BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013;65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 8.1] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Zhao C, Yu Z, Chen J, She X, Li P, Liu C, Zhang Y, Feng J, Fu H, Wang B, Kuang L, Li L, Lv G, Wu M. Low expression of miR-381 is a favorite prognosis factor and enhances the chemosensitivity of osteosarcoma. Oncotarget 2016;7:68585-96. [PMID: 27612424 DOI: 10.18632/oncotarget.11861] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
2 Albano J, Grillo D, Facelli J, Ferraro M, Pickholz M. Study of the Lamellar and Micellar Phases of Pluronic F127: A Molecular Dynamics Approach. Processes 2019;7:606. [DOI: 10.3390/pr7090606] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
3 Massey AE, Sikander M, Chauhan N, Kumari S, Setua S, Shetty AB, Mandil H, Kashyap VK, Khan S, Jaggi M, Yallapu MM, Hafeez BB, Chauhan SC. Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. Nanomedicine 2019;20:102027. [PMID: 31170509 DOI: 10.1016/j.nano.2019.102027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
4 Fraix A, Conte C, Gazzano E, Riganti C, Quaglia F, Sortino S. Overcoming Doxorubicin Resistance with Lipid-Polymer Hybrid Nanoparticles Photoreleasing Nitric Oxide. Mol Pharm 2020;17:2135-44. [PMID: 32286080 DOI: 10.1021/acs.molpharmaceut.0c00290] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
5 Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017;115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Cited by in Crossref: 84] [Cited by in F6Publishing: 77] [Article Influence: 16.8] [Reference Citation Analysis]
6 Wang Y, Zhao L, Xiao Q, Jiang L, He M, Bai X, Ma M, Jiao X, Wei M. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecol Oncol 2016;141:592-601. [PMID: 26644266 DOI: 10.1016/j.ygyno.2015.11.034] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
7 Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021;:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Reference Citation Analysis]
8 Wang Z, Yang J, Xu G, Wang W, Liu C, Yang H, Yu Z, Lei Q, Xiao L, Xiong J, Zeng L, Xiang J, Ma J, Li G, Wu M. Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors. Oncotarget 2015;6:3147-64. [PMID: 25605243 DOI: 10.18632/oncotarget.3061] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 6.8] [Reference Citation Analysis]
9 Wood I, Martini M, Albano J, Cuestas M, Mathet V, Pickholz M. Coarse grained study of pluronic F127: Comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water. Journal of Molecular Structure 2016;1109:106-13. [DOI: 10.1016/j.molstruc.2015.12.073] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
10 Aboulfotouh K, Allam AA, El-badry M, El-sayed AM. Self-emulsifying drug–delivery systems modulate P-glycoprotein activity: role of excipients and formulation aspects. Nanomedicine 2018;13:1813-34. [DOI: 10.2217/nnm-2017-0354] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
11 Porat D, Dahan A. Active intestinal drug absorption and the solubility-permeability interplay. Int J Pharm 2018;537:84-93. [PMID: 29102702 DOI: 10.1016/j.ijpharm.2017.10.058] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
12 Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. Adv Exp Med Biol. 2019;1141:549-580. [PMID: 31571174 DOI: 10.1007/978-981-13-7647-4_12] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
13 Yuan X, Ji W, Chen S, Bao Y, Tan S, Lu S, Wu K, Chu Q. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomedicine 2016;11:2119-31. [PMID: 27307727 DOI: 10.2147/IJN.S92271] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
14 Mairinger S, Zoufal V, Wanek T, Traxl A, Filip T, Sauberer M, Stanek J, Kuntner C, Pahnke J, Müller M, Langer O. Influence of breast cancer resistance protein and P-glycoprotein on tissue distribution and excretion of Ko143 assessed with PET imaging in mice. Eur J Pharm Sci 2018;115:212-22. [PMID: 29360507 DOI: 10.1016/j.ejps.2018.01.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016;4:5078-100. [DOI: 10.1039/c6tb00900j] [Cited by in Crossref: 27] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
16 Xu Y, Wang S, Yang L, Dong Y, Zhang Y, Yan G, Tang R. pH-sensitive micelles self-assembled from star-shaped TPGS copolymers with ortho ester linkages for enhanced MDR reversal and chemotherapy. Asian J Pharm Sci 2021;16:363-73. [PMID: 34276824 DOI: 10.1016/j.ajps.2021.01.002] [Reference Citation Analysis]
17 Harshita, Barkat MA, Das SS, Pottoo FH, Beg S, Rahman Z. Lipid-Based Nanosystem As Intelligent Carriers for Versatile Drug Delivery Applications. CPD 2020;26:1167-80. [DOI: 10.2174/1381612826666200206094529] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
18 Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang XJ, Rocchi P, Peng L. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci U S A 2015;112:2978-83. [PMID: 25713374 DOI: 10.1073/pnas.1418494112] [Cited by in Crossref: 227] [Cited by in F6Publishing: 208] [Article Influence: 32.4] [Reference Citation Analysis]
19 Sosnik A. Tissue-based in vitro and ex vivo models for nasal permeability studies. Concepts and Models for Drug Permeability Studies. Elsevier; 2016. pp. 237-54. [DOI: 10.1016/b978-0-08-100094-6.00014-6] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
20 Dalpiaz A, Pavan B. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux? Pharmaceutics 2018;10:E39. [PMID: 29587409 DOI: 10.3390/pharmaceutics10020039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
21 Xiao D, Hu X, Zhang J. Tumor Targeted Polymer Nanoparticles Co-loaded with Docetaxel and siCCAT2 for Combination Therapy of Lung Cancer. J Drug Target 2021;:1-26. [PMID: 34931561 DOI: 10.1080/1061186X.2021.2016773] [Reference Citation Analysis]
22 Zhou B, Zhang D, Pei SM, Zhang H, Du HC, Jin YP, Lin DG. Establishment of 5-Fluorouracil-resistant canine mammary tumor cell line. Polish Journal of Veterinary Sciences 2017;20:103-10. [DOI: 10.1515/pjvs-2017-0014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
23 Badr-Eldin SM, Aldawsari HM, Ahmed OAA, Alhakamy NA, Neamatallah T, Okbazghi SZ, Fahmy UA. Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: A potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. Int J Pharm 2021;600:120493. [PMID: 33744452 DOI: 10.1016/j.ijpharm.2021.120493] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Sosnik A, Augustine R. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016;103:105-20. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
25 Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941-51. [PMID: 26348965 DOI: 10.1038/nbt.3330] [Cited by in Crossref: 2876] [Cited by in F6Publishing: 2623] [Article Influence: 479.3] [Reference Citation Analysis]
26 He Y, Xing L, Cui P, Zhang J, Zhu Y, Qiao J, Lyu J, Zhang M, Luo C, Zhou Y, Lu N, Jiang H. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials 2017;113:266-78. [DOI: 10.1016/j.biomaterials.2016.11.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
27 Wang Y, Xue J, Wang Q, Jin S, Zhang Z, Hong Z, Du Y. Structural investigation of a 2:1 co-crystal between diflunisal and isonicotinamide based on terahertz and Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;216:98-104. [DOI: 10.1016/j.saa.2019.03.023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
28 Catalan-figueroa J, Boisset CB, Jara MO, Flores ME, Moreno-villoslada I, Fiedler JL, Morales JO. A mechanistic approach for the optimization of loperamide loaded nanocarriers characterization: Diafiltration and mathematical modeling advantages. European Journal of Pharmaceutical Sciences 2018;125:215-22. [DOI: 10.1016/j.ejps.2018.10.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Pieper S, Onafuye H, Mulac D, Cinatl J Jr, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein J Nanotechnol 2019;10:2062-72. [PMID: 31728254 DOI: 10.3762/bjnano.10.201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
30 Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022;14:1131. [DOI: 10.3390/pharmaceutics14061131] [Reference Citation Analysis]
31 Cheng Q, Du L, Meng L, Han S, Wei T, Wang X, Wu Y, Song X, Zhou J, Zheng S, Huang Y, Liang XJ, Cao H, Dong A, Liang Z. The Promising Nanocarrier for Doxorubicin and siRNA Co-delivery by PDMAEMA-based Amphiphilic Nanomicelles. ACS Appl Mater Interfaces 2016;8:4347-56. [PMID: 26835788 DOI: 10.1021/acsami.5b11789] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
32 Zhang J, Zhao X, Chen Q, Yin X, Xin X, Li K, Qiao M, Hu H, Chen D, Zhao X. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater 2017;50:381-95. [PMID: 27956367 DOI: 10.1016/j.actbio.2016.12.021] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
33 Zhou S, Ding C, Wang C, Fu J. UV-light cross-linked and pH de-cross-linked coumarin-decorated cationic copolymer grafted mesoporous silica nanoparticles for drug and gene co-delivery in vitro. Materials Science and Engineering: C 2020;108:110469. [DOI: 10.1016/j.msec.2019.110469] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
34 Grozdova ID, Badun GA, Chernysheva MG, Orlov VN, Romanyuk AV, Melik-nubarov NS. Increase in the length of poly(ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake. J Appl Polym Sci 2017;134:45492. [DOI: 10.1002/app.45492] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
35 Sosnik A. From the “Magic Bullet” to Advanced Nanomaterials for Active Targeting in Diagnostics and Therapeutics. Biomedical Applications of Functionalized Nanomaterials. Elsevier; 2018. pp. 1-32. [DOI: 10.1016/b978-0-323-50878-0.00001-x] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Meng T, Qiu G, Hong Y, Yuan M, Lu B, Wu J, Yuan H, Hu F. Effect of chitosan based glycolipid-like nanocarrier in prevention of developing acquired drug resistance in tri-cycle treatment of breast cancer. International Journal of Pharmaceutics 2019;555:303-13. [DOI: 10.1016/j.ijpharm.2018.11.056] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
37 Zheng RR, Zhao LP, Liu LS, Deng FA, Chen XY, Jiang XY, Wang C, Yu XY, Cheng H, Li SY. Self-delivery nanomedicine to overcome drug resistance for synergistic chemotherapy. Biomater Sci 2021;9:3445-52. [PMID: 33949456 DOI: 10.1039/d1bm00119a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Wang W, Guo H, Lin S, Xiao X, Liu Y, Wang Y, Zhou D. Biosafety materials for tuberculosis treatment. Biosafety and Health 2022. [DOI: 10.1016/j.bsheal.2022.03.013] [Reference Citation Analysis]
39 Ganju A, Yallapu MM, Khan S, Behrman SW, Chauhan SC, Jaggi M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Updat 2014;17:13-23. [PMID: 24853766 DOI: 10.1016/j.drup.2014.04.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 6.5] [Reference Citation Analysis]
40 Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015;33:1380-92. [PMID: 25597531 DOI: 10.1016/j.biotechadv.2015.01.003] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
41 Negi LM, Talegaonkar S, Jaggi M, Verma AK, Verma R, Dobhal S, Kumar V. Surface engineered nanostructured lipid carriers for targeting MDR tumor: Part II. In vivo biodistribution, pharmacodynamic and hematological toxicity studies. Colloids and Surfaces B: Biointerfaces 2014;123:610-5. [DOI: 10.1016/j.colsurfb.2014.09.061] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
42 Zhang C, Mou M, Zhou Y, Zhang W, Lian X, Shi S, Lu M, Sun H, Li F, Wang Y, Zeng Z, Li Z, Zhang B, Qiu Y, Zhu F, Gao J. Biological activities of drug inactive ingredients. Brief Bioinform 2022:bbac160. [PMID: 35524477 DOI: 10.1093/bib/bbac160] [Reference Citation Analysis]
43 Zhang R, Xing R, Jiao T, Ma K, Chen C, Ma G, Yan X. Carrier-Free, Chemophotodynamic Dual Nanodrugs via Self-Assembly for Synergistic Antitumor Therapy. ACS Appl Mater Interfaces 2016;8:13262-9. [DOI: 10.1021/acsami.6b02416] [Cited by in Crossref: 198] [Cited by in F6Publishing: 178] [Article Influence: 33.0] [Reference Citation Analysis]
44 Roy U, Barber P, Tse-Dinh YC, Batrakova EV, Mondal D, Nair M. Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections. Front Microbiol 2015;6:948. [PMID: 26441882 DOI: 10.3389/fmicb.2015.00948] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
45 Zhu H, Cao G, Fu Y, Fang C, Chu Q, Li X, Wu Y, Han G. ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein. Nano Res 2021;14:222-31. [DOI: 10.1007/s12274-020-3071-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
46 Klukovits A, Krajcsi P. Mechanisms and therapeutic potential of inhibiting drug efflux transporters. Expert Opinion on Drug Metabolism & Toxicology 2015;11:907-20. [DOI: 10.1517/17425255.2015.1028917] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
47 Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials 2016;97:34-50. [PMID: 27162073 DOI: 10.1016/j.biomaterials.2016.04.027] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 11.3] [Reference Citation Analysis]
48 Kou L, Sun R, Bhutia YD, Yao Q, Chen R. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opinion on Drug Delivery 2018;15:869-79. [DOI: 10.1080/17425247.2018.1517749] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
49 Aboulfotouh K, A. Allam A, El-badry M. Self-Emulsifying Drug Delivery Systems: Easy to Prepare Multifunctional Vectors for Efficient Oral Delivery. In: Ahmed Hamed Khalil I, editor. Current and Future Aspects of Nanomedicine. IntechOpen; 2020. [DOI: 10.5772/intechopen.88412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Omrane S, Sghyer H, Audéon C, Lanen C, Duplaix C, Walker A, Fillinger S. Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates: Fungicide efflux & MgMFS1 contribute to MDR in Z. tritici. Environ Microbiol 2015;17:2805-23. [DOI: 10.1111/1462-2920.12781] [Cited by in Crossref: 79] [Cited by in F6Publishing: 54] [Article Influence: 11.3] [Reference Citation Analysis]
51 Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. Curr Res Pharmacol Drug Discov 2021;2:100054. [PMID: 34909680 DOI: 10.1016/j.crphar.2021.100054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Shao S, Zhou Q, Si J, Tang J, Liu X, Wang M, Gao J, Wang K, Xu R, Shen Y. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng 2017;1:745-57. [DOI: 10.1038/s41551-017-0130-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
53 Sawangrat K, Yamashita S, Tanaka A, Morishita M, Kusamori K, Katsumi H, Sakane T, Yamamoto A. Modulation of Intestinal Transport and Absorption of Topotecan, a BCRP Substrate, by Various Pharmaceutical Excipients and Their Inhibitory Mechanisms of BCRP Transporter. Journal of Pharmaceutical Sciences 2019;108:1315-25. [DOI: 10.1016/j.xphs.2018.10.043] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
54 Singh MS, Lamprecht A. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles. Drug Development and Industrial Pharmacy 2016;42:325-31. [DOI: 10.3109/03639045.2015.1054396] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
55 Gregoritza M, Messmann V, Abstiens K, Brandl FP, Goepferich AM. Controlled Antibody Release from Degradable Thermoresponsive Hydrogels Cross-Linked by Diels–Alder Chemistry. Biomacromolecules 2017;18:2410-8. [DOI: 10.1021/acs.biomac.7b00587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
56 Glisoni RJ, Sosnik A. Novel Poly(Ethylene Oxide)- b -Poly(Propylene Oxide) Copolymer-Glucose Conjugate by the Microwave-Assisted Ring Opening of a Sugar Lactone: Novel Poly(Ethylene Oxide)- b -Poly(Propylene Oxide) …. Macromol Biosci 2014;14:1639-51. [DOI: 10.1002/mabi.201400235] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
57 Misra R, Das M, Sahoo BS, Sahoo SK. Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly(lactide-co-glycolide) nanoformulation. Int J Pharm 2014;475:372-84. [PMID: 25178825 DOI: 10.1016/j.ijpharm.2014.08.056] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
58 Roma MI, Hocht C, Chiappetta DA, Di Gennaro SS, Minoia JM, Bramuglia GF, Rubio MC, Sosnik A, Peroni RN. Tetronic® 904-containing polymeric micelles overcome the overexpression of ABCG2 in the blood-brain barrier of rats and boost the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine (Lond) 2015;10:2325-37. [PMID: 26252052 DOI: 10.2217/NNM.15.77] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
59 Demina TV, Budkina OA, Badun GA, Melik-nubarov NS, Frey H, Müller SS, Nieberle J, Grozdova ID. Cytotoxicity and Chemosensitizing Activity of Amphiphilic Poly(glycerol)–Poly(alkylene oxide) Block Copolymers. Biomacromolecules 2014;15:2672-81. [DOI: 10.1021/bm500521j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
60 Bustos-Cruz RH, Martínez LR, García JC, Barreto GE, Suárez F. New ABCC2 rs3740066 and rs2273697 Polymorphisms Identified in a Healthy Colombian Cohort. Pharmaceutics 2018;10:E93. [PMID: 30018187 DOI: 10.3390/pharmaceutics10030093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergström CAS, Porter CJH. 50years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev 2016;101:167-94. [PMID: 27089810 DOI: 10.1016/j.addr.2016.04.007] [Cited by in Crossref: 230] [Cited by in F6Publishing: 210] [Article Influence: 38.3] [Reference Citation Analysis]
62 Be NA, Avila-Herrera A, Allen JE, Singh N, Checinska Sielaff A, Jaing C, Venkateswaran K. Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 2017;5:81. [PMID: 28716113 DOI: 10.1186/s40168-017-0292-4] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
63 Chen Q, Xu M, Zheng W, Xu T, Deng H, Liu J. Se/Ru-Decorated Porous Metal-Organic Framework Nanoparticles for The Delivery of Pooled siRNAs to Reversing Multidrug Resistance in Taxol-Resistant Breast Cancer Cells. ACS Appl Mater Interfaces 2017;9:6712-24. [PMID: 28191840 DOI: 10.1021/acsami.6b12792] [Cited by in Crossref: 68] [Cited by in F6Publishing: 57] [Article Influence: 13.6] [Reference Citation Analysis]
64 Kirtane AR, Narayan P, Liu G, Panyam J. Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. Journal of Pharmaceutical Investigation 2017;47:65-73. [DOI: 10.1007/s40005-016-0293-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
65 Peng L, Jiang J, Tang B, Nice EC, Zhang YY, Xie N. Managing therapeutic resistance in breast cancer: from the lncRNAs perspective. Theranostics 2020;10:10360-77. [PMID: 32929354 DOI: 10.7150/thno.49922] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
66 Xu W, Bae EJ, Lee MK. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int J Nanomedicine 2018;13:7549-63. [PMID: 30532538 DOI: 10.2147/IJN.S182621] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
67 Guo Y, He W, Yang S, Zhao D, Li Z, Luan Y. Co-delivery of docetaxel and verapamil by reduction-sensitive PEG-PLGA-SS-DTX conjugate micelles to reverse the multi-drug resistance of breast cancer. Colloids and Surfaces B: Biointerfaces 2017;151:119-27. [DOI: 10.1016/j.colsurfb.2016.12.012] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 9.2] [Reference Citation Analysis]
68 Garg A, Bhalala K, Tomar DS, Wahajuddin. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles. International Journal of Pharmaceutics 2017;516:120-30. [DOI: 10.1016/j.ijpharm.2016.10.064] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]