BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaminskas LM, Porter CJ. Targeting the lymphatics using dendritic polymers (dendrimers). Advanced Drug Delivery Reviews 2011;63:890-900. [DOI: 10.1016/j.addr.2011.05.016] [Cited by in Crossref: 81] [Cited by in F6Publishing: 70] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Pandya P, Giram P, Bhole RP, Chang H, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. Journal of Drug Delivery Science and Technology 2021;64:102585. [DOI: 10.1016/j.jddst.2021.102585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zeng Q, Jiang H, Wang T, Zhang Z, Gong T, Sun X. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. Journal of Controlled Release 2015;200:1-12. [DOI: 10.1016/j.jconrel.2014.12.024] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 8.3] [Reference Citation Analysis]
3 Shute T, Amiel E, Alam N, Yates JL, Mohrs K, Dudley E, Salas B, Mesa C, Serrata A, Angel D, Vincent BK, Weyers A, Lanthier PA, Vomhof-Dekrey E, Fromme R, Laughlin M, Durham O, Miao J, Shipp D, Linhardt RJ, Nash K, Leadbetter EA. Glycolipid-Containing Nanoparticle Vaccine Engages Invariant NKT Cells to Enhance Humoral Protection against Systemic Bacterial Infection but Abrogates T-Independent Vaccine Responses. J Immunol 2021;206:1806-16. [PMID: 33811104 DOI: 10.4049/jimmunol.2001283] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell‐Specific Modulation and Restore of Cancer Immunotherapy. Advanced Science. [DOI: 10.1002/advs.202200027] [Reference Citation Analysis]
5 Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020;21:2966-82. [DOI: 10.1021/acs.biomac.0c00438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
6 Sigfridsson K, Lundqvist A, Strimfors M. Evaluation of exposure properties after injection of nanosuspensions and microsuspenions into the intraperitoneal space in rats. Drug Dev Ind Pharm 2013;39:1832-9. [PMID: 23240709 DOI: 10.3109/03639045.2012.738684] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
7 Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 2014;9:1025-37. [PMID: 24591825 DOI: 10.2147/IJN.S38378] [Cited by in Crossref: 162] [Cited by in F6Publishing: 41] [Article Influence: 20.3] [Reference Citation Analysis]
8 Howard GP, Verma G, Ke X, Thayer WM, Hamerly T, Baxter VK, Lee JE, Dinglasan RR, Mao HQ. Critical Size Limit of Biodegradable Nanoparticles for Enhanced Lymph Node Trafficking and Paracortex Penetration. Nano Res 2019;12:837-44. [PMID: 33343832 DOI: 10.1007/s12274-019-2301-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
9 Manchanda R, Fernandez-Fernandez A, Paluri SLA, Smith BR. Nanomaterials to target immunity. Adv Pharmacol 2021;91:293-335. [PMID: 34099112 DOI: 10.1016/bs.apha.2021.03.003] [Reference Citation Analysis]
10 Dong X, Sun Z, Liang J, Wang H, Zhu D, Leng X, Wang C, Kong D, Lv F. A visible fluorescent nanovaccine based on functional genipin crosslinked ovalbumin protein nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:1087-98. [DOI: 10.1016/j.nano.2018.02.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
11 Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Lymph node metastases: importance of detection and treatment strategies. Expert Opin Drug Deliv 2018;15:459-67. [PMID: 29504430 DOI: 10.1080/17425247.2018.1446937] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
12 Nishimoto Y, Nagashima S, Nakajima K, Ohira T, Sato T, Izawa T, Yamate J, Higashikawa K, Kuge Y, Ogawa M, Kojima C. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm 2020;576:119021. [PMID: 31917298 DOI: 10.1016/j.ijpharm.2020.119021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
13 Assis NRG, Caires AJ, Figueiredo BC, Morais SB, Mambelli FS, Marinho FV, Ladeira LO, Oliveira SC. The use of gold nanorods as a new vaccine platform against schistosomiasis. J Control Release 2018;275:40-52. [PMID: 29428201 DOI: 10.1016/j.jconrel.2018.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
14 Alsehli M, Gauthier M. Arborescent Polypeptides for Sustained Drug Delivery. MRS Proc 2016;1819. [DOI: 10.1557/opl.2016.70] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Ahmad MZ, Ahmad J, Alasmary MY, Abdel-Wahab BA, Warsi MH, Haque A, Chaubey P. Emerging advances in cationic liposomal cancer nanovaccines: opportunities and challenges. Immunotherapy 2021;13:491-507. [PMID: 33626936 DOI: 10.2217/imt-2020-0258] [Reference Citation Analysis]
16 Nagai K, Sato T, Kojima C. Design of a dendrimer with a matrix metalloproteinase-responsive fluorescence probe and a tumor-homing peptide for metastatic tumor cell imaging in the lymph node. Bioorg Med Chem Lett 2021;33:127726. [PMID: 33316406 DOI: 10.1016/j.bmcl.2020.127726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kuehl C, Zhang T, Kaminskas LM, Porter CJ, Davies NM, Forrest L, Berkland C. Hyaluronic Acid Molecular Weight Determines Lung Clearance and Biodistribution after Instillation. Mol Pharm 2016;13:1904-14. [PMID: 27157508 DOI: 10.1021/acs.molpharmaceut.6b00069] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
18 Bagby TR, Duan S, Cai S, Yang Q, Thati S, Berkland C, Aires DJ, Forrest ML. Lymphatic trafficking kinetics and near-infrared imaging using star polymer architectures with controlled anionic character. Eur J Pharm Sci 2012;47:287-94. [PMID: 22546180 DOI: 10.1016/j.ejps.2012.04.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
19 Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. Journal of Controlled Release 2017;267:47-56. [DOI: 10.1016/j.jconrel.2017.08.009] [Cited by in Crossref: 98] [Cited by in F6Publishing: 87] [Article Influence: 19.6] [Reference Citation Analysis]
20 Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angew Chem Int Ed Engl 2012;51:12721-6. [PMID: 23136130 DOI: 10.1002/anie.201205271] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 7.2] [Reference Citation Analysis]
21 Wu J, Wu K, Xu W, Yuan T, Wang X, Zhang J, Min Y, Yin Y, Zhang X. Engineering detoxified pneumococcal pneumolysin derivative ΔA146PLY for self-biomineralization of calcium phosphate: Assessment of their protective efficacy in murine infection models. Biomaterials 2018;155:152-64. [DOI: 10.1016/j.biomaterials.2017.11.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
22 Zeng Q, Li H, Jiang H, Yu J, Wang Y, Ke H, Gong T, Zhang Z, Sun X. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 2017;122:105-13. [PMID: 28110170 DOI: 10.1016/j.biomaterials.2017.01.010] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 11.0] [Reference Citation Analysis]
23 Grimaldi AM, Incoronato M, Salvatore M, Soricelli A. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond) 2017;12:2349-65. [PMID: 28868980 DOI: 10.2217/nnm-2017-0208] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
24 Dou L, Meng X, Yang H, Dong H. Advances in technology and applications of nanoimmunotherapy for cancer. Biomark Res 2021;9:63. [PMID: 34419164 DOI: 10.1186/s40364-021-00321-9] [Reference Citation Analysis]
25 Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-Functionalized, Ultra-Small, Monodisperse Silica Nanoconjugates for Targeted Dual-Modal Imaging of Lymph Nodes with Metastatic Tumors. Angew Chem 2012;124:12893-8. [DOI: 10.1002/ange.201205271] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
26 Zhao Y, Guo Y, Tang L. Engineering cancer vaccines using stimuli-responsive biomaterials. Nano Res 2018;11:5355-71. [DOI: 10.1007/s12274-018-2162-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
27 Pearson RM, Sunoqrot S, Hsu HJ, Bae JW, Hong S. Dendritic nanoparticles: the next generation of nanocarriers? Ther Deliv 2012;3:941-59. [PMID: 22946429 DOI: 10.4155/tde.12.76] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
28 Chin AL, Wang X, Tong R. Aliphatic Polyester-Based Materials for Enhanced Cancer Immunotherapy. Macromol Biosci 2021;21:e2100087. [PMID: 33909344 DOI: 10.1002/mabi.202100087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Dudani JS, Buss CG, Akana RTK, Kwong GA, Bhatia SN. Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. Adv Funct Mater 2016;26:2919-28. [PMID: 29706854 DOI: 10.1002/adfm.201505142] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
30 Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013;65:1866-79. [PMID: 24120656 DOI: 10.1016/j.addr.2013.09.019] [Cited by in Crossref: 390] [Cited by in F6Publishing: 364] [Article Influence: 43.3] [Reference Citation Analysis]
31 Sabnis N, Lacko AG. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv 2012;3:599-608. [PMID: 22834404 DOI: 10.4155/tde.12.41] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
32 Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27470448 DOI: 10.1002/wnan.1421] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
33 Worley DR, Hansen RJ, Wittenburg LA, Chubb LS, Gustafson DL. Docetaxel Accumulates in Lymphatic Circulation Following Subcutaneous Delivery Compared to Intravenous Delivery in Rats. Anticancer Res 2016;36:5071-8. [PMID: 27798866 DOI: 10.21873/anticanres.11076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
34 Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol 2021;16:1-14. [PMID: 32807876 DOI: 10.1038/s41565-020-0739-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
35 Gupta A, Sharma R, Kuche K, Jain S. Exploring the therapeutic potential of the bioinspired reconstituted high density lipoprotein nanostructures. International Journal of Pharmaceutics 2021;596:120272. [DOI: 10.1016/j.ijpharm.2021.120272] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019;151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
37 Alderfer L, Hall E, Hanjaya-Putra D. Harnessing biomaterials for lymphatic system modulation. Acta Biomater 2021:S1742-7061(21)00373-1. [PMID: 34118451 DOI: 10.1016/j.actbio.2021.06.006] [Reference Citation Analysis]
38 Ryan GM, Kaminskas LM, Bulitta JB, Mcintosh MP, Owen DJ, Porter CJ. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. Journal of Controlled Release 2013;172:128-36. [DOI: 10.1016/j.jconrel.2013.08.004] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
39 Sigfridsson K, Lundqvist A, Strimfors M. Subcutaneous administration of nano- and microsuspensions of poorly soluble compounds to rats. Drug Dev Ind Pharm 2014;40:511-8. [PMID: 23557177 DOI: 10.3109/03639045.2013.771645] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
40 Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release 2013;171:152-62. [PMID: 23777885 DOI: 10.1016/j.jconrel.2013.06.006] [Cited by in Crossref: 87] [Cited by in F6Publishing: 78] [Article Influence: 9.7] [Reference Citation Analysis]
41 Appelhans D, Klajnert-maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015;44:3968-96. [DOI: 10.1039/c4cs00339j] [Cited by in Crossref: 97] [Cited by in F6Publishing: 16] [Article Influence: 13.9] [Reference Citation Analysis]
42 Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021;11:886-902. [PMID: 33996405 DOI: 10.1016/j.apsb.2021.03.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Suares D, Prabhakar B. Cuboidal lipid polymer nanoparticles of rosuvastatin for oral delivery. Drug Development and Industrial Pharmacy 2017;43:213-24. [DOI: 10.1080/03639045.2016.1232726] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
44 Khan S, Khan S, Baboota S, Ali J. Immunosuppressive drug therapy – biopharmaceutical challenges and remedies. Expert Opinion on Drug Delivery 2015;12:1333-49. [DOI: 10.1517/17425247.2015.1005072] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
45 Trevaskis NL, Caliph SM, Nguyen G, Tso P, Charman WN, Porter CJ. A mouse model to evaluate the impact of species, sex, and lipid load on lymphatic drug transport. Pharm Res 2013;30:3254-70. [PMID: 23430484 DOI: 10.1007/s11095-013-1000-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
46 Chan LJ, Bulitta JB, Ascher DB, Haynes JM, McLeod VM, Porter CJ, Williams CC, Kaminskas LM. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Mol Pharm 2015;12:794-809. [PMID: 25644368 DOI: 10.1021/mp5006189] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
47 Ali Khan A, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 2013;8:2733-44. [PMID: 23926431 DOI: 10.2147/IJN.S41521] [Cited by in Crossref: 31] [Cited by in F6Publishing: 50] [Article Influence: 3.4] [Reference Citation Analysis]
48 Tseng YC, Xu Z, Guley K, Yuan H, Huang L. Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials 2014;35:4688-98. [PMID: 24613050 DOI: 10.1016/j.biomaterials.2014.02.030] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 8.4] [Reference Citation Analysis]
49 Liu H, Irvine DJ. Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug Chem 2015;26:791-801. [PMID: 25822926 DOI: 10.1021/acs.bioconjchem.5b00103] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
50 Wang L, Subasic C, Minchin RF, Kaminskas LM. Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine (Lond) 2019;14:1605-21. [PMID: 31166140 DOI: 10.2217/nnm-2018-0478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
51 Patil NG, Augustine R, Zhang Y, Hong SC, Kim I. Synthesis of Stimuli-Responsive Heterofunctional Dendrimer by Passerini Multicomponent Reaction. ACS Omega 2019;4:6660-8. [PMID: 31459791 DOI: 10.1021/acsomega.9b00384] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
52 Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release 2014;191:24-33. [PMID: 24698946 DOI: 10.1016/j.jconrel.2014.03.041] [Cited by in Crossref: 91] [Cited by in F6Publishing: 82] [Article Influence: 11.4] [Reference Citation Analysis]
53 Fruchon S, Caminade AM, Abadie C, Davignon JL, Combette JM, Turrin CO, Poupot R. An azabisphosphonate-capped poly(phosphorhydrazone) dendrimer for the treatment of endotoxin-induced uveitis. Molecules 2013;18:9305-16. [PMID: 23921793 DOI: 10.3390/molecules18089305] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
54 Yang R, Mao Y, Ye T, Xia S, Wang S, Wang S. Study on enhanced lymphatic exposure of polyamidoamin-alkali blue dendrimer for paclitaxel delivery and influence of the osmotic pressure on the lymphatic targeting. Drug Deliv 2016;23:2617-29. [PMID: 26017243 DOI: 10.3109/10717544.2015.1041577] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
55 Lin J, Hu W, Gao F, Qin J, Peng C, Lu X. Folic acid-modified diatrizoic acid-linked dendrimer-entrapped gold nanoparticles enable targeted CT imaging of human cervical cancer. J Cancer 2018;9:564-77. [PMID: 29483962 DOI: 10.7150/jca.19786] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
56 Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 2013;34:470-80. [DOI: 10.1016/j.biomaterials.2012.09.054] [Cited by in Crossref: 152] [Cited by in F6Publishing: 139] [Article Influence: 16.9] [Reference Citation Analysis]
57 Yang Q, Forrest L. Drug Delivery to the Lymphatic System. In: Wang B, Hu L, Siahaan TJ, editors. Drug Delivery. Hoboken: John Wiley & Sons, Inc; 2016. pp. 503-48. [DOI: 10.1002/9781118833322.ch21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
58 Nishimoto Y, Nishio M, Nagashima S, Nakajima K, Ohira T, Nakai S, Nakase I, Higashikawa K, Kuge Y, Matsumoto A, Ogawa M, Kojima C. Association of Hydrophobic Carboxyl-Terminal Dendrimers with Lymph Node-Resident Lymphocytes. Polymers (Basel) 2020;12:E1474. [PMID: 32630042 DOI: 10.3390/polym12071474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Wauthoz N, Bastiat G, Moysan E, Cieślak A, Kondo K, Zandecki M, Moal V, Rousselet M, Hureaux J, Benoit J. Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1237-45. [DOI: 10.1016/j.nano.2015.02.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
60 Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. Adv Sci (Weinh) 2019;6:1900101. [PMID: 31508270 DOI: 10.1002/advs.201900101] [Cited by in Crossref: 104] [Cited by in F6Publishing: 84] [Article Influence: 34.7] [Reference Citation Analysis]
61 Shao N, Dai T, Liu Y, Li L, Cheng Y. Evidence of guest encapsulation within G8 and G10 dendrimers using NMR techniques. Soft Matter 2014;10:9153-8. [DOI: 10.1039/c4sm01381f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
62 Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. Journal of Controlled Release 2014;193:241-56. [DOI: 10.1016/j.jconrel.2014.04.051] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 7.8] [Reference Citation Analysis]
63 Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015;115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Cited by in Crossref: 418] [Cited by in F6Publishing: 397] [Article Influence: 59.7] [Reference Citation Analysis]
64 Zhou H, Lei PJ, Padera TP. Progression of Metastasis through Lymphatic System. Cells 2021;10:627. [PMID: 33808959 DOI: 10.3390/cells10030627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Ye T, Li F, Ma G, Wei W. Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Adv Drug Deliv Rev 2021;177:113927. [PMID: 34403752 DOI: 10.1016/j.addr.2021.113927] [Reference Citation Analysis]
66 Kishimoto TK, Maldonado RA. Nanoparticles for the Induction of Antigen-Specific Immunological Tolerance. Front Immunol 2018;9:230. [PMID: 29515571 DOI: 10.3389/fimmu.2018.00230] [Cited by in Crossref: 73] [Cited by in F6Publishing: 65] [Article Influence: 18.3] [Reference Citation Analysis]
67 Park W, Song KH, Lim J, Park CG, Doh J, Han DK. Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses. International Materials Reviews 2020;65:445-62. [DOI: 10.1080/09506608.2020.1735117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
68 Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013;65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Cited by in Crossref: 217] [Cited by in F6Publishing: 202] [Article Influence: 21.7] [Reference Citation Analysis]
69 Yang X, Yu T, Zeng Y, Lian K, Zhou X, Ke J, Li Y, Yuan H, Hu F. pH-Responsive Biomimetic Polymeric Micelles as Lymph Node-Targeting Vaccines for Enhanced Antitumor Immune Responses. Biomacromolecules 2020;21:2818-28. [DOI: 10.1021/acs.biomac.0c00518] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
70 Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Dendrimers as high relaxivity MR contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014;6:155-62. [PMID: 24155241 DOI: 10.1002/wnan.1250] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
71 Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:2119-27. [DOI: 10.1016/j.nano.2015.08.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
72 Knadler MP, Nguyen TH, Campanale K, De Veer MJ, Beals JM, Li S, Hansen R, Siesky A, Michael MD, Porter CJ. Addition of 20-kDa PEG to Insulin Lispro Alters Absorption and Decreases Clearance in Animals. Pharm Res 2016;33:2920-9. [PMID: 27528391 DOI: 10.1007/s11095-016-2014-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]