Girard D. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 2015;290:5926-39. [PMID: 25593314 DOI: 10.1074/jbc.M114.610899] [Cited by in Crossref: 77] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
70 Yang C, Liu H, Zhang Y, Xu Z, Wang X, Cao B, Wang M. Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging. Biomacromolecules 2016;17:1673-83. [PMID: 27010718 DOI: 10.1021/acs.biomac.6b00092] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
71 Gao X, Zhang J, Huang Z, Zuo T, Lu Q, Wu G, Shen Q. Reducing Interstitial Fluid Pressure and Inhibiting Pulmonary Metastasis of Breast Cancer by Gelatin Modified Cationic Lipid Nanoparticles. ACS Appl Mater Interfaces 2017;9:29457-68. [DOI: 10.1021/acsami.7b05119] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
72 Sun X, Zhang J, Yang C, Huang Z, Shi M, Pan S, Hu H, Qiao M, Chen D, Zhao X. Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS Appl Mater Interfaces 2019;11:11865-75. [DOI: 10.1021/acsami.8b21580] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
73 Yao ZY, Qin J, Gong JS, Ye YH, Qian JY, Li H, Xu ZH, Shi JS. Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021;264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Dai L, Liu J, Luo Z, Li M, Cai K. Tumor therapy: targeted drug delivery systems. J Mater Chem B 2016;4:6758-72. [DOI: 10.1039/c6tb01743f] [Cited by in Crossref: 60] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
75 Egorova KS, Seitkalieva MM, Posvyatenko AV, Ananikov VP. An unexpected increase of toxicity of amino acid-containing ionic liquids. Toxicol Res 2015;4:152-9. [DOI: 10.1039/c4tx00079j] [Cited by in Crossref: 52] [Cited by in F6Publishing: 2] [Article Influence: 7.4] [Reference Citation Analysis]
76 Popilski H, Stepensky D. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems. Expert Opinion on Drug Metabolism & Toxicology 2015;11:767-84. [DOI: 10.1517/17425255.2015.1030391] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
77 Tang S, Wei H, Yu C. Peptide-functionalized delivery vehicles for enhanced cancer therapy. International Journal of Pharmaceutics 2021;593:120141. [DOI: 10.1016/j.ijpharm.2020.120141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
78 Yang HY, Li Y, Lee DS. Multifunctional and Stimuli-Responsive Magnetic Nanoparticle-Based Delivery Systems for Biomedical Applications. Adv Therap 2018;1:1800011. [DOI: 10.1002/adtp.201800011] [Cited by in Crossref: 43] [Cited by in F6Publishing: 21] [Article Influence: 10.8] [Reference Citation Analysis]
79 Yu S, Chen Z, Zeng X, Chen X, Gu Z. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019;9:8026-47. [PMID: 31754379 DOI: 10.7150/thno.38261] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
80 Jin JO, Kim H, Huh YH, Herrmann A, Kwak M. Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. J Control Release 2019;315:76-84. [PMID: 31639342 DOI: 10.1016/j.jconrel.2019.09.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
81 Liu J, Tian L, Zhang R, Dong Z, Wang H, Liu Z. Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine. ACS Appl Mater Interfaces 2018;10:43493-502. [PMID: 30468076 DOI: 10.1021/acsami.8b17684] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
82 Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev. 2014;79-80:40-49. [PMID: 24996134 DOI: 10.1016/j.addr.2014.06.004] [Cited by in Crossref: 80] [Cited by in F6Publishing: 77] [Article Influence: 10.0] [Reference Citation Analysis]
83 Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019;14:581-94. [PMID: 32104485 DOI: 10.1016/j.ajps.2019.04.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 49] [Article Influence: 21.7] [Reference Citation Analysis]
84 Amanlou N, Parsa M, Rostamizadeh K, Sadighian S, Moghaddam F. Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Materials Chemistry and Physics 2019;226:151-7. [DOI: 10.1016/j.matchemphys.2018.12.089] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
85 Ma H, Jiang W, Ding J, Li M, Cheng Y, Sun S, Fu C, Liu Y. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies. Journal of Nanomaterials 2016;2016:1-14. [DOI: 10.1155/2016/4754190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
86 Belcher DA, Ju JA, Baek JH, Yalamanoglu A, Buehler PW, Gilkes DM, Palmer AF. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study. PLoS One 2018;13:e0191275. [PMID: 29414985 DOI: 10.1371/journal.pone.0191275] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
87 Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016;85:152-67. [PMID: 26871891 DOI: 10.1016/j.biomaterials.2016.01.061] [Cited by in Crossref: 519] [Cited by in F6Publishing: 465] [Article Influence: 86.5] [Reference Citation Analysis]
88 Garcia-Mazas C, Csaba N, Garcia-Fuentes M. Biomaterials to suppress cancer stem cells and disrupt their tumoral niche. Int J Pharm 2017;523:490-505. [PMID: 27940172 DOI: 10.1016/j.ijpharm.2016.12.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
89 Jia Y, Omri A, Krishnan L, McCluskie MJ. Potential applications of nanoparticles in cancer immunotherapy. Hum Vaccin Immunother 2017;13:63-74. [PMID: 27870598 DOI: 10.1080/21645515.2016.1245251] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
90 Liu F, Zhao X, Zhang X, Zhang X, Peng J, Yang H, Deng K, Ma L, Chang C, Wei H. Fabrication of theranostic amphiphilic conjugated bottlebrush copolymers with alternating heterografts for cell imaging and anticancer drug delivery. Polym Chem 2018;9:4866-74. [DOI: 10.1039/c8py01221k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
91 Fan R, Mei L, Gao X, Wang Y, Xiang M, Zheng Y, Tong A, Zhang X, Han B, Zhou L, Mi P, You C, Qian Z, Wei Y, Guo G. Self-Assembled Bifunctional Peptide as Effective Drug Delivery Vector with Powerful Antitumor Activity. Adv Sci (Weinh) 2017;4:1600285. [PMID: 28435772 DOI: 10.1002/advs.201600285] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
92 Rastegari B, Karbalaei-heidari HR, Zeinali S, Sheardown H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids and Surfaces B: Biointerfaces 2017;158:589-601. [DOI: 10.1016/j.colsurfb.2017.07.044] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
93 Kulkarni VM, Bodas D, Paknikar KM. Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 2015;5:60254-63. [DOI: 10.1039/c5ra02731d] [Cited by in Crossref: 22] [Article Influence: 3.1] [Reference Citation Analysis]
94 Liu J, Chen Q, Feng L, Liu Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 2018;21:55-73. [DOI: 10.1016/j.nantod.2018.06.008] [Cited by in Crossref: 123] [Cited by in F6Publishing: 88] [Article Influence: 30.8] [Reference Citation Analysis]
95 Wang H, Han X, Dong Z, Xu J, Wang J, Liu Z. Hyaluronidase with pH‐responsive Dextran Modification as an Adjuvant Nanomedicine for Enhanced Photodynamic‐Immunotherapy of Cancer. Adv Funct Mater 2019;29:1902440. [DOI: 10.1002/adfm.201902440] [Cited by in Crossref: 71] [Cited by in F6Publishing: 52] [Article Influence: 23.7] [Reference Citation Analysis]
96 Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS J 2020;22. [DOI: 10.1208/s12248-020-00464-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
97 Zhang X, Zhang X, Sun L, Liu F, Wang M, Peng J, Wang Y, Ma L, Wang B, Wei H. Fabrication of biocleavable shell cross-linked hybrid micelles for controlled drug release using a reducible silica monomer. Chem Commun 2018;54:13495-8. [DOI: 10.1039/c8cc06685j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
98 Wang Z, Deng X, Ding J, Zhou W, Zheng X, Tang G. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. International Journal of Pharmaceutics 2018;535:253-60. [DOI: 10.1016/j.ijpharm.2017.11.003] [Cited by in Crossref: 103] [Cited by in F6Publishing: 83] [Article Influence: 25.8] [Reference Citation Analysis]
99 Shen K, Li D, Guan J, Ding J, Wang Z, Gu J, Liu T, Chen X. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:1279-88. [DOI: 10.1016/j.nano.2016.12.022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
100 Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018;290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 15.8] [Reference Citation Analysis]
101 Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017;108:25-38. [PMID: 27137110 DOI: 10.1016/j.addr.2016.04.025] [Cited by in Crossref: 578] [Cited by in F6Publishing: 499] [Article Influence: 96.3] [Reference Citation Analysis]
102 Samie HAA, Saeed M, Faisal SM, Kausar MA, Kamal MA. Recent Findings on Nanotechnology-based Therapeutic Strategies Against Hepatocellular Carcinoma. CDM 2019;20:283-91. [DOI: 10.2174/1389200220666190308134351] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Bahrami A, Hassanian SM, Khazaei M, Hasanzadeh M, Shahidsales S, Maftouh M, Ferns GA, Avan A. The Therapeutic Potential of Targeting Tumor Microenvironment in Breast Cancer: Rational Strategies and Recent Progress. J Cell Biochem 2018;119:111-22. [DOI: 10.1002/jcb.26183] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
104 Huang K, Boerhan R, Liu C, Jiang G. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow. Mol Pharmaceutics 2017;14:4618-27. [DOI: 10.1021/acs.molpharmaceut.7b00726] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
105 Yao C, Tu Y, Ding L, Li C, Wang J, Fang H, Huang Y, Zhang K, Lu Q, Wu M, Wang Y. Tumor Cell-Specific Nuclear Targeting of Functionalized Graphene Quantum Dots In Vivo. Bioconjug Chem 2017;28:2608-19. [PMID: 28903003 DOI: 10.1021/acs.bioconjchem.7b00466] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
106 Adeyemi SA, Choonara YE. In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals 2022;15:353. [DOI: 10.3390/ph15030353] [Reference Citation Analysis]
107 Wan J, Qiao Y, Chen X, Wu J, Zhou L, Zhang J, Fang S, Wang H. Structure-Guided Engineering of Cytotoxic Cabazitaxel for an Adaptive Nanoparticle Formulation: Enhancing the Drug Safety and Therapeutic Efficacy. Adv Funct Mater 2018;28:1804229. [DOI: 10.1002/adfm.201804229] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
108 Feng C, Rui M, Shen H, Xin Y, Zhang J, Li J, Yue L, Lai W, Xu X. Tumor-specific delivery of doxorubicin through conjugation of pH-responsive peptide for overcoming drug resistance in cancer. International Journal of Pharmaceutics 2017;528:322-33. [DOI: 10.1016/j.ijpharm.2017.06.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
109 Tatiparti K, Sau S, Gawde KA, Iyer AK. Copper-Free 'Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. Int J Mol Sci 2018;19:E838. [PMID: 29534020 DOI: 10.3390/ijms19030838] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
110 Wang Y, Li W, Yang Y, Zeng Q, Wong K, Li X, Chen T. An integrin-targeting nanosystem as a carrier of the selenadiazole derivative to induce ROS-mediated apoptosis in bladder cancer cells, from rational design to action mechanisms. J Mater Chem B 2015;3:9374-82. [DOI: 10.1039/c5tb01929j] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
111 Khoobchandani M, Katti K, Maxwell A, Fay WP, Katti KV. Laminin Receptor-Avid Nanotherapeutic EGCg-AuNPs as a Potential Alternative Therapeutic Approach to Prevent Restenosis. Int J Mol Sci 2016;17:316. [PMID: 26938531 DOI: 10.3390/ijms17030316] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
112 Akhter MH, Rizwanullah M, Ahmad J, Ahsan MJ, Mujtaba MA, Amin S. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:873-84. [DOI: 10.1080/21691401.2017.1366333] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 8.4] [Reference Citation Analysis]
113 Papadimitriou SA, Salinas Y, Resmini M. Smart Polymeric Nanoparticles as Emerging Tools for Imaging--The Parallel Evolution of Materials. Chemistry 2016;22:3612-20. [PMID: 26563829 DOI: 10.1002/chem.201502610] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
114 Upadhyay T, Ansari VA, Ahmad U, Sultana N, Akhtar J. Exploring Nanoemulsion for Liver Cancer Therapy. CCTR 2020;16:260-8. [DOI: 10.2174/1573394716666200302123336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
115 Kulhari H, Pooja D, Kota R, Reddy TS, Tabor RF, Shukla R, Adams DJ, Sistla R, Bansal V. Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Mol Pharmaceutics 2016;13:1491-500. [DOI: 10.1021/acs.molpharmaceut.5b00935] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
116 Alam S, Mattern-schain S, Best M. Targeting and Triggered Release Using Lipid-Based Supramolecular Assemblies as Medicinal Nanocarriers. Comprehensive Supramolecular Chemistry II. Elsevier; 2017. pp. 329-64. [DOI: 10.1016/b978-0-12-409547-2.12540-5] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
117 Guo Y, Wang T, Qiu H, Han M, Dong Z, Wang X, Wang Y. Hydroxycamptothecin nanoparticles based on poly/oligo (ethylene glycol): Architecture effects of nanocarriers on antitumor efficacy. European Journal of Pharmaceutics and Biopharmaceutics 2019;134:178-84. [DOI: 10.1016/j.ejpb.2018.12.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
118 Nicolas-boluda A, Silva AK, Fournel S, Gazeau F. Physical oncology: New targets for nanomedicine. Biomaterials 2018;150:87-99. [DOI: 10.1016/j.biomaterials.2017.10.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
119 Patel P, Hanini A, Shah A, Patel D, Patel S, Bhatt P, Pathak YV. Surface Modification of Nanoparticles for Targeted Drug Delivery. In: Pathak YV, editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing; 2019. pp. 19-31. [DOI: 10.1007/978-3-030-06115-9_2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Brancato V, Gioiella F, Profeta M, Imparato G, Guarnieri D, Urciuolo F, Melone P, Netti PA. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems. Acta Biomater 2017;57:47-58. [PMID: 28483691 DOI: 10.1016/j.actbio.2017.05.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
121 Tang JQ, Hou XY, Yang CS, Li YX, Xin Y, Guo WW, Wei ZP, Liu YQ, Jiang G. Recent developments in nanomedicine for melanoma treatment. Int J Cancer 2017;141:646-53. [PMID: 28340496 DOI: 10.1002/ijc.30708] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
122 Niu Y, Zhu J, Li Y, Shi H, Gong Y, Li R, Huo Q, Ma T, Liu Y. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J Control Release 2018;277:35-47. [PMID: 29545106 DOI: 10.1016/j.jconrel.2018.03.012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 15.5] [Reference Citation Analysis]
123 Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018;19:E3143. [PMID: 30322072 DOI: 10.3390/ijms19103143] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
124 Miao L, Lin CM, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release 2015;219:192-204. [PMID: 26277065 DOI: 10.1016/j.jconrel.2015.08.017] [Cited by in Crossref: 119] [Cited by in F6Publishing: 120] [Article Influence: 17.0] [Reference Citation Analysis]
125 Siegler EL, Kim YJ, Wang P. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. Journal of Cellular Immunotherapy 2016;2:69-78. [DOI: 10.1016/j.jocit.2016.08.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
126 Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, Karri VVSR. Nanocarrier based approaches for targeting breast cancer stem cells. Artif Cells Nanomed Biotechnol 2018;46:885-98. [PMID: 28826237 DOI: 10.1080/21691401.2017.1366337] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
127 Wang Y, Li H, Jin Q, Ji J. Intracellular host–guest assembly of gold nanoparticles triggered by glutathione. Chem Commun 2016;52:582-5. [DOI: 10.1039/c5cc07195j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 3.2] [Reference Citation Analysis]
128 Wang J, Mao W, Lock LL, Tang J, Sui M, Sun W, Cui H, Xu D, Shen Y. The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano 2015;9:7195-206. [DOI: 10.1021/acsnano.5b02017] [Cited by in Crossref: 377] [Cited by in F6Publishing: 354] [Article Influence: 53.9] [Reference Citation Analysis]
129 Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. Journal of Controlled Release 2017;259:16-28. [DOI: 10.1016/j.jconrel.2016.12.020] [Cited by in Crossref: 81] [Cited by in F6Publishing: 69] [Article Influence: 16.2] [Reference Citation Analysis]
130 Yan N, Zhu Z, He D, Jin L, Zheng H, Hu S. Simultaneous Determination of Size and Quantification of Gold Nanoparticles by Direct Coupling Thin layer Chromatography with Catalyzed Luminol Chemiluminescence. Sci Rep 2016;6:24577. [PMID: 27080702 DOI: 10.1038/srep24577] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
131 Kanapathipillai M. Treating p53 Mutant Aggregation-Associated Cancer. Cancers (Basel). 2018;10. [PMID: 29789497 DOI: 10.3390/cancers10060154] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
132 Ali MRK, Wu Y, El-sayed MA. Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application. J Phys Chem C 2019;123:15375-93. [DOI: 10.1021/acs.jpcc.9b01961] [Cited by in Crossref: 107] [Cited by in F6Publishing: 53] [Article Influence: 35.7] [Reference Citation Analysis]
133 Xie Q, Deng W, Yuan X, Wang H, Ma Z, Wu B, Zhang X. Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. European Journal of Pharmaceutics and Biopharmaceutics 2018;122:87-95. [DOI: 10.1016/j.ejpb.2017.10.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
134 Liang Y, Li S, Wang X, Zhang Y, Sun Y, Wang Y, Wang X, He B, Dai W, Zhang H, Wang X, Zhang Q. A comparative study of the antitumor efficacy of peptide-doxorubicin conjugates with different linkers. Journal of Controlled Release 2018;275:129-41. [DOI: 10.1016/j.jconrel.2018.01.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
135 Huang Z, Gao Y. Enzyme-Instructed Self-assembly of Small Peptides In Vivo for Biomedical Application. In: Wang H, Li L, editors. In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Singapore: Springer; 2018. pp. 89-114. [DOI: 10.1007/978-981-10-6913-0_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
136 Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci 2015;221:60-76. [PMID: 25999266 DOI: 10.1016/j.cis.2015.04.006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 8.7] [Reference Citation Analysis]
137 Yue H, Yuan L, Zhang W, Zhang S, Wei W, Ma G. Macrophage responses to the physical burden of cell-sized particles. J Mater Chem B 2018;6:393-400. [DOI: 10.1039/c7tb01673e] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
138 Jing T, Li T, Ruan Z, Yan L. pHe- and glutathione-stepwise-responsive polypeptide nanogel for smart and efficient drug delivery. J Mater Sci 2018;53:14933-43. [DOI: 10.1007/s10853-018-2689-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
139 Turky AO, Abdelmoaz MA, Hessien MM, Hassan AM, Bechelany M, Ewais EM, Rashad MM. A Robust and Highly Precise Alternative against the Proliferation of Intestinal Carcinoma and Human Hepatocellular Carcinoma Cells Based on Lanthanum Strontium Manganite Nanoparticles. Materials (Basel) 2021;14:4979. [PMID: 34501078 DOI: 10.3390/ma14174979] [Reference Citation Analysis]
140 Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016;8:E30. [PMID: 30979124 DOI: 10.3390/polym8020030] [Cited by in Crossref: 76] [Cited by in F6Publishing: 49] [Article Influence: 12.7] [Reference Citation Analysis]
141 Zhang X, Zhang M, Wang M, Peng H, Hua Q, Ma L, Wang B, Wei H. Facile Fabrication of 10-Hydroxycamptothecin-Backboned Amphiphilic Polyprodrug with Precisely Tailored Drug Loading Content for Controlled Release. Bioconjug Chem 2018;29:2239-47. [PMID: 29847101 DOI: 10.1021/acs.bioconjchem.8b00238] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
142 Ferreira Soares DC, Oda CMR, Monteiro LOF, de Barros ALB, Tebaldi ML. Responsive polymer conjugates for drug delivery applications: recent advances in bioconjugation methodologies. Journal of Drug Targeting 2019;27:355-66. [DOI: 10.1080/1061186x.2018.1499747] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]