BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 2009;61:710-20. [PMID: 19356738 DOI: 10.1016/j.addr.2009.04.001] [Cited by in Crossref: 177] [Cited by in F6Publishing: 181] [Article Influence: 12.6] [Reference Citation Analysis]
Number Citing Articles
1 Hickey JC, Hurst PJ, Patterson JP, Guan Z. Facile Synthesis of Multifunctional Bioreducible Polymers for mRNA Delivery. Chemistry 2023;29:e202203393. [PMID: 36469740 DOI: 10.1002/chem.202203393] [Reference Citation Analysis]
2 Huang X, Guo H, Wang L, Zhang Z, Zhang W. Biomimetic cell membrane-coated nanocarriers for targeted siRNA delivery in cancer therapy. Drug Discov Today 2023;28:103514. [PMID: 36736580 DOI: 10.1016/j.drudis.2023.103514] [Reference Citation Analysis]
3 Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023;353:518-34. [PMID: 36496051 DOI: 10.1016/j.jconrel.2022.12.008] [Reference Citation Analysis]
4 Sands I, Lee J, Chen Y. Nanotechnology for DNA and RNA delivery. Nanomedicine 2023. [DOI: 10.1016/b978-0-12-818627-5.00008-7] [Reference Citation Analysis]
5 Huang H, Shao L, Chen Y, Han W, Zhou Y, Liu T, Gu J, Zhu H. Sequential Dual Delivery System Based on siCOX-2-Loaded Gold Nanostar and Thermal-Sensitive Liposomes Overcome Hypoxia-Mediated Multidrug Resistance in Tumors. Mol Pharm 2022. [PMID: 35639669 DOI: 10.1021/acs.molpharmaceut.2c00164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Pilipenko I, Korovkina O, Gubina N, Ekimova V, Ishutinova A, Korzhikova-Vlakh E, Tennikova T, Korzhikov-Vlakh V. Random Copolymers of Lysine and Isoleucine for Efficient mRNA Delivery. Int J Mol Sci 2022;23:5363. [PMID: 35628177 DOI: 10.3390/ijms23105363] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021;272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
8 Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021;42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Sadeghi Z, Maleki P, Shahabi F, Bondarkhilli SAM, Masoumi M, Taheri M, Mohammadi M, Raheb J. Surface modification of superparamagnetic iron oxide (SPION) and comparison of cytotoxicity effect of mPEG2000-PEI-SPION and mPEG750-PEI-SPION on the human embryonic carcinoma stem cell, NTERA2 cell line. Hum Antibodies 2020;28:159-67. [PMID: 32116243 DOI: 10.3233/HAB-200403] [Reference Citation Analysis]
10 Liang Y, Wang Y, Wang L, Liang Z, Li D, Xu X, Chen Y, Yang X, Zhang H, Niu H. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact Mater 2021;6:433-46. [PMID: 32995671 DOI: 10.1016/j.bioactmat.2020.08.019] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 17.3] [Reference Citation Analysis]
11 Kohen R, Baldwin KT, Garay PM, Tsukahara T, Chen A, Flynn CG, Johnson C, Zhao X, Sutton MA, Iwase S, Giger RJ. Small-hairpin RNAs cause target-independent microRNA dysregulation in neurons and elicit global transcriptomic changes.. [DOI: 10.1101/2020.07.30.229443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Kritchenkov IS, Zhukovsky DD, Mohamed A, Korzhikov-Vlakh VA, Tennikova TB, Lavrentieva A, Scheper T, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. Functionalized Pt(II) and Ir(III) NIR Emitters and Their Covalent Conjugates with Polymer-Based Nanocarriers. Bioconjug Chem 2020;31:1327-43. [PMID: 32223218 DOI: 10.1021/acs.bioconjchem.0c00020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
13 Ceylan S, Bahadori F, Akbas F. Engineering of siRNA loaded PLGA Nano-Particles for highly efficient silencing of GPR87 gene as a target for pancreatic cancer treatment. Pharm Dev Technol 2020;25:855-64. [PMID: 32188321 DOI: 10.1080/10837450.2020.1745232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
14 Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zandanel C, Noiray M, Vauthier C. Counterion of Chitosan Influences Thermodynamics of Association of siRNA with a Chitosan-Based siRNA Carrier. Pharm Res 2020;37:22. [PMID: 31897766 DOI: 10.1007/s11095-019-2751-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
16 Huang H, Sha K, Veroniaina H, Wu Z, Wu Z, Qi X. Ca 2+ participating self-assembly of an apoferritin nanostructure for nucleic acid drug delivery. Nanoscale 2020;12:7347-57. [DOI: 10.1039/d0nr00547a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
17 Rezigue M. Lipid and Polymeric Nanoparticles: Drug Delivery Applications. Integrative Nanomedicine for New Therapies 2020. [DOI: 10.1007/978-3-030-36260-7_7] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Anuje M, Sivan A, Khot VM, Pawaskar P. Cellular interaction and toxicity of nanostructures. Nanomedicines for Breast Cancer Theranostics 2020. [DOI: 10.1016/b978-0-12-820016-2.00010-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
19 Saw PE, Yao H, Lin C, Tao W, Farokhzad OC, Xu X. Stimuli-Responsive Polymer–Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. Nano Lett 2019;19:5967-74. [DOI: 10.1021/acs.nanolett.9b01660] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 17.5] [Reference Citation Analysis]
20 Kim B, Sun S, Varner JA, Howell SB, Ruoslahti E, Sailor MJ. Securing the Payload, Finding the Cell, and Avoiding the Endosome: Peptide-Targeted, Fusogenic Porous Silicon Nanoparticles for Delivery of siRNA. Adv Mater 2019;31:e1902952. [PMID: 31267590 DOI: 10.1002/adma.201902952] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
21 Wu H, Ting JM, Weiss TM, Tirrell MV. Interparticle Interactions in Dilute Solutions of Polyelectrolyte Complex Micelles. ACS Macro Lett 2019;8:819-25. [PMID: 35619501 DOI: 10.1021/acsmacrolett.9b00226] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
22 Dhandapani RK, Gurusamy D, Howell JL, Palli SR. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci Rep 2019;9:8775. [PMID: 31217512 DOI: 10.1038/s41598-019-45019-z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
23 Mahmoudi R, Tajali Ardakani M, Hajipour Verdom B, Bagheri A, Mohammad-beigi H, Aliakbari F, Salehpour Z, Alipour M, Afrouz S, Bardania H. Chitosan nanoparticles containing Physalis alkekengi-L extract: preparation, optimization and their antioxidant activity. Bull Mater Sci 2019;42. [DOI: 10.1007/s12034-019-1815-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
24 Lichtenberg SS, Tsyusko OV, Palli SR, Unrine JM. Uptake and Bioactivity of Chitosan/Double-Stranded RNA Polyplex Nanoparticles in Caenorhabditis elegans. Environ Sci Technol 2019;53:3832-40. [DOI: 10.1021/acs.est.8b06560] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
25 Garcia JP, Stein J, Cai Y, Riemers F, Wexselblatt E, Wengel J, Tryfonidou M, Yayon A, Howard KA, Creemers LB. Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis. J Control Release 2019;294:247-58. [PMID: 30572032 DOI: 10.1016/j.jconrel.2018.12.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
26 McKiernan PJ, Lynch P, Ramsey JM, Cryan SA, Greene CM. Knockdown of Gene Expression in Macrophages by microRNA Mimic-Containing Poly (Lactic-co-glycolic Acid) Microparticles. Medicines (Basel) 2018;5:E133. [PMID: 30558310 DOI: 10.3390/medicines5040133] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
27 Guan J, Sun J, Sun F, Lou B, Zhang D, Mashayekhi V, Sadeghi N, Storm G, Mastrobattista E, He Z. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes. Nanoscale 2017;9:9190-201. [PMID: 28650490 DOI: 10.1039/c7nr02663c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
28 Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol Ther Methods Clin Dev 2019;12:1-18. [PMID: 30364598 DOI: 10.1016/j.omtm.2018.09.002] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 17.4] [Reference Citation Analysis]
29 Zhang QY, Ho PY, Tu MJ, Jilek JL, Chen QX, Zeng S, Yu AM. Lipidation of polyethylenimine-based polyplex increases serum stability of bioengineered RNAi agents and offers more consistent tumoral gene knockdown in vivo. Int J Pharm 2018;547:537-44. [PMID: 29894758 DOI: 10.1016/j.ijpharm.2018.06.026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
30 Ambardekar VV, Wakaskar RR, Ye Z, Curran SM, McGuire TR, Coulter DW, Singh RK, Vetro JA. Complexation of Chol-DsiRNA in place of Chol-siRNA greatly increases the duration of mRNA suppression by polyplexes of PLL(30)-PEG(5K) in primary murine syngeneic breast tumors after i.v. administration. Int J Pharm 2018;543:130-8. [PMID: 29601972 DOI: 10.1016/j.ijpharm.2018.03.045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
31 Wang F, Pang JD, Huang LL, Wang R, Li D, Sun K, Wang LT, Zhang LM. Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy. Int J Nanomedicine 2018;13:857-75. [PMID: 29467575 DOI: 10.2147/IJN.S147747] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
32 Zhu J, Qiao M, Wang Q, Ye Y, Ba S, Ma J, Hu H, Zhao X, Chen D. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018;162:47-59. [PMID: 29432988 DOI: 10.1016/j.biomaterials.2018.01.042] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 10.4] [Reference Citation Analysis]
33 Das MK, Sarma A, Chakraborty T. Nano-ART and NeuroAIDS. Drug Deliv Transl Res 2016;6:452-72. [PMID: 27137528 DOI: 10.1007/s13346-016-0293-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
34 Neuberg P, Hamaidi I, Danilin S, Ripoll M, Lindner V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy J. Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. Nanoscale 2018;10:1587-90. [DOI: 10.1039/c7nr09202d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zhang W, Meng X, Liu H, Xie L, Liu J, Xu H. Ratio of Polycation and Serum Is a Crucial Index for Determining the RNAi Efficiency of Polyplexes. ACS Appl Mater Interfaces 2017;9:43529-37. [PMID: 29144122 DOI: 10.1021/acsami.7b15797] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
36 Abboud R, Charcosset C, Greige-gerges H. Interaction of triterpenoids with human serum albumin: A review. Chemistry and Physics of Lipids 2017;207:260-70. [DOI: 10.1016/j.chemphyslip.2017.05.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
37 Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. International Journal of Pharmaceutics 2017;525:313-33. [DOI: 10.1016/j.ijpharm.2017.04.008] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 9.8] [Reference Citation Analysis]
38 Gupta K, Puri A, Shapiro BA. Functionalized non-viral cationic vectors for effective siRNA induced cancer therapy. DNA RNA Nanotechnol 2017;4:1-20. [PMID: 34322587 DOI: 10.1515/rnan-2017-0001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
39 Wang M, Guo Y, Yu M, Ma PX, Mao C, Lei B. Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery. Acta Biomater 2017;54:69-80. [PMID: 28219808 DOI: 10.1016/j.actbio.2017.02.034] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
40 Xu X, Wu J, Liu Y, Saw PE, Tao W, Yu M, Zope H, Si M, Victorious A, Rasmussen J, Ayyash D, Farokhzad OC, Shi J. Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. ACS Nano 2017;11:2618-27. [PMID: 28240870 DOI: 10.1021/acsnano.6b07195] [Cited by in Crossref: 139] [Cited by in F6Publishing: 150] [Article Influence: 23.2] [Reference Citation Analysis]
41 Wu J, Qu W, Williford JM, Ren Y, Jiang X, Jiang X, Pan D, Mao HQ, Luijten E. Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles. Nanotechnology 2017;28:204002. [PMID: 28266928 DOI: 10.1088/1361-6528/aa6519] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
42 Cai Y, López-Ruiz E, Wengel J, Creemers LB, Howard KA. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. J Control Release 2017;253:153-9. [PMID: 28274742 DOI: 10.1016/j.jconrel.2017.03.004] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
43 Powell D, Chandra S, Dodson K, Shaheen F, Wiltz K, Ireland S, Syed M, Dash S, Wiese T, Mandal T, Kundu A. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm 2017;114:108-18. [PMID: 28131717 DOI: 10.1016/j.ejpb.2017.01.011] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 8.3] [Reference Citation Analysis]
44 Peng SF, Hsu HK, Lin CC, Cheng YM, Hsu KH. Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery. Molecules 2017;22:E86. [PMID: 28054985 DOI: 10.3390/molecules22010086] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
45 Jain KK. Role of Nanotechnology in Biological Therapies. The Handbook of Nanomedicine 2017. [DOI: 10.1007/978-1-4939-6966-1_6] [Reference Citation Analysis]
46 Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Adv Drug Deliv Rev 2016;107:289-332. [PMID: 27593265 DOI: 10.1016/j.addr.2016.08.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
47 Biodegradable Polymeric Carriers for Delivery of siRNA. Bio-Targets and Drug Delivery Approaches 2016. [DOI: 10.1201/9781315370118-14] [Reference Citation Analysis]
48 Bakrania AK, Variya BC, Patel SS. Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016;111:577-91. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
49 Li Y, Hei M, Xu Y, Qian X, Zhu W. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm 2016;511:689-702. [PMID: 27426108 DOI: 10.1016/j.ijpharm.2016.07.029] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
50 DeRosa F, Guild B, Karve S, Smith L, Love K, Dorkin JR, Kauffman KJ, Zhang J, Yahalom B, Anderson DG, Heartlein MW. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 2016;23:699-707. [PMID: 27356951 DOI: 10.1038/gt.2016.46] [Cited by in Crossref: 97] [Cited by in F6Publishing: 103] [Article Influence: 13.9] [Reference Citation Analysis]
51 Zhang W, Müller K, Kessel E, Reinhard S, He D, Klein PM, Höhn M, Rödl W, Kempter S, Wagner E. Targeted siRNA Delivery Using a Lipo-Oligoaminoamide Nanocore with an Influenza Peptide and Transferrin Shell. Adv Healthc Mater 2016;5:1493-504. [PMID: 27109317 DOI: 10.1002/adhm.201600057] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
52 Gaglianone N, Hvam ML, Aslan H, Dong M, Howard KA, Ho Y. Chip-Free Microscale-Incubator-Based Synthesis of Chitosan-Based Gene Silencing Nanoparticles. Part Part Syst Charact 2016;33:279-85. [DOI: 10.1002/ppsc.201500225] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
53 Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 2016;4:3. [PMID: 26925240 DOI: 10.1186/s40591-016-0048-8] [Cited by in Crossref: 364] [Cited by in F6Publishing: 384] [Article Influence: 52.0] [Reference Citation Analysis]
54 Dragoni L, Ferrari R, Lupi M, Cesana A, Falcetta F, Ubezio P, D’incalci M, Morbidelli M, Moscatelli D. Small interfering RNA delivery through positively charged polymer nanoparticles. Nanotechnology 2016;27:125102. [DOI: 10.1088/0957-4484/27/12/125102] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
55 Chauhan NPS, Jangid NK, Punjabi PB, Kalal S, Ameta R. Crosslinkers: Functionalized Polymeric. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2016. [DOI: 10.1081/e-ebpp-120050695] [Reference Citation Analysis]
56 Akbuga J, Ozbas-turan S, Ekentok C. Gene Suppression with Chitosan Nanoparticles. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement 2016. [DOI: 10.1007/978-3-662-47862-2_23] [Reference Citation Analysis]
57 Sprouse D, Reineke T, Davis M. Polymeric Delivery Vehicles for Exogenous Nucleic Acid Delivery. Reference Module in Materials Science and Materials Engineering 2016. [DOI: 10.1016/b978-0-12-803581-8.01516-2] [Reference Citation Analysis]
58 Selvan ST, Narayanan K. Introduction to Nanotheranostics. Introduction to Nanotheranostics 2016. [DOI: 10.1007/978-981-10-1008-8_1] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
59 Martirosyan A, Olesen MJ, Fenton RA, Kjems J, Howard KA. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours. Nanoscale 2016;8:12599-607. [PMID: 26694897 DOI: 10.1039/c5nr07206a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
60 Liu L, Zheng M, Librizzi D, Renette T, Merkel OM, Kissel T. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). Mol Pharm 2016;13:134-43. [PMID: 26641134 DOI: 10.1021/acs.molpharmaceut.5b00575] [Cited by in Crossref: 75] [Cited by in F6Publishing: 76] [Article Influence: 9.4] [Reference Citation Analysis]
61 Rafael D, Videira M, Oliva M, Ferreira D, Sarmento B, Andrade F. Amphiphilic Polymers: Drug Delivery. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2015. [DOI: 10.1081/e-ebpp-120049256] [Reference Citation Analysis]
62 Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery. Int J Nanomedicine 2015;10:7183-96. [PMID: 26648722 DOI: 10.2147/IJN.S95245] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
63 Zheng H, Tang C, Yin C. Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Biomaterials 2015;70:126-37. [DOI: 10.1016/j.biomaterials.2015.08.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
64 Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine 2016;12:81-103. [PMID: 26370707 DOI: 10.1016/j.nano.2015.08.006] [Cited by in Crossref: 164] [Cited by in F6Publishing: 179] [Article Influence: 20.5] [Reference Citation Analysis]
65 Esmaeilzadeh Gharehdaghi E, Amani A, Khoshayand MR, Banan M, Esmaeilzadeh Gharehdaghi E, Amini MA, Faramarzi MA. Chitosan nanoparticles for siRNA delivery: optimization of processing/formulation parameters. Nucleic Acid Ther 2014;24:420-7. [PMID: 25272198 DOI: 10.1089/nat.2014.0484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
66 Zorzi GK, Seijo B, Sanchez A. Endogenous Polymers as Biomaterials for Nanoparticulate Gene Therapy. Handbook of Polymers for Pharmaceutical Technologies 2015. [DOI: 10.1002/9781119041375.ch8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
67 Malvy C, Vauthier C. Antisense strategies: delivery of oligonucleoides by nonviral nanoparticles. Nanoparticles for Biotherapeutic Delivery (Volume 1) 2015. [DOI: 10.4155/fseb2013.14.142] [Reference Citation Analysis]
68 Sun Q, Kang Z, Xue L, Shang Y, Su Z, Sun H, Ping Q, Mo R, Zhang C. A Collaborative Assembly Strategy for Tumor-Targeted siRNA Delivery. J Am Chem Soc 2015;137:6000-10. [DOI: 10.1021/jacs.5b01435] [Cited by in Crossref: 100] [Cited by in F6Publishing: 105] [Article Influence: 12.5] [Reference Citation Analysis]
69 Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles: Cellular uptake of nanoparticles. Cell Biol Int 2015;39:881-90. [DOI: 10.1002/cbin.10459] [Cited by in Crossref: 294] [Cited by in F6Publishing: 307] [Article Influence: 36.8] [Reference Citation Analysis]
70 Martens PJ, Ly M, Adams DH, Penzkover KR, Strudwick X, Cowin AJ, Poole-warren LA. In vivo delivery of functional Flightless I siRNA using layer-by-layer polymer surface modification. J Biomater Appl 2015;30:257-68. [DOI: 10.1177/0885328215579422] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
71 Ballarín-González B, Thomsen TB, Howard KA. Clinical translation of RNAi-based treatments for respiratory diseases. Drug Deliv Transl Res 2013;3:84-99. [PMID: 25787868 DOI: 10.1007/s13346-012-0098-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
72 Shah R, Kronekova Z, Zahoranová A, Roller L, Saha N, Saha P, Kronek J. In vitro study of partially hydrolyzed poly(2-ethyl-2-oxazolines) as materials for biomedical applications. J Mater Sci: Mater Med 2015;26. [DOI: 10.1007/s10856-015-5485-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
73 Tang Q, Lei X, Cao B, Sun B, Zhang Y, Cheng G. A naturally derived dextran–peptide vector for microRNA antagomir delivery. RSC Adv 2015;5:28019-22. [DOI: 10.1039/c4ra12878h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
74 Dai X, Tan C. Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 2015;81:184-97. [PMID: 25281917 DOI: 10.1016/j.addr.2014.09.010] [Cited by in Crossref: 102] [Cited by in F6Publishing: 111] [Article Influence: 12.8] [Reference Citation Analysis]
75 Zhang Y, Zhang L, Song X, Gu X, Sun H, Fu C, Meng F. Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent. Journal of Nanomaterials 2015;2015:1-6. [DOI: 10.1155/2015/417389] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
76 Rinkenauer AC, Tauhardt L, Wendler F, Kempe K, Gottschaldt M, Traeger A, Schubert US. A Cationic Poly(2-oxazoline) with High In Vitro Transfection Efficiency Identified by a Library Approach: An Optimized Poly(2-oxazoline) for Gene Delivery. Macromol Biosci 2015;15:414-25. [DOI: 10.1002/mabi.201400334] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
77 McCullough KC, Milona P, Thomann-Harwood L, Démoulins T, Englezou P, Suter R, Ruggli N. Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles. Vaccines (Basel) 2014;2:735-54. [PMID: 26344889 DOI: 10.3390/vaccines2040735] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
78 Li J, Cheng D, Yin T, Chen W, Lin Y, Chen J, Li R, Shuai X. Copolymer of poly(ethylene glycol) and poly(L-lysine) grafting polyethylenimine through a reducible disulfide linkage for siRNA delivery. Nanoscale 2014;6:1732-40. [PMID: 24346086 DOI: 10.1039/c3nr05024f] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 8.1] [Reference Citation Analysis]
79 Ballarín-gonzález B, Ebbesen MF, Howard KA. Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Letters 2014;352:66-80. [DOI: 10.1016/j.canlet.2013.09.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
80 Mahmoudi M, Meng J, Xue X, Liang XJ, Rahman M, Pfeiffer C, Hartmann R, Gil PR, Pelaz B, Parak WJ, del Pino P, Carregal-romero S, Kanaras AG, Tamil Selvan S. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnology Advances 2014;32:679-92. [DOI: 10.1016/j.biotechadv.2013.11.012] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 6.3] [Reference Citation Analysis]
81 Cavallaro G, Licciardi M, Amato G, Sardo C, Giammona G, Farra R, Dapas B, Grassi M, Grassi G. Synthesis and characterization of polyaspartamide copolymers obtained by ATRP for nucleic acid delivery. International Journal of Pharmaceutics 2014;466:246-57. [DOI: 10.1016/j.ijpharm.2014.03.026] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
82 Wen Y, Meng WS. Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors. J Pharm Innov 2014;9:158-73. [PMID: 25221632 DOI: 10.1007/s12247-014-9183-4] [Cited by in Crossref: 72] [Cited by in F6Publishing: 73] [Article Influence: 8.0] [Reference Citation Analysis]
83 Marepally S, Boakye CH, Patel AR, Godugu C, Doddapaneni R, Desai PR, Singh M. Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques. Nanomedicine (Lond) 2014;9:2157-74. [PMID: 24593003 DOI: 10.2217/nnm.13.202] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
84 Shen S, Mao CQ, Yang XZ, Du XJ, Liu Y, Zhu YH, Wang J. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma. Mol Pharm 2014;11:2612-22. [PMID: 24521262 DOI: 10.1021/mp400714z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
85 Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm 2014;11:683-96. [PMID: 24476132 DOI: 10.1021/mp400353n] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
86 Shim MS, Chang S, Kwon YJ. Stimuli-responsive siRNA carriers for efficient gene silencing in tumors via systemic delivery. Biomater Sci 2014;2:35-40. [DOI: 10.1039/c3bm60187k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
87 Saravanakumar G, Kim WJ. Stimuli-Responsive Polymeric Nanocarriers as Promising Drug and Gene Delivery Systems. Intracellular Delivery II 2014. [DOI: 10.1007/978-94-017-8896-0_4] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
88 Martirosyan A, Olesen MJ, Howard KA. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics. Nonviral Vectors for Gene Therapy - Lipid- and Polymer-based Gene Transfer 2014. [DOI: 10.1016/b978-0-12-800148-6.00011-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
89 Khor E. The Impact of Nanotechnology on Chitin and Chitosan Biomaterials Research. Chitin 2014. [DOI: 10.1016/b978-0-08-099939-5.00005-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
90 Yan L, Chen X. Nanomaterials for Drug Delivery. Nanocrystalline Materials 2014. [DOI: 10.1016/b978-0-12-407796-6.00007-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
91 Thomsen TB, Li L, Howard KA. Mucus barrier-triggered disassembly of siRNA nanocarriers. Nanoscale 2014;6:12547-54. [DOI: 10.1039/c4nr01584c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
92 Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D'Haese C, Nysten B, Braeckmans K, De Smedt SC, Jérôme C, Préat V. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release 2014;176:54-63. [PMID: 24389132 DOI: 10.1016/j.jconrel.2013.12.026] [Cited by in Crossref: 129] [Cited by in F6Publishing: 135] [Article Influence: 12.9] [Reference Citation Analysis]
93 Rinkenauer AC, Schallon A, Günther U, Wagner M, Betthausen E, Schubert US, Schacher FH. A paradigm change: efficient transfection of human leukemia cells by stimuli-responsive multicompartment micelles. ACS Nano 2013;7:9621-31. [PMID: 24147450 DOI: 10.1021/nn402072d] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
94 McKiernan PJ, Cunningham O, Greene CM, Cryan SA. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine 2013;8:3907-15. [PMID: 24143095 DOI: 10.2147/IJN.S47551] [Cited by in Crossref: 20] [Cited by in F6Publishing: 29] [Article Influence: 2.0] [Reference Citation Analysis]
95 Vauthier C, Zandanel C, Ramon AL. Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Current Opinion in Colloid & Interface Science 2013;18:406-18. [DOI: 10.1016/j.cocis.2013.06.005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 4.3] [Reference Citation Analysis]
96 Loczenski Rose V, Winkler GS, Allen S, Puri S, Mantovani G. Polymer siRNA conjugates synthesised by controlled radical polymerisation. European Polymer Journal 2013;49:2861-83. [DOI: 10.1016/j.eurpolymj.2013.06.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
97 Biray Avcı Ç, Özcan İ, Balcı T, Özer Ö, Gündüz C. Design of polyethylene glycol-polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells. Cell Biol Int 2013;37:1205-14. [PMID: 23881828 DOI: 10.1002/cbin.10157] [Cited by in Crossref: 5] [Cited by in F6Publishing: 14] [Article Influence: 0.5] [Reference Citation Analysis]
98 Mokhtarieh AA, Cheong S, Kim S, Chung BH, Lee MK. Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. Biochim Biophys Acta 2012;1818:1633-41. [PMID: 22465072 DOI: 10.1016/j.bbamem.2012.03.016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
99 Wang X, He F, Li L, Wang H, Yan R, Li L. Conjugated oligomer-based fluorescent nanoparticles as functional nanocarriers for nucleic acids delivery. ACS Appl Mater Interfaces 2013;5:5700-8. [PMID: 23721201 DOI: 10.1021/am401118r] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 4.8] [Reference Citation Analysis]
100 He C, Yin L, Tang C, Yin C. Trimethyl Chitosan-Cysteine Nanoparticles for Systemic Delivery of TNF-α siRNA via Oral and Intraperitoneal Routes. Pharm Res 2013;30:2596-606. [DOI: 10.1007/s11095-013-1086-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
101 Olesen MTJ, Ballarín-gonzález B, Howard KA. The application of RNAi-based treatments for inflammatory bowel disease. Drug Deliv and Transl Res 2014;4:4-18. [DOI: 10.1007/s13346-013-0156-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
102 Zhao J, Fan X, Zhang Q, Sun F, Li X, Xiong C, Zhang C, Fan H. Chitosan-plasmid DNA nanoparticles encoding small hairpin RNA targeting MMP-3 and -13 to inhibit the expression of dedifferentiation related genes in expanded chondrocytes. J Biomed Mater Res A 2014;102:373-80. [PMID: 23520014 DOI: 10.1002/jbm.a.34711] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
103 Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release 2013;170:51-63. [PMID: 23643662 DOI: 10.1016/j.jconrel.2013.04.021] [Cited by in Crossref: 112] [Cited by in F6Publishing: 121] [Article Influence: 11.2] [Reference Citation Analysis]
104 Rodriguez-aguayo C, Chavez-reyes A, Lopez-berestein G, Sood AK. RNAi in Cancer Therapy. Advanced Delivery and Therapeutic Applications of RNAi 2013. [DOI: 10.1002/9781118610749.ch13] [Reference Citation Analysis]
105 Jully B, Rajkumar T. Potential molecular targets for Ewing's sarcoma therapy. Indian J Med Paediatr Oncol 2012;33:195-202. [PMID: 23580819 DOI: 10.4103/0971-5851.107074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
106 Guo J, Evans JC, O’driscoll CM. Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer? Trends in Molecular Medicine 2013;19:250-61. [DOI: 10.1016/j.molmed.2013.02.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
107 Ambardekar VV, Wakaskar RR, Sharma B, Bowman J, Vayaboury W, Singh RK, Vetro JA. The efficacy of nuclease-resistant Chol-siRNA in primary breast tumors following complexation with PLL-PEG(5K). Biomaterials 2013;34:4839-48. [PMID: 23557861 DOI: 10.1016/j.biomaterials.2013.03.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
108 Ben Yehuda Greenwald M, Ben Sasson S, Bianco-Peled H. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles. J Microencapsul 2013;30:580-8. [PMID: 23489012 DOI: 10.3109/02652048.2013.764940] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
109 Biswas S, Torchilin VP. Dendrimers for siRNA Delivery. Pharmaceuticals (Basel) 2013;6:161-83. [PMID: 24275946 DOI: 10.3390/ph6020161] [Cited by in Crossref: 107] [Cited by in F6Publishing: 114] [Article Influence: 10.7] [Reference Citation Analysis]
110 Andersen MØ, Dillschneider P, Kjems J. The Role of MicroRNAs in Natural Tissue Development and Application in Regenerative Medicine. Advances in Delivery Science and Technology 2013. [DOI: 10.1007/978-1-4614-4744-3_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
111 Zhu Y, Li J, Oupický D. Intracellular Delivery Considerations for RNAi Therapeutics. Advances in Delivery Science and Technology 2013. [DOI: 10.1007/978-1-4614-4744-3_4] [Reference Citation Analysis]
112 González BB, Nielsen EB, Thomsen TB, Howard KA. Mucosal Delivery of RNAi Therapeutics. Advances in Delivery Science and Technology 2013. [DOI: 10.1007/978-1-4614-4744-3_5] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
113 Scomparin A, Tiram G, Satchi-fainaro R. Nanoscale-Based Delivery of RNAi for Cancer Therapy. DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases 2013. [DOI: 10.1007/978-3-662-45775-7_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
114 Rose SD, Behlke MA. Synthetic Dicer-Substrate siRNAs as Triggers of RNA Interference. Advances in Delivery Science and Technology 2013. [DOI: 10.1007/978-1-4614-4744-3_2] [Reference Citation Analysis]
115 Scomparin A, Tiram G, Satchi-fainaro R. Nanoscale-Based Delivery of RNAi for Cancer Therapy. DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases 2013. [DOI: 10.1007/978-3-642-36853-0_14] [Reference Citation Analysis]
116 Wagner M, Rinkenauer AC, Schallon A, Schubert US. Opposites attract: influence of the molar mass of branched poly(ethylene imine) on biophysical characteristics of siRNA-based polyplexese. RSC Adv 2013;3:12774. [DOI: 10.1039/c3ra42069h] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
117 Yue Y, Wu C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater Sci 2013;1:152-70. [DOI: 10.1039/c2bm00030j] [Cited by in Crossref: 127] [Cited by in F6Publishing: 129] [Article Influence: 12.7] [Reference Citation Analysis]
118 Zhou J, Liu J, Shi T, Xia Y, Luo Y, Liang D. Phase separation of siRNA–polycation complex and its effect on transfection efficiency. Soft Matter 2013;9:2262. [DOI: 10.1039/c2sm27498a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
119 Naeye B, Deschout H, Caveliers V, Descamps B, Braeckmans K, Vanhove C, Demeester J, Lahoutte T, De Smedt SC, Raemdonck K. In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials 2013;34:2350-8. [PMID: 23261216 DOI: 10.1016/j.biomaterials.2012.11.058] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 5.9] [Reference Citation Analysis]
120 Ballarín-González B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv Drug Deliv Rev 2012;64:1717-29. [PMID: 22800620 DOI: 10.1016/j.addr.2012.07.004] [Cited by in Crossref: 115] [Cited by in F6Publishing: 120] [Article Influence: 10.5] [Reference Citation Analysis]
121 Ayers D, Nasti A. Utilisation of nanoparticle technology in cancer chemoresistance. J Drug Deliv 2012;2012:265691. [PMID: 23213536 DOI: 10.1155/2012/265691] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
122 Jiang J, Cao D. Modeling of highly efficient drug delivery system induced by self-assembly of nanocarriers: A density functional study. Sci China Chem 2013;56:249-55. [DOI: 10.1007/s11426-012-4752-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
123 Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 2012;64:1447-58. [PMID: 22772034 DOI: 10.1016/j.addr.2012.06.012] [Cited by in Crossref: 160] [Cited by in F6Publishing: 141] [Article Influence: 14.5] [Reference Citation Analysis]
124 Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012;64:1508-21. [PMID: 22975009 DOI: 10.1016/j.addr.2012.08.014] [Cited by in Crossref: 123] [Cited by in F6Publishing: 128] [Article Influence: 11.2] [Reference Citation Analysis]
125 Liu XQ, Xiong MH, Shu XT, Tang RZ, Wang J. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm 2012;9:2863-74. [PMID: 22924580 DOI: 10.1021/mp300193f] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 7.1] [Reference Citation Analysis]
126 Mccullough KC, Bassi I, Démoulins T, Thomann-harwood LJ, Ruggli N. Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles. Therapeutic Delivery 2012;3:1077-99. [DOI: 10.4155/tde.12.90] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
127 Papadimitriou SA, Achilias DS, Bikiaris DN. Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems. International Journal of Pharmaceutics 2012;430:318-27. [DOI: 10.1016/j.ijpharm.2012.04.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 5.8] [Reference Citation Analysis]
128 Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, Halnaut J, Pittella F, Kim HJ, Nishiyama N, Kataoka K. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano 2012;6:5174-89. [PMID: 22575090 DOI: 10.1021/nn300942b] [Cited by in Crossref: 157] [Cited by in F6Publishing: 161] [Article Influence: 14.3] [Reference Citation Analysis]
129 Haas AK, Maisel D, Adelmann J, von Schwerin C, Kahnt I, Brinkmann U. Human-protein-derived peptides for intracellular delivery of biomolecules. Biochem J 2012;442:583-93. [PMID: 22150630 DOI: 10.1042/BJ20111973] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
130 Chandra PK, Kundu AK, Hazari S, Chandra S, Bao L, Ooms T, Morris GF, Wu T, Mandal TK, Dash S. Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes. Mol Ther. 2012;20:1724-1736. [PMID: 22617108 DOI: 10.1038/mt.2012.107] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 5.1] [Reference Citation Analysis]
131 Liu J, Van S, Ma N, Yu L. Efficient systemic delivery of siRNA to the mouse liver by pegylated lipopolymer. International Journal of Pharmaceutics 2012;427:58-63. [DOI: 10.1016/j.ijpharm.2011.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
132 Parboosing R, Maguire GE, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses 2012;4:488-520. [PMID: 22590683 DOI: 10.3390/v4040488] [Cited by in Crossref: 86] [Cited by in F6Publishing: 85] [Article Influence: 7.8] [Reference Citation Analysis]
133 Guo J, Cheng WP, Gu J, Ding C, Qu X, Yang Z, O’driscoll C. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. European Journal of Pharmaceutical Sciences 2012;45:521-32. [DOI: 10.1016/j.ejps.2011.11.024] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 5.9] [Reference Citation Analysis]
134 Nuhn L, Hirsch M, Krieg B, Koynov K, Fischer K, Schmidt M, Helm M, Zentel R. Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery. ACS Nano 2012;6:2198-214. [PMID: 22381078 DOI: 10.1021/nn204116u] [Cited by in Crossref: 97] [Cited by in F6Publishing: 97] [Article Influence: 8.8] [Reference Citation Analysis]
135 Zhou L, Chen Z, Chi W, Yang X, Wang W, Zhang B. Mono-methoxy-poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-graft-hyper-branched polyethylenimine copolymers for siRNA delivery. Biomaterials 2012;33:2334-44. [DOI: 10.1016/j.biomaterials.2011.11.060] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
136 Aliabadi HM, Landry B, Sun C, Tang T, Uludağ H. Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials 2012;33:2546-69. [DOI: 10.1016/j.biomaterials.2011.11.079] [Cited by in Crossref: 106] [Cited by in F6Publishing: 111] [Article Influence: 9.6] [Reference Citation Analysis]
137 Beloor J, Choi CS, Nam HY, Park M, Kim SH, Jackson A, Lee KY, Kim SW, Kumar P, Lee S. Arginine-engrafted biodegradable polymer for the systemic delivery of therapeutic siRNA. Biomaterials 2012;33:1640-50. [DOI: 10.1016/j.biomaterials.2011.11.008] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 4.9] [Reference Citation Analysis]
138 Kjems J, Howard KA. Oligonucleotide delivery to the lung: waiting to inhale. Mol Ther Nucleic Acids 2012;1:e1. [PMID: 23344618 DOI: 10.1038/mtna.2011.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
139 Ambrosone A, Marchesano V, Tino A, Hobmayer B, Tortiglione C. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris. PLoS One 2012;7:e30660. [PMID: 22292012 DOI: 10.1371/journal.pone.0030660] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
140 Yu H, Chen Y. Nanotechnology for DNA and RNA delivery. Nanomedicine 2012. [DOI: 10.1533/9780857096449.2.302] [Reference Citation Analysis]
141 Jain KK. Role of Nanotechnology in Biological Therapies. The Handbook of Nanomedicine 2012. [DOI: 10.1007/978-1-61779-983-9_6] [Reference Citation Analysis]
142 Reineke T, Davis M. Nucleic Acid Delivery via Polymer Vehicles. Polymer Science: A Comprehensive Reference 2012. [DOI: 10.1016/b978-0-444-53349-4.00239-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
143 Singh Y, Murat P, Spinelli N, Defrancq E. Oligonucleotide Conjugates: Rationale, Synthesis, and Applications. From Nucleic Acids Sequences to Molecular Medicine 2012. [DOI: 10.1007/978-3-642-27426-8_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
144 Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC, Tian S, Napier ME, Pohlhaus PD, Rolland JP, DeSimone JM. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett 2012;12:287-92. [PMID: 22165988 DOI: 10.1021/nl2035354] [Cited by in Crossref: 140] [Cited by in F6Publishing: 145] [Article Influence: 11.7] [Reference Citation Analysis]
145 Masood R, Roy I, Zu S, Hochstim C, Yong KT, Law WC, Ding H, Sinha UK, Prasad PN. Gold nanorod-sphingosine kinase siRNA nanocomplexes: a novel therapeutic tool for potent radiosensitization of head and neck cancer. Integr Biol (Camb) 2012;4:132-41. [PMID: 22159374 DOI: 10.1039/c1ib00060h] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
146 Huang JG, Leshuk T, Gu FX. Emerging nanomaterials for targeting subcellular organelles. Nano Today 2011;6:478-92. [DOI: 10.1016/j.nantod.2011.08.002] [Cited by in Crossref: 107] [Cited by in F6Publishing: 109] [Article Influence: 8.9] [Reference Citation Analysis]
147 Butora G, Kenski DM, Cooper AJ, Fu W, Qi N, Li JJ, Flanagan WM, Davies IW. Nucleoside Optimization for RNAi: A High-Throughput Platform. J Am Chem Soc 2011;133:16766-9. [DOI: 10.1021/ja2068774] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
148 Vader P, van der Aa LJ, Engbersen JF, Storm G, Schiffelers RM. Physicochemical and biological evaluation of siRNA polyplexes based on PEGylated Poly(amido amine)s. Pharm Res 2012;29:352-61. [PMID: 21833793 DOI: 10.1007/s11095-011-0545-z] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 5.0] [Reference Citation Analysis]
149 Guo J, Bourre L, Soden DM, O'sullivan GC, O'driscoll C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnology Advances 2011;29:402-17. [DOI: 10.1016/j.biotechadv.2011.03.003] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 6.5] [Reference Citation Analysis]
150 Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl 2011;50:7027-31. [PMID: 21698724 DOI: 10.1002/anie.201101554] [Cited by in Crossref: 129] [Cited by in F6Publishing: 134] [Article Influence: 10.8] [Reference Citation Analysis]
151 Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially Charged Hollow Core/Shell Lipid-Polymer-Lipid Hybrid Nanoparticles for Small Interfering RNA Delivery. Angew Chem 2011;123:7165-9. [DOI: 10.1002/ange.201101554] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
152 Flessner RM, Jewell CM, Anderson DG, Lynn DM. Degradable polyelectrolyte multilayers that promote the release of siRNA. Langmuir 2011;27:7868-76. [PMID: 21574582 DOI: 10.1021/la200815t] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
153 Veiseh O, Kievit FM, Mok H, Ayesh J, Clark C, Fang C, Leung M, Arami H, Park JO, Zhang M. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 2011;32:5717-25. [PMID: 21570721 DOI: 10.1016/j.biomaterials.2011.04.039] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 6.3] [Reference Citation Analysis]
154 Li XY, Lai YK, Zhang JF, Luo HQ, Zhang MH, Zhou KY, Kung HF. Lentivirus-mediated RNA interference targeting Bax inhibitor-1 suppresses ex vivo cell proliferation and in vivo tumor growth of nasopharyngeal carcinoma. Hum Gene Ther 2011;22:1201-8. [PMID: 21545297 DOI: 10.1089/hum.2010.178] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
155 Chang Kang H, Bae YH. Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide. Biomaterials 2011;32:4914-24. [PMID: 21489622 DOI: 10.1016/j.biomaterials.2011.03.042] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 5.6] [Reference Citation Analysis]
156 Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 2011;8:521-36. [PMID: 21413903 DOI: 10.1517/17425247.2011.559223] [Cited by in Crossref: 79] [Cited by in F6Publishing: 80] [Article Influence: 6.6] [Reference Citation Analysis]
157 Kim C, Lee Y, Lee SH, Kim JS, Jeong JH, Park TG. Self-crosslinked polyethylenimine nanogels for enhanced intracellular delivery of siRNA. Macromol Res 2011;19:166-71. [DOI: 10.1007/s13233-011-0207-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
158 De Rosa G, De Stefano D, Galeone A. Oligonucleotide delivery in cancer therapy. Expert Opin Drug Deliv 2010;7:1263-78. [PMID: 20977291 DOI: 10.1517/17425247.2010.527942] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
159 Jeong S, Choi SY, Park J, Seo J, Park J, Cho K, Joo S, Lee SY. Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. J Mater Chem 2011;21:13853. [DOI: 10.1039/c1jm11913c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
160 Sarret P, Doré-savard L, Tétreault P, Bégin-lavallée V, Dansereau M, Beaudet N. Using RNA Interference to Downregulate G Protein-Coupled Receptors. Neuromethods 2011. [DOI: 10.1007/978-1-61779-179-6_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
161 Andersen MØ, Kjems J. RNA Interference Enhanced Implants. Active Implants and Scaffolds for Tissue Regeneration 2011. [DOI: 10.1007/8415_2011_68] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
162 Liu XQ, Song WJ, Sun TM, Zhang PZ, Wang J. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol Pharm 2011;8:250-9. [PMID: 21138272 DOI: 10.1021/mp100315q] [Cited by in Crossref: 82] [Cited by in F6Publishing: 88] [Article Influence: 6.3] [Reference Citation Analysis]
163 Pugh S, Mckenna R, Moolick R, Nielsen DR. Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng 2011;89:2-12. [DOI: 10.1002/cjce.20434] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
164 Liu G, Swierczewska M, Lee S, Chen X. Functional nanoparticles for molecular imaging guided gene delivery. Nano Today 2010;5:524-39. [DOI: 10.1016/j.nantod.2010.10.005] [Cited by in Crossref: 108] [Cited by in F6Publishing: 93] [Article Influence: 8.3] [Reference Citation Analysis]
165 Wang NX, von Recum HA. Affinity-Based Drug Delivery. Macromol Biosci 2011;11:321-32. [DOI: 10.1002/mabi.201000206] [Cited by in Crossref: 138] [Cited by in F6Publishing: 139] [Article Influence: 10.6] [Reference Citation Analysis]
166 Ambardekar VV, Han HY, Varney ML, Vinogradov SV, Singh RK, Vetro JA. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes. Biomaterials 2011;32:1404-11. [PMID: 21047680 DOI: 10.1016/j.biomaterials.2010.10.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 2.3] [Reference Citation Analysis]
167 Takemoto H, Ishii A, Miyata K, Nakanishi M, Oba M, Ishii T, Yamasaki Y, Nishiyama N, Kataoka K. Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 2010;31:8097-105. [DOI: 10.1016/j.biomaterials.2010.07.015] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 8.1] [Reference Citation Analysis]
168 Rahbek UL, Nielsen AF, Dong M, You Y, Chauchereau A, Oupicky D, Besenbacher F, Kjems J, Howard KA. Bioresponsive hyperbranched polymers for siRNA and miRNA delivery. J Drug Target 2010;18:812-20. [PMID: 20979442 DOI: 10.3109/1061186X.2010.527982] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 2.8] [Reference Citation Analysis]
169 Nguyen J, Reul R, Roesler S, Dayyoub E, Schmehl T, Gessler T, Seeger W, Kissel TH. Amine-modified poly(vinyl alcohol)s as non-viral vectors for siRNA delivery: effects of the degree of amine substitution on physicochemical properties and knockdown efficiency. Pharm Res 2010;27:2670-82. [PMID: 20848302 DOI: 10.1007/s11095-010-0266-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
170 Nielsen EJB, Nielsen JM, Becker D, Karlas A, Prakash H, Glud SZ, Merrison J, Besenbacher F, Meyer TF, Kjems J, Howard KA. Pulmonary Gene Silencing in Transgenic EGFP Mice Using Aerosolised Chitosan/siRNA Nanoparticles. Pharm Res 2010;27:2520-7. [DOI: 10.1007/s11095-010-0255-y] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 4.8] [Reference Citation Analysis]
171 Andersen MØ, Lichawska A, Arpanaei A, Rask Jensen SM, Kaur H, Oupicky D, Besenbacher F, Kingshott P, Kjems J, Howard KA. Surface functionalisation of PLGA nanoparticles for gene silencing. Biomaterials 2010;31:5671-7. [PMID: 20434215 DOI: 10.1016/j.biomaterials.2010.03.069] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 3.6] [Reference Citation Analysis]
172 Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, Ellenbogen RG, Park JO, Zhang M. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 2010;31:8032-42. [PMID: 20673683 DOI: 10.1016/j.biomaterials.2010.07.016] [Cited by in Crossref: 141] [Cited by in F6Publishing: 149] [Article Influence: 10.8] [Reference Citation Analysis]
173 Chou MI, Hsieh YF, Wang M, Chang JT, Chang D, Zouali M, Tsay GJ. In vitro and in vivo targeted delivery of IL-10 interfering RNA by JC virus-like particles. J Biomed Sci 2010;17:51. [PMID: 20573280 DOI: 10.1186/1423-0127-17-51] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
174 Ford LP, Toloue MM. Delivery of RNAi mediators. Wiley Interdiscip Rev RNA 2010;1:341-50. [PMID: 21935894 DOI: 10.1002/wrna.12] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
175 Dehousse V, Garbacki N, Jaspart S, Castagne D, Piel G, Colige A, Evrard B. Comparison of chitosan/siRNA and trimethylchitosan/siRNA complexes behaviour in vitro. International Journal of Biological Macromolecules 2010;46:342-9. [DOI: 10.1016/j.ijbiomac.2010.01.010] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 4.2] [Reference Citation Analysis]
176 Kreidberg JA. siRNA Therapy for Glomerulonephritis. JASN 2010;21:549-51. [DOI: 10.1681/asn.2010020177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
177 Sikor M, Sabin J, Keyvanloo A, Schneider MF, Thewalt JL, Bailey AE, Frisken BJ. Interaction of a Charged Polymer with Zwitterionic Lipid Vesicles. Langmuir 2010;26:4095-102. [DOI: 10.1021/la902831n] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
178 de Martimprey H, Bertrand JR, Malvy C, Couvreur P, Vauthier C. New core-shell nanoparticules for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 2010;27:498-509. [PMID: 20087631 DOI: 10.1007/s11095-009-0043-8] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
179 Du F, Wang Y, Zhang R, Li Z. Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 2010;6:835-48. [DOI: 10.1039/b915020j] [Cited by in Crossref: 80] [Cited by in F6Publishing: 80] [Article Influence: 6.2] [Reference Citation Analysis]
180 Liu L, Wang W, Ju X, Xie R, Chu L. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 2010;6:3759. [DOI: 10.1039/c002231d] [Cited by in Crossref: 109] [Cited by in F6Publishing: 110] [Article Influence: 8.4] [Reference Citation Analysis]
181 Dehousse V, Garbacki N, Colige A, Evrard B. Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 2010;31:1839-49. [PMID: 19948356 DOI: 10.1016/j.biomaterials.2009.11.028] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 3.9] [Reference Citation Analysis]
182 Howard KA. Delivering the goods: realizing the clinical potential of RNAi. Nanomedicine 2009;4:595-8. [DOI: 10.2217/nnm.09.45] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]