BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60:1638-49. [PMID: 18840488 DOI: 10.1016/j.addr.2008.08.002] [Cited by in Crossref: 1248] [Cited by in F6Publishing: 1017] [Article Influence: 89.1] [Reference Citation Analysis]
Number Citing Articles
1 Liu B, Liu W. Poly(vinyl diaminotriazine): From Molecular Recognition to High-Strength Hydrogels. Macromol Rapid Commun 2018;39:1800190. [DOI: 10.1002/marc.201800190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Yang W, Fortunati E, Bertoglio F, Owczarek J, Bruni G, Kozanecki M, Kenny J, Torre L, Visai L, Puglia D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers 2018;181:275-84. [DOI: 10.1016/j.carbpol.2017.10.084] [Cited by in Crossref: 117] [Cited by in F6Publishing: 77] [Article Influence: 29.3] [Reference Citation Analysis]
3 Tian Y, Tian R, Chen L, Jin R, Feng Y, Bai Y, Chen X. Redox‐Responsive Nanogel with Intracellular Reconstruction and Programmable Drug Release for Targeted Tumor Therapy. Macromol Rapid Commun 2019;40:1800824. [DOI: 10.1002/marc.201800824] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
4 Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, Tao W, Mei L, Huang L, Zeng X. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science 2016;463:279-87. [DOI: 10.1016/j.jcis.2015.11.001] [Cited by in Crossref: 137] [Cited by in F6Publishing: 111] [Article Influence: 22.8] [Reference Citation Analysis]
5 Sattarahmady N, Heli H. A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. Journal of Experimental Nanoscience 2012;7:529-46. [DOI: 10.1080/17458080.2010.539275] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
6 Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr Polym 2018;196:233-45. [PMID: 29891292 DOI: 10.1016/j.carbpol.2018.05.033] [Cited by in Crossref: 224] [Cited by in F6Publishing: 162] [Article Influence: 56.0] [Reference Citation Analysis]
7 Sudhakar K, Mishra V, Riyaz B, Jain A, Charyulu RN, Jain S. Hydrogel-Based Drug Delivery for Lung Cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Elsevier; 2019. pp. 293-310. [DOI: 10.1016/b978-0-12-815720-6.00012-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2014;2:147-66. [DOI: 10.1039/c3tb21016b] [Cited by in Crossref: 273] [Cited by in F6Publishing: 10] [Article Influence: 34.1] [Reference Citation Analysis]
9 Zhou Y, Layani M, Wang S, Hu P, Ke Y, Magdassi S, Long Y. Fully Printed Flexible Smart Hybrid Hydrogels. Adv Funct Mater 2018;28:1705365. [DOI: 10.1002/adfm.201705365] [Cited by in Crossref: 70] [Cited by in F6Publishing: 43] [Article Influence: 17.5] [Reference Citation Analysis]
10 Xu B, Zhang Y, Liu W. Hydrogen-Bonding Toughened Hydrogels and Emerging CO 2 -Responsive Shape Memory Effect. Macromol Rapid Commun 2015;36:1585-91. [DOI: 10.1002/marc.201500256] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 7.1] [Reference Citation Analysis]
11 Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021;8:rbab060. [PMID: 34925879 DOI: 10.1093/rb/rbab060] [Reference Citation Analysis]
12 Truong WT, Su Y, Meijer JT, Thordarson P, Braet F. Self-Assembled Gels for Biomedical Applications. Chem Asian J 2011;6:30-42. [DOI: 10.1002/asia.201000592] [Cited by in Crossref: 86] [Cited by in F6Publishing: 74] [Article Influence: 7.2] [Reference Citation Analysis]
13 Wang P, Luo Z, Xiao Z. Preparation, physicochemical characterization and in vitro release behavior of resveratrol-loaded oxidized gellan gum/resistant starch hydrogel beads. Carbohydrate Polymers 2021;260:117794. [DOI: 10.1016/j.carbpol.2021.117794] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res Int 2020;27:19151-68. [PMID: 31079299 DOI: 10.1007/s11356-019-05211-0] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 19.0] [Reference Citation Analysis]
15 Casadei MA, Cesa S, Pacelli S, Paolicelli P, Tita B, Vitali F. Dextran-based hydrogel microspheres obtained in w/o emulsion: preparation, characterisation and in vivo studies. Journal of Microencapsulation 2014;31:440-7. [DOI: 10.3109/02652048.2013.871360] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
16 Kiryukhin MV, Gorelik SR, Man SM, Subramanian GS, Antipina MN, Low HY, Sukhorukov GB. Individually addressable patterned multilayer microchambers for site-specific release-on-demand. Macromol Rapid Commun 2013;34:87-93. [PMID: 23129223 DOI: 10.1002/marc.201200564] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
17 Aduba DC, Yang H. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials. Bioengineering (Basel) 2017;4:E1. [PMID: 28952482 DOI: 10.3390/bioengineering4010001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
18 Zhao J, Zhao X, Guo B, Ma PX. Multifunctional Interpenetrating Polymer Network Hydrogels Based on Methacrylated Alginate for the Delivery of Small Molecule Drugs and Sustained Release of Protein. Biomacromolecules 2014;15:3246-52. [DOI: 10.1021/bm5006257] [Cited by in Crossref: 92] [Cited by in F6Publishing: 80] [Article Influence: 11.5] [Reference Citation Analysis]
19 Xing L, Fan Y, Shen L, Yang C, Liu X, Ma Y, Qi L, Cho K, Cho C, Jiang H. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. International Journal of Biological Macromolecules 2019;141:85-97. [DOI: 10.1016/j.ijbiomac.2019.08.237] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
20 Gottipati A, Chelvarajan L, Peng H, Kong R, Cahall CF, Li C, Tripathi H, Al-Darraji A, Ye S, Elsawalhy E, Abdel-Latif A, Berron BJ. Gelatin Based Polymer Cell Coating Improves Bone Marrow-Derived Cell Retention in the Heart after Myocardial Infarction. Stem Cell Rev Rep 2019;15:404-14. [PMID: 30644039 DOI: 10.1007/s12015-018-9870-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
21 Liu H, Zhang Y, Zhao Y, Zhao Y, Yang X, Han L, Xin J, Yang B, Lin Q. Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. Talanta 2020;211:120755. [DOI: 10.1016/j.talanta.2020.120755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Araújo CDCB, Simon A, Honório TDS, da Silva SVC, Valle IMM, da Silva LCRP, Rodrigues CR, de Sousa VP, Cabral LM, Sathler PC, do Carmo FA. Development of rivaroxaban microemulsion-based hydrogel for transdermal treatment and prevention of venous thromboembolism. Colloids Surf B Biointerfaces 2021;206:111978. [PMID: 34293580 DOI: 10.1016/j.colsurfb.2021.111978] [Reference Citation Analysis]
23 Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021;:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Reference Citation Analysis]
24 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 21.7] [Reference Citation Analysis]
25 Ikeuchi-takahashi Y, Ishihara C, Onishi H. Evaluation of polyvinyl alcohols as mucoadhesive polymers for mucoadhesive buccal tablets prepared by direct compression. Drug Development and Industrial Pharmacy 2017;43:1489-500. [DOI: 10.1080/03639045.2017.1321657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
26 Hong JS, Stavis SM, Depaoli Lacerda SH, Locascio LE, Raghavan SR, Gaitan M. Microfluidic Directed Self-Assembly of Liposome−Hydrogel Hybrid Nanoparticles. Langmuir 2010;26:11581-8. [DOI: 10.1021/la100879p] [Cited by in Crossref: 77] [Cited by in F6Publishing: 62] [Article Influence: 6.4] [Reference Citation Analysis]
27 Curcio M, Altimari I, Spizzirri UG, Cirillo G, Vittorio O, Puoci F, Picci N, Iemma F. Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1581-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 4.1] [Reference Citation Analysis]
28 Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. Prog Brain Res 2020;258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
29 Peres LB, dos Anjos RS, Tappertzhofen LC, Feuser PE, de Araújo PH, Landfester K, Sayer C, Muñoz-espí R. pH-responsive physically and chemically cross-linked glutamic-acid-based hydrogels and nanogels. European Polymer Journal 2018;101:341-9. [DOI: 10.1016/j.eurpolymj.2018.02.039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
30 Mohamed RR, Elella MHA, Sabaa MW. Synthesis, characterization and applications of N- quaternized chitosan/poly(vinyl alcohol) hydrogels. International Journal of Biological Macromolecules 2015;80:149-61. [DOI: 10.1016/j.ijbiomac.2015.06.041] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.9] [Reference Citation Analysis]
31 Seah BC, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine 2018;13:7749-63. [PMID: 30538456 DOI: 10.2147/IJN.S174759] [Cited by in Crossref: 40] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
32 Kesarla R, Tank T, Vora PA, Shah T, Parmar S, Omri A. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Delivery 2016;23:2363-70. [DOI: 10.3109/10717544.2014.987333] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
33 Richter T, Landsgesell J, Košovan P, Holm C. On the efficiency of a hydrogel-based desalination cycle. Desalination 2017;414:28-34. [DOI: 10.1016/j.desal.2017.03.027] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
34 Vila-sanjurjo C, David L, Remuñán-lópez C, Vila-sanjurjo A, Goycoolea F. Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities. Journal of Colloid and Interface Science 2019;556:592-605. [DOI: 10.1016/j.jcis.2019.08.061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
35 Loh XJ, Chee PL, Owh C. Biodegradable Thermogelling Polymers. Small Methods. [DOI: 10.1002/smtd.201800313] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
36 Kitagawa H, Takeda K, Kitagawa R, Izutani N, Miki S, Hirose N, Hayashi M, Imazato S. Development of sustained antimicrobial-release systems using poly(2-hydroxyethyl methacrylate)/trimethylolpropane trimethacrylate hydrogels. Acta Biomaterialia 2014;10:4285-95. [DOI: 10.1016/j.actbio.2014.06.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
37 Chen Y, Bai Y, Chen S, Ju J, Li Y, Wang T, Wang Q. Stimuli-Responsive Composite Particles as Solid-Stabilizers for Effective Oil Harvesting. ACS Appl Mater Interfaces 2014;6:13334-8. [DOI: 10.1021/am504124a] [Cited by in Crossref: 80] [Cited by in F6Publishing: 61] [Article Influence: 10.0] [Reference Citation Analysis]
38 Islam P, Water JJ, Bohr A, Rantanen J. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties. Pharmaceutics 2016;9:E1. [PMID: 28025505 DOI: 10.3390/pharmaceutics9010001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
39 Hamidi M, Rostamizadeh K, Shahbazi M. Hydrogel Nanoparticles in Drug Delivery. In: Tiwari A, Mishra AK, Kobayashi H, Turner AP, editors. Intelligent Nanomaterials. Hoboken: John Wiley & Sons, Inc.; 2012. pp. 583-624. [DOI: 10.1002/9781118311974.ch15] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
40 Zhang P, He L, Zhang J, Mei X, Zhang Y, Tian H, Chen Z. Preparation of novel berberine nano-colloids for improving wound healing of diabetic rats by acting Sirt1/NF-κB pathway. Colloids Surf B Biointerfaces 2020;187:110647. [PMID: 31761520 DOI: 10.1016/j.colsurfb.2019.110647] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
41 Raj Singh TR, Garland MJ, Migalska K, Salvador EC, Shaikh R, Mccarthy HO, David Woolfson A, Donnelly RF. Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: Application in transdermal delivery systems. J Appl Polym Sci 2012;125:2680-94. [DOI: 10.1002/app.36524] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
42 Huang J, Xue Y, Cai N, Zhang H, Wen K, Luo X, Long S, Yu F. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. Mater Sci Eng C Mater Biol Appl 2015;46:41-51. [PMID: 25491958 DOI: 10.1016/j.msec.2014.10.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
43 Cikrikci S, Mert B, Oztop MH. Development of pH Sensitive Alginate/Gum Tragacanth Based Hydrogels for Oral Insulin Delivery. J Agric Food Chem 2018;66:11784-96. [PMID: 30346766 DOI: 10.1021/acs.jafc.8b02525] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
44 John Ł, Malik M, Janeta M, Szafert S. First step towards a model system of the drug delivery network based on amide-POSS nanocarriers. RSC Adv 2017;7:8394-401. [DOI: 10.1039/c6ra26330e] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
45 Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, Mola GT. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 2018;16:113-46. [DOI: 10.1007/s10311-017-0671-x] [Cited by in Crossref: 98] [Cited by in F6Publishing: 58] [Article Influence: 19.6] [Reference Citation Analysis]
46 Qian Z, Fu S, Feng S. Nanohydrogels as a prospective member of the nanomedicine family. Nanomedicine 2013;8:161-4. [DOI: 10.2217/nnm.13.1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
47 Sangian D, Naficy S, Dehghani F, Yamauchi Y. A Review on Layered Mineral Nanosheets Intercalated with Hydrophobic/Hydrophilic Polymers and Their Applications. Macromol Chem Phys 2018;219:1800142. [DOI: 10.1002/macp.201800142] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
48 Mendes A, Silva A, Catita J, Cerqueira F, Gabriel C, Lopes C. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids and Surfaces B: Biointerfaces 2013;111:755-63. [DOI: 10.1016/j.colsurfb.2013.05.041] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 9.1] [Reference Citation Analysis]
49 Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. Appl Nanosci 2018;8:1607-19. [DOI: 10.1007/s13204-018-0856-z] [Cited by in Crossref: 31] [Cited by in F6Publishing: 9] [Article Influence: 7.8] [Reference Citation Analysis]
50 Xue S, Pei D, Jiang W, Mu Y, Wan X. A simple and fast formation of biodegradable poly(urethane-urea) hydrogel with high water content and good mechanical property. Polymer 2016;99:340-8. [DOI: 10.1016/j.polymer.2016.07.034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
51 Sahiner N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science 2013;38:1329-56. [DOI: 10.1016/j.progpolymsci.2013.06.004] [Cited by in Crossref: 222] [Cited by in F6Publishing: 149] [Article Influence: 24.7] [Reference Citation Analysis]
52 He C, Lin W. Hybrid Nanoparticles for Cancer Imaging and Therapy. In: Mirkin CA, Meade TJ, Petrosko SH, Stegh AH, editors. Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cham: Springer International Publishing; 2015. pp. 173-92. [DOI: 10.1007/978-3-319-16555-4_8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
53 Yadav SK, Khan G, Bansal M, Thokala S, Bonde GV, Upadhyay M, Mishra B. Multiparticulate based thermosensitive intra-pocket forming implants for better treatment of bacterial infections in periodontitis. Int J Biol Macromol 2018;116:394-408. [PMID: 29746970 DOI: 10.1016/j.ijbiomac.2018.04.179] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
54 Heyes DM, Brańka AC. Interactions between microgel particles. Soft Matter 2009;5:2681. [DOI: 10.1039/b901894h] [Cited by in Crossref: 94] [Cited by in F6Publishing: 69] [Article Influence: 7.2] [Reference Citation Analysis]
55 Akram M, Hussain R. Nanohydrogels: History, Development, and Applications in Drug Delivery. In: Jawaid M, Mohammad F, editors. Nanocellulose and Nanohydrogel Matrices. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 297-330. [DOI: 10.1002/9783527803835.ch11] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
56 Zhang L, Zhang Y, Wu W, Jiang X. Doxorubicin-loaded boron-rich polymer nanoparticles for orthotopically implanted liver tumor treatment. Chin J Polym Sci 2013;31:778-86. [DOI: 10.1007/s10118-013-1267-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
57 Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. International Journal of Biological Macromolecules 2020;154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
58 Khan SA, Schneider M. Improvement of Nanoprecipitation Technique for Preparation of Gelatin Nanoparticles and Potential Macromolecular Drug Loading: Improvement of Nanoprecipitation Technique for Preparation of Gelatin Nanoparticles …. Macromol Biosci 2013;13:455-63. [DOI: 10.1002/mabi.201200382] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 6.4] [Reference Citation Analysis]
59 Wan T, Niu D, Wu C, Xu F, Church G, Ping Y. Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today 2019;26:40-66. [DOI: 10.1016/j.mattod.2018.12.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 16.0] [Reference Citation Analysis]
60 Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N. An ultra-sensitive optical aptasensor based on gold nanoparticles/poly vinyl alcohol hydrogel as acceptor/emitter pair for fluorometric detection of digoxin with on/off/on strategy. Spectrochim Acta A Mol Biomol Spectrosc 2021;250:119345. [PMID: 33465528 DOI: 10.1016/j.saa.2020.119345] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Wang X, Wu G, Lu C, Zhao W, Wang Y, Fan Y, Gao H, Ma J. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative. European Journal of Pharmaceutical Sciences 2012;47:256-64. [DOI: 10.1016/j.ejps.2012.04.007] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
62 Ganguly S, Maity PP, Mondal S, Das P, Bhawal P, Dhara S, Das NC. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C Mater Biol Appl 2018;92:34-51. [PMID: 30184759 DOI: 10.1016/j.msec.2018.06.034] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 6.8] [Reference Citation Analysis]
63 Chatterjee S, Hui PC, Kan CW. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers (Basel) 2018;10:E480. [PMID: 30966514 DOI: 10.3390/polym10050480] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
64 Bai R, Deng X, Wu Q, Cao X, Ye T, Wang S. Liposome-loaded thermo-sensitive hydrogel for stabilization of SN-38 via intratumoral injection: optimization, characterization, and antitumor activity. Pharm Dev Technol 2018;23:106-15. [PMID: 29019266 DOI: 10.1080/10837450.2017.1391287] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
65 Aouada FA, de Moura MR, Orts WJ, Mattoso LHC. Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 2010;45:4977-85. [DOI: 10.1007/s10853-009-4180-6] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
66 Deng C, Dong N, Shi J, Chen S, Xu L, Shi F, Hu X, Zhang X. Application of decellularized scaffold combined with loaded nanoparticles for heart valve tissue engineering in vitro. J Huazhong Univ Sci Technolog Med Sci 2011;31:88-93. [PMID: 21336730 DOI: 10.1007/s11596-011-0156-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
67 Altman RM, Richmond GL. Twist and Stretch: Assignment and Surface Charge Sensitivity of a Water Combination Band and Its Implications for Vibrational Sum Frequency Spectra Interpretations. J Phys Chem B 2021;125:6717-26. [DOI: 10.1021/acs.jpcb.1c03408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
68 Jung SC, Choi SH, Cho HR, Lee TH, Kim TY, Jeong W, Rhee K, Jho JY, Kim JH, Han MH. Polymeric embolization coil of bilayered polyvinyl alcohol strand for therapeutic vascular occlusion: a feasibility study in canine experimental vascular models. J Vasc Interv Radiol 2015;26:117-23. [PMID: 25454653 DOI: 10.1016/j.jvir.2014.10.006] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
69 du Toit LC, Pillay V, Choonara YE, Govender T, Carmichael T. Ocular drug delivery - a look towards nanobioadhesives. Expert Opin Drug Deliv 2011;8:71-94. [PMID: 21174606 DOI: 10.1517/17425247.2011.542142] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
70 Zhang Y, Andrén OCJ, Nordström R, Fan Y, Malmsten M, Mongkhontreerat S, Malkoch M. Off‐Stoichiometric Thiol‐Ene Chemistry to Dendritic Nanogel Therapeutics. Adv Funct Mater 2019;29:1806693. [DOI: 10.1002/adfm.201806693] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
71 Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU, Fahad M. Nanogels as drug-delivery systems: a comprehensive overview. Therapeutic Delivery 2019;10:697-717. [DOI: 10.4155/tde-2019-0010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
72 Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 2013;42:7289. [DOI: 10.1039/c3cs60048c] [Cited by in Crossref: 682] [Cited by in F6Publishing: 608] [Article Influence: 75.8] [Reference Citation Analysis]
73 Xia LY, Zhang X, Cao M, Chen Z, Wu FG. Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy. Biomacromolecules 2017;18:3073-81. [PMID: 28820580 DOI: 10.1021/acs.biomac.7b00725] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
74 Ickenstein LM, Garidel P. Hydrogel formulations for biologicals: current spotlight from a commercial perspective. Therapeutic Delivery 2018;9:221-30. [DOI: 10.4155/tde-2017-0085] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
75 Ge S, Li M, Ji N, Liu J, Mu H, Xiong L, Sun Q. Preparation of a Strong Gelatin–Short Linear Glucan Nanocomposite Hydrogel by an in Situ Self-Assembly Process. J Agric Food Chem 2018;66:177-86. [DOI: 10.1021/acs.jafc.7b04684] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 6.4] [Reference Citation Analysis]
76 Campos FDS, Cassimiro DL, Crespi MS, Almeida AE, Gremião MPD. Preparation and characterisation of Dextran-70 hydrogel for controlled release of praziquantel. Braz J Pharm Sci 2013;49:75-83. [DOI: 10.1590/s1984-82502013000100009] [Cited by in Crossref: 12] [Article Influence: 1.3] [Reference Citation Analysis]
77 Shafagati N, Patanarut A, Luchini A, Lundberg L, Bailey C, Petricoin E 3rd, Liotta L, Narayanan A, Lepene B, Kehn-Hall K. The use of Nanotrap particles for biodefense and emerging infectious disease diagnostics. Pathog Dis 2014;71:164-76. [PMID: 24449537 DOI: 10.1111/2049-632X.12136] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
78 Agnihotri S, Mukherji S, Mukherji S. Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2012;2:179-88. [DOI: 10.1007/s13204-012-0080-1] [Cited by in Crossref: 107] [Cited by in F6Publishing: 64] [Article Influence: 10.7] [Reference Citation Analysis]
79 Faya M, Kalhapure RS, Kumalo HM, Waddad AY, Omolo C, Govender T. Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. Journal of Drug Delivery Science and Technology 2018;44:153-71. [DOI: 10.1016/j.jddst.2017.12.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
80 Lan G, Ni K, Lin W. Nanoscale Metal-Organic Frameworks for Phototherapy of Cancer. Coord Chem Rev 2019;379:65-81. [PMID: 30739946 DOI: 10.1016/j.ccr.2017.09.007] [Cited by in Crossref: 164] [Cited by in F6Publishing: 124] [Article Influence: 32.8] [Reference Citation Analysis]
81 Ma Y, Shi L, Liu F, Zhang Y, Pang Y, Shen X. Self-assembled thixotropic silver cluster hydrogel for anticancer drug release. Chemical Engineering Journal 2019;362:650-7. [DOI: 10.1016/j.cej.2019.01.096] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
82 Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson L, Efimenko K, Österberg M, Laine J. Poly( N -isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules 2010;11:2683-91. [DOI: 10.1021/bm100719d] [Cited by in Crossref: 224] [Cited by in F6Publishing: 186] [Article Influence: 18.7] [Reference Citation Analysis]
83 Simão AR, Fragal VH, Pellá MCG, Garcia FP, Nakamura CV, Silva R, Tambourgi EB, Rubira AF. Drug polarity effect over the controlled release in casein and chondroitin sulfate-based hydrogels. Int J Biol Macromol 2020:S0141-8130(20)33041-5. [PMID: 32344082 DOI: 10.1016/j.ijbiomac.2020.04.179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Möller S, Pliquett U, Hoffmann C. Synthesis of molecular photoswitches based on azobenzene with an organosilane anchor. RSC Adv 2012;2:4792. [DOI: 10.1039/c2ra20151h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
85 Cohen-erez I, Issacson C, Lavi Y, Shaco-levy R, Milam J, Laster B, Gheber LA, Rapaport H. Antitumor Effect of Lonidamine-Polypeptide-Peptide Nanoparticles in Breast Cancer Models. ACS Appl Mater Interfaces 2019;11:32670-8. [DOI: 10.1021/acsami.9b09886] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
86 Op 't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. Tissue Eng Part B Rev 2020;26:230-48. [PMID: 31928151 DOI: 10.1089/ten.TEB.2019.0281] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
87 Wang M, Wang J, Wang Y, Liu C, Liu J, Qiu Z, Xu Y, Lincoln SF, Guo X. Synergetic catalytic effect of α-cyclodextrin on silver nanoparticles loaded in thermosensitive hydrogel. Colloid Polym Sci 2016;294:1087-95. [DOI: 10.1007/s00396-016-3867-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
88 Dai Y, Chen X, Zhang X. Recent Developments in the Area of Click‐Crosslinked Nanocarriers for Drug Delivery. Macromol Rapid Commun 2019;40:1800541. [DOI: 10.1002/marc.201800541] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
89 Liu S, Jones L, Gu FX. Nanomaterials for Ocular Drug Delivery. Macromol Biosci 2012;12:608-20. [DOI: 10.1002/mabi.201100419] [Cited by in Crossref: 108] [Cited by in F6Publishing: 96] [Article Influence: 10.8] [Reference Citation Analysis]
90 Cohen-erez I, Rapaport H. Coassemblies of the Anionic Polypeptide γ-PGA and Cationic β-Sheet Peptides for Drug Delivery to Mitochondria. Biomacromolecules 2015;16:3827-35. [DOI: 10.1021/acs.biomac.5b01140] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
91 Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Progress in Polymer Science 2011;36:168-89. [DOI: 10.1016/j.progpolymsci.2010.08.005] [Cited by in Crossref: 329] [Cited by in F6Publishing: 217] [Article Influence: 29.9] [Reference Citation Analysis]
92 Vandana M, Sahoo SK. Optimization of physicochemical parameters influencing the fabrication of protein-loaded chitosan nanoparticles. Nanomedicine 2009;4:773-85. [DOI: 10.2217/nnm.09.54] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
93 Liu X, Xu Y, Wu Z, Chen H. Poly( N -vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromol Biosci 2013;13:147-54. [DOI: 10.1002/mabi.201200269] [Cited by in Crossref: 123] [Cited by in F6Publishing: 94] [Article Influence: 12.3] [Reference Citation Analysis]
94 Choi Y, Jung SH, Lee A, Seo ML, Jung JH. Preparation of a Diacetylene-bridged Phenylamine-based Supramolecular Hydrogels and Their Fluorescent Properties. Bull Korean Chem Soc 2015;36:1725-8. [DOI: 10.1002/bkcs.10314] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
95 Binh D, Pham Thi Thu Hong, Nguyen Ngoc Duy, Nguyen Thanh Duoc, Nguyen Nguyet Dieu. A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation. Radiation Physics and Chemistry 2012;81:906-12. [DOI: 10.1016/j.radphyschem.2011.12.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
96 Evans SM, Litzenberger AL, Ellenberger AE, Maneval JE, Jablonski EL, Vogel BM. A microfluidic method to measure small molecule diffusion in hydrogels. Materials Science and Engineering: C 2014;35:322-34. [DOI: 10.1016/j.msec.2013.10.035] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
97 Martínez-gómez F, Guerrero J, Matsuhiro B, Pavez J. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels. Carbohydrate Polymers 2017;155:182-91. [DOI: 10.1016/j.carbpol.2016.08.079] [Cited by in Crossref: 54] [Cited by in F6Publishing: 36] [Article Influence: 10.8] [Reference Citation Analysis]
98 Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Development and Industrial Pharmacy 2018;44:1783-96. [DOI: 10.1080/03639045.2018.1496448] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
99 Wang WY, Zhao XF, Ju XH, Liu P, Li J, Tang YW, Li SP, Li XD, Song FG. Induction of Au-methotrexate conjugates by sugar molecules: production, assembly mechanism, and bioassay studies. Int J Pharm 2018;538:65-78. [PMID: 29341908 DOI: 10.1016/j.ijpharm.2017.12.051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
100 Lim HJ, Cho EC, Lee JA, Kim J. A novel approach for the use of hyaluronic acid-based hydrogel nanoparticles as effective carriers for transdermal delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012;402:80-7. [DOI: 10.1016/j.colsurfa.2012.03.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
101 Ebrahimi Samani S, Seraj Z, Naderimanesh H, Khajeh K, Esmaeili Rastaghi AR, Droudi T, Kolivand P, Kazemi H, Asghari SM. Controlled release of an endostatin peptide using chitosan nanoparticles. Chem Biol Drug Des 2017;90:417-24. [PMID: 28165672 DOI: 10.1111/cbdd.12959] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
102 Chai Q, Jiao Y, Yu X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017;3:E6. [PMID: 30920503 DOI: 10.3390/gels3010006] [Cited by in Crossref: 264] [Cited by in F6Publishing: 161] [Article Influence: 52.8] [Reference Citation Analysis]
103 Balmori A, Sandu R, Gheorghe D, Botea-Petcu A, Precupas A, Tanasescu S, Sánchez-García D, Borrós S. Revising Protein Corona Characterization and Combining ITC and Nano-DSC to Understand the Interaction of Proteins With Porous Nanoparticles. Front Bioeng Biotechnol 2021;9:650281. [PMID: 34708023 DOI: 10.3389/fbioe.2021.650281] [Reference Citation Analysis]
104 Tsibouklis J, Middleton AM, Patel N, Pratten J. Toward mucoadhesive hydrogel formulations for the management of xerostomia: the physicochemical, biological, and pharmacological considerations. J Biomed Mater Res A 2013;101:3327-38. [PMID: 23529996 DOI: 10.1002/jbm.a.34626] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
105 Ataide JA, Cefali LC, Figueiredo MC, Braga LEO, Ruiz ALTG, Foglio MA, Oliveira-Nascimento L, Mazzola PG. In vitro performance of free and encapsulated bromelain. Sci Rep 2021;11:10195. [PMID: 33986357 DOI: 10.1038/s41598-021-89376-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Farzinfar E, Paydayesh A. Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials 2019;68:628-38. [DOI: 10.1080/00914037.2018.1482463] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
107 Jana S, Samanta A, Nayak AK, Sen KK, Jana S. Novel alginate hydrogel core-shell systems for combination delivery of ranitidine HCl and aceclofenac. Int J Biol Macromol 2015;74:85-92. [PMID: 25478963 DOI: 10.1016/j.ijbiomac.2014.11.027] [Cited by in Crossref: 37] [Cited by in F6Publishing: 15] [Article Influence: 4.6] [Reference Citation Analysis]
108 Charafeddine RA, Nosanchuk JD, Sharp DJ. Targeting Microtubules for Wound Repair. Adv Wound Care (New Rochelle) 2016;5:444-54. [PMID: 27785378 DOI: 10.1089/wound.2015.0658] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
109 Gandhi SS, Yan H, Kim C. Thermoresponsive Gelatin Nanogels. ACS Macro Lett 2014;3:1210-4. [DOI: 10.1021/mz500499q] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
110 Salahuddin N, Elbarbary AA, Alkabes HA. Antibacterial and anticancer activity of loaded quinazolinone polypyrrole/chitosan silver chloride nanocomposite. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;66:307-16. [DOI: 10.1080/00914037.2016.1201831] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
111 Liu W, Chen G, He G, He Z, Qian Z. Sacrificial functional polystyrene template to prepare chitosan nanocapsules and in vitro drug release properties. J Mater Sci 2011;46:6758-65. [DOI: 10.1007/s10853-011-5632-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
112 Gupta P, Nayak KK. Compatibility study of alginate/keratin blend for biopolymer development. J Appl Biomater Funct Mater 2015;13:e332-9. [PMID: 26350347 DOI: 10.5301/jabfm.5000242] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
113 Seiffert S. Sensitive microgels as model colloids and microcapsules. J Polym Sci Part A: Polym Chem 2014;52:435-49. [DOI: 10.1002/pola.27024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
114 Agarwal R, Jurney P, Raythatha M, Singh V, Sreenivasan SV, Shi L, Roy K. Effect of Shape, Size, and Aspect Ratio on Nanoparticle Penetration and Distribution inside Solid Tissues Using 3D Spheroid Models. Adv Healthcare Mater 2015;4:2269-80. [DOI: 10.1002/adhm.201500441] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 10.3] [Reference Citation Analysis]
115 Nazar H, Roldo M, Fatouros DG, van der Merwe SM, Tsibouklis J. Hydrogels in mucosal delivery. Therapeutic Delivery 2012;3:535-55. [DOI: 10.4155/tde.12.16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
116 Khoee S, Kavand A. Preparation, co-assembling and interfacial crosslinking of photocurable and folate-conjugated amphiphilic block copolymers for controlled and targeted drug delivery: smart armored nanocarriers. Eur J Med Chem 2014;73:18-29. [PMID: 24374349 DOI: 10.1016/j.ejmech.2013.11.033] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
117 Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015;6:105-21. [PMID: 25750745 DOI: 10.1016/j.jare.2013.07.006] [Cited by in Crossref: 2018] [Cited by in F6Publishing: 1348] [Article Influence: 224.2] [Reference Citation Analysis]
118 Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020;328:171-91. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
119 Spatarelu CP, Radu Chiriac AL, Cursaru B, Iordache TV, Gavrila AM, Cojocaru CT, Botez RE, Trica B, Sarbu A, Teodorescu M, Tofan V, Perrin FX, Zaharia A. Composite Nanogels Based on Zeolite-Poly(ethylene glycol) Diacrylate for Controlled Drug Delivery. Nanomaterials (Basel) 2020;10:E195. [PMID: 31979174 DOI: 10.3390/nano10020195] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Zou Y, Li D, Shen M, Shi X. Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 2019;19:e1900272. [PMID: 31531955 DOI: 10.1002/mabi.201900272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
121 Wahid F, Yin J, Xue D, Xue H, Lu Y, Zhong C, Chu L. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules 2016;88:273-9. [DOI: 10.1016/j.ijbiomac.2016.03.044] [Cited by in Crossref: 92] [Cited by in F6Publishing: 57] [Article Influence: 15.3] [Reference Citation Analysis]
122 Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm 2012;9:2856-62. [PMID: 22845012 DOI: 10.1021/mp300162j] [Cited by in Crossref: 114] [Cited by in F6Publishing: 97] [Article Influence: 11.4] [Reference Citation Analysis]
123 Azadi MDA, Hassanajili S, Zarrabi K, Sarkari B. Solidification of hydatid cyst fluid with an injectable chitosan/carboxymethylcellulose/β-glycerophosphate hydrogel for effective control of spillage during aspiration of hydatid cysts. Prog Biomater 2018;7:35-54. [PMID: 29460180 DOI: 10.1007/s40204-018-0082-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
124 Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. Journal of Drug Delivery Science and Technology 2020;57:101628. [DOI: 10.1016/j.jddst.2020.101628] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
125 Secret E, Crannell KE, Kelly SJ, Villancio-Wolter M, Andrew JS. Matrix metalloproteinase-sensitive hydrogel microparticles for pulmonary drug delivery of small molecule drugs or proteins. J Mater Chem B 2015;3:5629-34. [PMID: 32262533 DOI: 10.1039/c5tb00443h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
126 Nuhn L, Hirsch M, Krieg B, Koynov K, Fischer K, Schmidt M, Helm M, Zentel R. Cationic Nanohydrogel Particles as Potential siRNA Carriers for Cellular Delivery. ACS Nano 2012;6:2198-214. [DOI: 10.1021/nn204116u] [Cited by in Crossref: 88] [Cited by in F6Publishing: 75] [Article Influence: 8.8] [Reference Citation Analysis]
127 Wen Y, Oh JK. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf B Biointerfaces 2015;133:246-53. [PMID: 26119370 DOI: 10.1016/j.colsurfb.2015.06.017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
128 Zheng S, Liu Z. Constitutive model of salt concentration-sensitive hydrogel. Mechanics of Materials 2019;136:103092. [DOI: 10.1016/j.mechmat.2019.103092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
129 Oh JK, Bencherif SA, Matyjaszewski K. Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer 2009;50:4407-23. [DOI: 10.1016/j.polymer.2009.06.045] [Cited by in Crossref: 111] [Cited by in F6Publishing: 80] [Article Influence: 8.5] [Reference Citation Analysis]
130 Guo S, Xu X, Zhou X, Huang Y. A rapid and simple UPLC-MS/MS method using collagen marker peptides for identification of porcine gelatin. RSC Adv 2018;8:3768-73. [DOI: 10.1039/c7ra12539a] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
131 Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B. Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 2013;54:4972-9. [DOI: 10.1016/j.polymer.2013.07.022] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
132 Mahdavinia GR, Bazmizeynabad F. Synthesis of Anti-Salt Hydroxypropyl Methylcellulose-g-polyacrylamide/Laponite RD Nanocomposite Hydrogel and Its Application to Remove Cationic Dye. Polymer-Plastics Technology and Engineering 2014;53:411-22. [DOI: 10.1080/03602559.2013.844829] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
133 Sun Z, Huang Q, He T, Li Z, Zhang Y, Yi L. Multistimuli-responsive supramolecular gels: design rationale, recent advances, and perspectives. Chemphyschem 2014;15:2421-30. [PMID: 24953044 DOI: 10.1002/cphc.201402187] [Cited by in Crossref: 68] [Cited by in F6Publishing: 47] [Article Influence: 8.5] [Reference Citation Analysis]
134 Terracciano M, De Stefano L, Rea I. Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics 2018;10:E242. [PMID: 30463290 DOI: 10.3390/pharmaceutics10040242] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
135 Zarzycki R, Modrzejewska Z, Dorabialska M, Rogacki G, Wojtasz-pająk A. Properties of Chitosan Microgranules Formed by Supercritical Fluid Processing. Drying Technology 2009;27:1370-8. [DOI: 10.1080/07373930903383638] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
136 Kumar Meena L, Rather H, Kedaria D, Vasita R. Polymeric microgels for bone tissue engineering applications – a review. International Journal of Polymeric Materials and Polymeric Biomaterials 2020;69:381-97. [DOI: 10.1080/00914037.2019.1570512] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
137 Hasnain MS, Nayak AK, Kurakula M, Hoda MN. Alginate nanoparticles in drug delivery. Alginates in Drug Delivery. Elsevier; 2020. pp. 129-52. [DOI: 10.1016/b978-0-12-817640-5.00006-6] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
138 Sadrjavadi K, Shahbazi B, Fattahi A. De-esterified tragacanth-chitosan nano-hydrogel for methotrexate delivery; optimization of the formulation by Taguchi design. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:883-93. [DOI: 10.1080/21691401.2018.1471482] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
139 Zhang Z, Zhang R, Chen L, Tong Q, Mcclements DJ. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal 2015;72:698-716. [DOI: 10.1016/j.eurpolymj.2015.01.013] [Cited by in Crossref: 88] [Cited by in F6Publishing: 67] [Article Influence: 12.6] [Reference Citation Analysis]
140 Ni M, Tresset G, Iliescu C. Self-assembled polysulfone nanoparticles using microfluidic chip. Sensors and Actuators B: Chemical 2017;252:458-62. [DOI: 10.1016/j.snb.2017.06.028] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
141 Kalantari K, Mostafavi E, Saleh B, Soltantabar P, Webster TJ. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. European Polymer Journal 2020;134:109853. [DOI: 10.1016/j.eurpolymj.2020.109853] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 13.5] [Reference Citation Analysis]
142 Singhal R, Gupta K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polymer-Plastics Technology and Engineering 2015;55:54-70. [DOI: 10.1080/03602559.2015.1050520] [Cited by in Crossref: 47] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
143 Chhatri A, Bajpai J, Bajpai AK. Designing polysaccharide-based antibacterial biomaterials for wound healing applications. Biomatter 2011;1:189-97. [PMID: 23507748 DOI: 10.4161/biom.19005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
144 Jia K, Li X, Wang Y. Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter 2021;17:834-9. [DOI: 10.1039/d0sm01789b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K. Material properties of biofilms-a review of methods for understanding permeability and mechanics. Rep Prog Phys 2015;78:036601. [PMID: 25719969 DOI: 10.1088/0034-4885/78/3/036601] [Cited by in Crossref: 98] [Cited by in F6Publishing: 81] [Article Influence: 14.0] [Reference Citation Analysis]
146 Vakili MR, Rahneshin N. Synthesis and characterization of novel stimuli-responsive hydrogels based on starch and L-aspartic acid. Carbohydrate Polymers 2013;98:1624-30. [DOI: 10.1016/j.carbpol.2013.08.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
147 Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 2011;44:57-67. [PMID: 21704704 DOI: 10.1016/j.ejps.2011.06.007] [Cited by in Crossref: 112] [Cited by in F6Publishing: 95] [Article Influence: 10.2] [Reference Citation Analysis]
148 Kobiasi MA, Chua BY, Tonkin D, Jackson DC, Mainwaring DE. Control of size dispersity of chitosan biopolymer microparticles and nanoparticles to influence vaccine trafficking and cell uptake. J Biomed Mater Res 2012;100A:1859-67. [DOI: 10.1002/jbm.a.34153] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
149 Han S, Wang T, Yang L, Li B. Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. International Journal of Biological Macromolecules 2017;105:377-84. [DOI: 10.1016/j.ijbiomac.2017.07.049] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
150 Nigro V, Angelini R, Bertoldo M, Buratti E, Franco S, Ruzicka B. Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid). Polymers (Basel) 2021;13:1353. [PMID: 33919087 DOI: 10.3390/polym13091353] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
151 Hedrick MM, Chung JK, Denton AR. Structure and osmotic pressure of ionic microgel dispersions. The Journal of Chemical Physics 2015;142:034904. [DOI: 10.1063/1.4905574] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
152 Choi CE, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022;:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Reference Citation Analysis]
153 Suhail M, Hsieh YH, Khan A, Minhas MU, Wu PC. Preparation and In Vitro Evaluation of Aspartic/Alginic Acid Based Semi-Interpenetrating Network Hydrogels for Controlled Release of Ibuprofen. Gels 2021;7:68. [PMID: 34207688 DOI: 10.3390/gels7020068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
154 Nishimura T, Yamada A, Umezaki K, Sawada S, Mukai S, Sasaki Y, Akiyoshi K. Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform. Biomacromolecules 2017;18:3913-23. [DOI: 10.1021/acs.biomac.7b00937] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
155 Kwon SS, Kong BJ, Park SN. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur J Pharm Biopharm 2015;92:146-54. [PMID: 25753198 DOI: 10.1016/j.ejpb.2015.02.025] [Cited by in Crossref: 70] [Cited by in F6Publishing: 52] [Article Influence: 10.0] [Reference Citation Analysis]
156 Romanelli SM, Fath KR, Davidov R, Phekoo AP, Banerjee IA. Supramolecular Fmoc-valyl based nanoassemblies for delivery of mitoxantrone into HeLa cells. Journal of Drug Delivery Science and Technology 2015;29:107-16. [DOI: 10.1016/j.jddst.2015.06.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
157 Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 2019;13:55. [PMID: 31249615 DOI: 10.1186/s13036-019-0177-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
158 Mackinnon N, Guérin G, Liu B, Gradinaru CC, Macdonald PM. Liposome−Hydrogel Bead Complexes Prepared via Biotin−Avidin Conjugation. Langmuir 2009;25:9413-23. [DOI: 10.1021/la900163r] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
159 Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016;17:3441-63. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Cited by in Crossref: 120] [Cited by in F6Publishing: 87] [Article Influence: 20.0] [Reference Citation Analysis]
160 Harisa GI, Badran MM, AlQahtani SA, Alanazi FK, Attia SM. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer. Saudi Pharm J 2016;24:74-81. [PMID: 26903771 DOI: 10.1016/j.jsps.2015.03.024] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
161 Mcclements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science 2017;240:31-59. [DOI: 10.1016/j.cis.2016.12.005] [Cited by in Crossref: 104] [Cited by in F6Publishing: 74] [Article Influence: 20.8] [Reference Citation Analysis]
162 Hua J, Ng PF, Fei B. High-strength hydrogels: Microstructure design, characterization and applications: High-Strength Hydrogels: A Review of Microstructure Design, Characterization and Applications. J Polym Sci Part B: Polym Phys 2018;56:1325-35. [DOI: 10.1002/polb.24725] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
163 Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021;11:142. [PMID: 34294165 DOI: 10.1186/s13578-021-00650-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
164 Parekh P, Ohno S, Yusa S, Lage EV, Casas M, Sández-Macho I, Aswal VK, Bahadur P. Surface and Aggregation Behavior of Pentablock Copolymer PNIPAM7-F127-PNIPAM7 in Aqueous Solutions. J Phys Chem B 2016;120:7569-78. [PMID: 27385006 DOI: 10.1021/acs.jpcb.6b03948] [Cited by in Crossref: 7] [Article Influence: 1.2] [Reference Citation Analysis]
165 Zaric BL, Obradovic M, Sudar-Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug Delivery Systems for Diabetes Treatment. Curr Pharm Des 2019;25:166-73. [PMID: 30848184 DOI: 10.2174/1381612825666190306153838] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
166 de Oliveira SA, Borges R, Dos Santos Rosa D, de Souza ACS, Seabra AB, Baino F, Marchi J. Strategies for Cancer Treatment Based on Photonic Nanomedicine. Materials (Basel) 2021;14:1435. [PMID: 33809479 DOI: 10.3390/ma14061435] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
167 Karamchand L, Kim G, Wang S, Hah HJ, Ray A, Jiddou R, Koo Lee YE, Philbert MA, Kopelman R. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide. Nanoscale 2013;5:10327-44. [PMID: 24056573 DOI: 10.1039/c3nr00908d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
168 Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 2019;12:973-90. [DOI: 10.1007/s12274-019-2300-4] [Cited by in Crossref: 41] [Cited by in F6Publishing: 17] [Article Influence: 13.7] [Reference Citation Analysis]
169 Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021;6:3634-57. [PMID: 33898869 DOI: 10.1016/j.bioactmat.2021.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
170 Li X, Wu Z, Zhang B, Pan Y, Meng R, Chen H. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry 2019;293:197-203. [DOI: 10.1016/j.foodchem.2019.04.096] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 18.3] [Reference Citation Analysis]
171 Chou YN, Chang Y, Wen TC. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. ACS Appl Mater Interfaces 2015;7:10096-107. [PMID: 25912841 DOI: 10.1021/acsami.5b01756] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
172 Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021;:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Reference Citation Analysis]
173 Suresh U, Murugan K, Panneerselvam C, Aziz AT, Cianfaglione K, Wang L, Maggi F. Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Industrial Crops and Products 2020;158:113033. [DOI: 10.1016/j.indcrop.2020.113033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
174 Kasák P, Mosnáček J, Danko M, Krupa I, Hloušková G, Chorvát D, Koukaki M, Karamanou S, Economou A, Lacík I. A polysulfobetaine hydrogel for immobilization of a glucose-binding protein. RSC Adv 2016;6:83890-900. [DOI: 10.1039/c6ra14423c] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
175 Wu Y, Wang Q, Libera M. PEG-Based Microgels to Modify Biomaterials Surfaces. Macromol Symp 2013;329:35-40. [DOI: 10.1002/masy.201200106] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
176 Altman RM, Richmond GL. Coming to Order: Adsorption and Structure of Nonionic Polymer at the Oil/Water Interface as Influenced by Cationic and Anionic Surfactants. Langmuir 2020;36:1975-84. [DOI: 10.1021/acs.langmuir.9b03375] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
177 Shamsi M, Zahedi P, Ghourchian H, Minaeian S. Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application. International Journal of Biological Macromolecules 2017;99:433-42. [DOI: 10.1016/j.ijbiomac.2017.03.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
178 Lu Y, Li X, Hou T, Yang B. Controlled Release of Tetracycline Hydrochloride Loaded Highly Absorbent Alginate Submicron Fibers from Centrifugally Spinning. Fibers Polym. [DOI: 10.1007/s12221-021-0029-7] [Reference Citation Analysis]
179 Liu W, Bao L, Liu B, Liu R, Li L, Wu Z. Smart soft photonic dressing toward fast drug release and visualized self-monitoring. Journal of Colloid and Interface Science 2020;580:681-9. [DOI: 10.1016/j.jcis.2020.07.069] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
180 Erencia M, López-mesas M, Carrillo-navarrete F. Thermosensitive fibres of lyocell/poly( N -isopropylacrylamide): multiparametric analysis for studying the graft copolymerization: Thermosensitive fibres of lyocell/poly( N -isopropylacrylamide). Polym Int 2013;62:1316-23. [DOI: 10.1002/pi.4423] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
181 Das R, Das D, Ghosh P, Ghosh A, Dhara S, Panda AB, Pal S. Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose 2015;22:313-27. [DOI: 10.1007/s10570-014-0511-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
182 Schwall C, Banerjee I. Micro- and Nanoscale Hydrogel Systems for Drug Delivery and Tissue Engineering. Materials 2009;2:577-612. [DOI: 10.3390/ma2020577] [Cited by in Crossref: 54] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
183 Huang H, Qi X, Chen Y, Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm J 2019;27:990-9. [PMID: 31997906 DOI: 10.1016/j.jsps.2019.08.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 14.7] [Reference Citation Analysis]
184 Azadi A, Hamidi M, Rouini M. Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: Preparation and in vitro/in vivo characterization. International Journal of Biological Macromolecules 2013;62:523-30. [DOI: 10.1016/j.ijbiomac.2013.10.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 7.1] [Reference Citation Analysis]
185 Pulat M, Tan N, Onurdağ FK. Swelling dynamics of IPN hydrogels including acrylamide-acrylic acid-chitosan and evaluation of their potential for controlled release of piperacillin-tazobactam. J Appl Polym Sci 2011;120:441-50. [DOI: 10.1002/app.33169] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
186 Lai W, He Z. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. Journal of Controlled Release 2016;243:269-82. [DOI: 10.1016/j.jconrel.2016.10.013] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 8.7] [Reference Citation Analysis]
187 Telford AM, James M, Meagher L, Neto C. Thermally Cross-Linked PNVP Films As Antifouling Coatings for Biomedical Applications. ACS Appl Mater Interfaces 2010;2:2399-408. [DOI: 10.1021/am100406j] [Cited by in Crossref: 61] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
188 Setua P, Pramanik R, Sarkar S, Ghatak C, Das SK, Sarkar N. Synthesis of Silver Nanoparticle Inside the Nonaqueous Ethylene Glycol Reverse Micelle and a Comparative Study to Show the Effect of the Nanoparticle on the Reverse Micellar Aggregates through Solvation Dynamics and Rotational Relaxation Measurements. J Phys Chem B 2010;114:7557-64. [DOI: 10.1021/jp1008048] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
189 Klinger D, Landfester K. Dual Stimuli-Responsive Poly(2-hydroxyethyl methacrylate- co -methacrylic acid) Microgels Based on Photo-Cleavable Cross-Linkers: pH-Dependent Swelling and Light-Induced Degradation. Macromolecules 2011;44:9758-72. [DOI: 10.1021/ma201706r] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 6.8] [Reference Citation Analysis]
190 Ghoshmitra S, Diercks DR, Mills NC, Hynds DL, Ghosh S. Role of engineered nanocarriers for axon regeneration and guidance: Current status and future trends. Advanced Drug Delivery Reviews 2012;64:110-25. [DOI: 10.1016/j.addr.2011.12.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
191 Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomaterialia 2018;81:20-42. [DOI: 10.1016/j.actbio.2018.09.049] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
192 Lai F, Li H. Transient modeling of the reversible response of the hydrogel to the change in the ionic strength of solutions. Mechanics of Materials 2011;43:287-98. [DOI: 10.1016/j.mechmat.2011.03.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
193 Dai Q, Zhu X, Abbas S, Karangwa E, Zhang X, Xia S, Feng B, Jia C. Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate. J Agric Food Chem 2015;63:4179-89. [PMID: 25844903 DOI: 10.1021/acs.jafc.5b00794] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 6.6] [Reference Citation Analysis]
194 Mozafari N, Farjadian F, Mohammadi Samani S, Azadi S, Azadi A. Simvastatin-chitosan-citicoline conjugates nanoparticles as the co-delivery system in Alzheimer susceptible patients. Int J Biol Macromol 2020;156:1396-407. [PMID: 31760027 DOI: 10.1016/j.ijbiomac.2019.11.180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
195 Kiryukhin MV. Active drug release systems: current status, applications and perspectives. Curr Opin Pharmacol 2014;18:69-75. [PMID: 25265597 DOI: 10.1016/j.coph.2014.09.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
196 Hasan A, Pandey LM. Review: Polymers, Surface-Modified Polymers, and Self Assembled Monolayers as Surface-Modifying Agents for Biomaterials. Polymer-Plastics Technology and Engineering 2015;54:1358-78. [DOI: 10.1080/03602559.2015.1021488] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
197 Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020;13:E335. [PMID: 33114120 DOI: 10.3390/ph13110335] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
198 Kaygusuz H, Erim F. Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. Reactive and Functional Polymers 2013;73:1420-5. [DOI: 10.1016/j.reactfunctpolym.2013.07.014] [Cited by in Crossref: 64] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
199 Fan Q, Chen B, Cao Y. Constitutive model reveals the defect-dependent viscoelasticity of protein hydrogels. Journal of the Mechanics and Physics of Solids 2019;125:653-65. [DOI: 10.1016/j.jmps.2019.01.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
200 Kim K, Park S. Effect of porous silica on sustained release behaviors of pH sensitive Pluronic F127/poly(acrylic acid) hydrogels containing tulobuterol. Colloids and Surfaces B: Biointerfaces 2010;80:240-6. [DOI: 10.1016/j.colsurfb.2010.06.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
201 Patel P, Panchal H. In silico Structure Modeling and Comparative Analysis of Characterization Properties of Protein Polymers Useful for Protein-Based Nano Particulate Drug Delivery Systems (NPDDS): A Bioinformatics Approach. Int J Pept Res Ther 2014;20:103-8. [DOI: 10.1007/s10989-013-9369-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
202 Geng Y, Lin D, Shao L, Yan F, Ju H. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier. PLoS One 2013;8:e65540. [PMID: 23762388 DOI: 10.1371/journal.pone.0065540] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
203 Vishnu Priya M, Sabitha M, Jayakumar R. Colloidal chitin nanogels: A plethora of applications under one shell. Carbohydr Polym 2016;136:609-17. [PMID: 26572393 DOI: 10.1016/j.carbpol.2015.09.054] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
204 Ren J, Zhao L, Zhang L, Wang X, Li Y, Yang W. Electroconductive and free-shapeable nanocomposite hydrogels with an ultrafast self-healing property and high stretchability performance. Soft Matter 2020;16:8422-31. [DOI: 10.1039/d0sm01233e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
205 Pourreza N, Ghomi M. A network composed of gold nanoparticles and a poly(vinyl alcohol) hydrogel for colorimetric determination of ceftriaxone. Mikrochim Acta 2020;187:133. [PMID: 31942648 DOI: 10.1007/s00604-019-4039-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
206 Ghugare SV, Chiessi E, Cerroni B, Telling MTF, Sakai VG, Paradossi G. Biodegradable dextran based microgels: a study on network associated water diffusion and enzymatic degradation. Soft Matter 2012;8:2494. [DOI: 10.1039/c2sm06476f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
207 Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, Parra A, Calpena A, Garcia ML. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm 2015;95:261-70. [PMID: 25681744 DOI: 10.1016/j.ejpb.2015.01.026] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 9.1] [Reference Citation Analysis]
208 Pourtalebi Jahromi L, Moghaddam Panah F, Azadi A, Ashrafi H. A mechanistic investigation on methotrexate-loaded chitosan-based hydrogel nanoparticles intended for CNS drug delivery: Trojan horse effect or not? Int J Biol Macromol 2019;125:785-90. [PMID: 30543880 DOI: 10.1016/j.ijbiomac.2018.12.093] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
209 Belabassi Y, Moreau J, Gheran V, Henoumont C, Robert A, Callewaert M, Rigaux G, Cadiou C, Vander Elst L, Laurent S, Muller RN, Dinischiotu A, Voicu SN, Chuburu F. Synthesis and Characterization of PEGylated and Fluorinated Chitosans: Application to the Synthesis of Targeted Nanoparticles for Drug Delivery. Biomacromolecules 2017;18:2756-66. [PMID: 28777565 DOI: 10.1021/acs.biomac.7b00668] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
210 Aslan C, Çelebi N, Değim İT, Atak A, Özer Ç. Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats. AAPS PharmSciTech 2017;18:1019-30. [DOI: 10.1208/s12249-016-0662-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
211 Vladisavljević GT. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;579:123709. [DOI: 10.1016/j.colsurfa.2019.123709] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 9.3] [Reference Citation Analysis]
212 Jiwpanich S, Ryu JH, Bickerton S, Thayumanavan S. Noncovalent encapsulation stabilities in supramolecular nanoassemblies. J Am Chem Soc 2010;132:10683-5. [PMID: 20681699 DOI: 10.1021/ja105059g] [Cited by in Crossref: 135] [Cited by in F6Publishing: 121] [Article Influence: 11.3] [Reference Citation Analysis]
213 Abd El-rehim HA, Swilem AE, Klingner A, Hegazy EA, Hamed AA. Developing the Potential Ophthalmic Applications of Pilocarpine Entrapped Into Polyvinylpyrrolidone–Poly(acrylic acid) Nanogel Dispersions Prepared By γ Radiation. Biomacromolecules 2013;14:688-98. [DOI: 10.1021/bm301742m] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
214 Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015;115:8564-608. [DOI: 10.1021/cr500131f] [Cited by in Crossref: 288] [Cited by in F6Publishing: 246] [Article Influence: 41.1] [Reference Citation Analysis]
215 Kandemir N, Xia Y, Duan P, Yang W, Chen J. Rheological Characterization of Agarose and Poloxamer 407 (P407) Based Hydrogels. MRS Advances 2018;3:1719-24. [DOI: 10.1557/adv.2018.131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
216 Nigro V, Angelini R, Rosi B, Bertoldo M, Buratti E, Casciardi S, Sennato S, Ruzicka B. Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid). J Colloid Interface Sci 2019;545:210-9. [PMID: 30889412 DOI: 10.1016/j.jcis.2019.03.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
217 Kouser R, Vashist A, Zafaryab M, Rizvi MA, Ahmad S. pH-Responsive Biocompatible Nanocomposite Hydrogels for Therapeutic Drug Delivery. ACS Appl Bio Mater 2018;1:1810-22. [DOI: 10.1021/acsabm.8b00260] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
218 Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci 2015;16:22094-136. [PMID: 26389879 DOI: 10.3390/ijms160922094] [Cited by in Crossref: 132] [Cited by in F6Publishing: 110] [Article Influence: 18.9] [Reference Citation Analysis]
219 Zhang H, Zhao C, Cao H, Wang G, Song L, Niu G, Yang H, Ma J, Zhu S. Hyperbranched poly(amine-ester) based hydrogels for controlled multi-drug release in combination chemotherapy. Biomaterials 2010;31:5445-54. [DOI: 10.1016/j.biomaterials.2010.03.034] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
220 Zhang H, Wang R, Chen Z, Zhong Q. Amylopectin-Sodium Palmitate Complexes as Sustainable Nanohydrogels with Tunable Size and Fractal Dimensions. J Agric Food Chem 2020;68:3796-805. [DOI: 10.1021/acs.jafc.9b06248] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
221 Drude N, Singh S, Winz OH, Möller M, Mottaghy FM, Morgenroth A. Multistage Passive and Active Delivery of Radiolabeled Nanogels for Superior Tumor Penetration Efficiency. Biomacromolecules 2017;18:2489-98. [DOI: 10.1021/acs.biomac.7b00629] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
222 Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013;5:7098-140. [PMID: 23832165 DOI: 10.1039/c3nr02176a] [Cited by in Crossref: 491] [Cited by in F6Publishing: 377] [Article Influence: 61.4] [Reference Citation Analysis]
223 Zheng Y, Lv X, Xu Y, Cheng X, Wang X, Tang R. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo. Int J Biol Macromol 2019;139:277-89. [PMID: 31377289 DOI: 10.1016/j.ijbiomac.2019.07.220] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
224 Laftah WA, Hashim S. The influence of plant natural fibers on swelling behavior of polymer hydrogels. Journal of Composite Materials 2014;48:555-69. [DOI: 10.1177/0021998313476323] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
225 Occhiutto ML, Freitas FR, Maranhao RC, Costa VP. Breakdown of the blood-ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutics 2012;4:252-75. [PMID: 24300231 DOI: 10.3390/pharmaceutics4020252] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
226 Tang J, Liu Y, Zhu B, Su Y, Zhu X. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Applied Surface Science 2017;393:299-308. [DOI: 10.1016/j.apsusc.2016.10.015] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
227 Roy SG, Haldar U, De P. Remarkable Swelling Capability of Amino Acid Based Cross-Linked Polymer Networks in Organic and Aqueous Medium. ACS Appl Mater Interfaces 2014;6:4233-41. [DOI: 10.1021/am405932f] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
228 Li P, Luo Z, Liu P, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release. 2013;168:271-279. [PMID: 23562637 DOI: 10.1016/j.jconrel.2013.03.025] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 9.7] [Reference Citation Analysis]
229 Yang M, Lai SK, Yu T, Wang YY, Happe C, Zhong W, Zhang M, Anonuevo A, Fridley C, Hung A, Fu J, Hanes J. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol. J Control Release 2014;192:202-8. [PMID: 25090196 DOI: 10.1016/j.jconrel.2014.07.045] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
230 Feng Y, Guo J. Biodegradable polydepsipeptides. Int J Mol Sci 2009;10:589-615. [PMID: 19333423 DOI: 10.3390/ijms10020589] [Cited by in Crossref: 76] [Cited by in F6Publishing: 51] [Article Influence: 5.8] [Reference Citation Analysis]
231 Liu J, Li J, Zhang Z, Weng Y, Chen G, Yuan B, Yang K, Ma Y. Encapsulation of Hydrophobic Phthalocyanine with Poly(N-isopropylacrylamide)/Lipid Composite Microspheres for Thermo-Responsive Release and Photodynamic Therapy. Materials (Basel) 2014;7:3481-93. [PMID: 28788630 DOI: 10.3390/ma7053481] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
232 Sun W, Zhang J, Zhang C, Zhou Y, Zhu J, Peng C, Shen M, Shi X. A unique nanogel-based platform for enhanced dual mode tumor MR/CT imaging. J Mater Chem B 2018;6:4835-42. [DOI: 10.1039/c8tb01044g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
233 Cao X, Liu H, Yang X, Tian J, Luo B, Liu M. Halloysite nanotubes@polydopamine reinforced polyacrylamide-gelatin hydrogels with NIR light triggered shape memory and self-healing capability. Composites Science and Technology 2020;191:108071. [DOI: 10.1016/j.compscitech.2020.108071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
234 Song J, Wang H, Yang Y, Xiao Z, Lin H, Jin L, Xue Y, Lin M, Chen F, Zhu M, Zhao Y, Qiu Z, Li Y, Zhang X. Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules. J Mater Sci: Mater Med 2018;29. [DOI: 10.1007/s10856-018-6094-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
235 Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017;24:539-57. [PMID: 28181831 DOI: 10.1080/10717544.2016.1276232] [Cited by in Crossref: 156] [Cited by in F6Publishing: 125] [Article Influence: 31.2] [Reference Citation Analysis]
236 Wang Y, Kao Z, Zhang T, Zhang Y, Qin L, Zhang Z, Zhou B, Wu G, Shen J, Du A. Diffusion of Resveratrol in Silica Alcogels. Molecules 2019;24:E3931. [PMID: 31683567 DOI: 10.3390/molecules24213931] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
237 Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EMB, Mazzola PG. Modified-release topical hydrogels: a ten-year review. J Mater Sci 2019;54:10963-83. [DOI: 10.1007/s10853-019-03557-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
238 Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013;14:1629-54. [PMID: 23344060 DOI: 10.3390/ijms14011629] [Cited by in Crossref: 378] [Cited by in F6Publishing: 278] [Article Influence: 42.0] [Reference Citation Analysis]
239 Ischakov R, Adler-abramovich L, Buzhansky L, Shekhter T, Gazit E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic & Medicinal Chemistry 2013;21:3517-22. [DOI: 10.1016/j.bmc.2013.03.012] [Cited by in Crossref: 87] [Cited by in F6Publishing: 66] [Article Influence: 9.7] [Reference Citation Analysis]
240 Shao P, Wang B, Wang Y, Li J, Zhang Y. The Application of Thermosensitive Nanocarriers in Controlled Drug Delivery. Journal of Nanomaterials 2011;2011:1-12. [DOI: 10.1155/2011/389640] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
241 Chen YC, Yu SH, Tsai GJ, Tang DW, Mi FL, Peng YP. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. J Agric Food Chem 2010;58:6728-34. [PMID: 20476739 DOI: 10.1021/jf1005116] [Cited by in Crossref: 75] [Cited by in F6Publishing: 61] [Article Influence: 6.3] [Reference Citation Analysis]
242 Wang J, Loh K, Wang Z, Yan Y, Zhong Y, Xu Q, Ho P. Fluorescent Nanogel of Arsenic Sulfide Nanoclusters. Angewandte Chemie 2009;121:6400-3. [DOI: 10.1002/ange.200900586] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
243 Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM. Measuring Protein Binding to Individual Hydrogel Nanoparticles with Single-Nanoparticle Surface Plasmon Resonance Imaging Microscopy. J Phys Chem C 2016;120:16843-9. [DOI: 10.1021/acs.jpcc.6b05700] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
244 Nieto-Suárez M, López-Quintela MA, Lazzari M. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 2016;141:175-83. [PMID: 26877010 DOI: 10.1016/j.carbpol.2015.12.064] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
245 Jin D, Lee JH, Seo ML, Jaworski J, Jung JH. Controlled drug delivery from mesoporous silica using a pH-response release system. New J Chem 2012;36:1616. [DOI: 10.1039/c2nj20976d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
246 Ou R, Zhang H, Simon GP, Wang H. Microfiber-polymer hydrogel monolith as forward osmosis draw agent. Journal of Membrane Science 2016;510:426-36. [DOI: 10.1016/j.memsci.2016.03.031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
247 Longo GS, de la Cruz MO, Szleifer I. Equilibrium adsorption of hexahistidine on pH-responsive hydrogel nanofilms. Langmuir 2014;30:15335-44. [PMID: 25434993 DOI: 10.1021/la5040382] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
248 Tian Y, Bian S, Yang W. A redox-labile poly(oligo(ethylene glycol)methacrylate)-based nanogel with tunable thermosensitivity for drug delivery. Polym Chem 2016;7:1913-21. [DOI: 10.1039/c6py00057f] [Cited by in Crossref: 43] [Article Influence: 7.2] [Reference Citation Analysis]
249 Wooster TJ, Acquistapace S, Mettraux C, Donato L, Dekkers BL. Hierarchically structured phase separated biopolymer hydrogels create tailorable delayed burst release during gastrointestinal digestion. J Colloid Interface Sci 2019;553:308-19. [PMID: 31212230 DOI: 10.1016/j.jcis.2019.06.033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
250 Jamshidzadeh A, Heidari R, Mohammadi-samani S, Azarpira N, Najbi A, Jahani P, Abdoli N. A Comparison between the Nephrotoxic Profile of Gentamicin and Gentamicin Nanoparticles in Mice: GENTAMICIN NANOPARTICLES NEPHROTOXICITY. J Biochem Mol Toxicol 2015;29:57-62. [DOI: 10.1002/jbt.21667] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
251 Ashwinkumar N, Maya S, Jayakumar R. Redox-responsive cystamine conjugated chitin–hyaluronic acid composite nanogels. RSC Adv 2014;4:49547-55. [DOI: 10.1039/c4ra06578f] [Cited by in Crossref: 22] [Article Influence: 2.8] [Reference Citation Analysis]
252 Ding C, Li Z. A review of drug release mechanisms from nanocarrier systems. Materials Science and Engineering: C 2017;76:1440-53. [DOI: 10.1016/j.msec.2017.03.130] [Cited by in Crossref: 112] [Cited by in F6Publishing: 88] [Article Influence: 22.4] [Reference Citation Analysis]
253 Liu J, Ying X, Wang H, Li X, Zhang W. BSA imprinted polyethylene glycol grafted calcium alginate hydrogel microspheres. J Appl Polym Sci 2016;133. [DOI: 10.1002/app.43617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
254 Artusio F, Ferri A, Gigante V, Massella D, Mazzarino I, Sangermano M, Barresi A, Pisano R. Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: caffeine as a case study. Drug Dev Ind Pharm 2019;45:1862-70. [PMID: 31549528 DOI: 10.1080/03639045.2019.1672714] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
255 Huang Y, Zhang M, Ruan W. High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A 2014;2:10508-15. [DOI: 10.1039/c4ta01464b] [Cited by in Crossref: 77] [Cited by in F6Publishing: 5] [Article Influence: 9.6] [Reference Citation Analysis]
256 Tan S, Lu Z, Zhao J, Zhang J, Wu M, Wu Q, Yang J. Synthesis and multi-responsiveness of poly(N-vinylcaprolactam-co-acrylic acid) core–shell microgels via miniemulsion polymerization. Polym Chem 2016;7:4106-11. [DOI: 10.1039/c6py00544f] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
257 Farhat W, Venditti R, Mignard N, Taha M, Becquart F, Ayoub A. Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process. International Journal of Biological Macromolecules 2017;104:564-75. [DOI: 10.1016/j.ijbiomac.2017.06.037] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 7.4] [Reference Citation Analysis]
258 Baseer A, Koenneke A, Zapp J, Khan SA, Schneider M. Design and Characterization of Surface‐Crosslinked Gelatin Nanoparticles for the Delivery of Hydrophilic Macromolecular Drugs. Macromol Chem Phys 2019;220:1900260. [DOI: 10.1002/macp.201900260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
259 Jurić S, Jurić M, Siddique MAB, Fathi M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Reviews International. [DOI: 10.1080/87559129.2020.1717524] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
260 Akbari-alavijeh S, Shaddel R, Jafari SM. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids 2020;105:105774. [DOI: 10.1016/j.foodhyd.2020.105774] [Cited by in Crossref: 48] [Cited by in F6Publishing: 21] [Article Influence: 24.0] [Reference Citation Analysis]
261 Mahdavinia GR, Massoumi B, Jalili K, Kiani G. Effect of sodium montmorillonite nanoclay on the water absorbency and cationic dye removal of carrageenan-based nanocomposite superabsorbents. J Polym Res 2012;19. [DOI: 10.1007/s10965-012-9947-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
262 Khan S, Ranjha NM. Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym Bull 2014;71:2133-58. [DOI: 10.1007/s00289-014-1178-2] [Cited by in Crossref: 82] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
263 Vakili MR, Mohammed-saeid W, Aljasser A, Hopwood-raja J, Ahvazi B, Hrynets Y, Betti M, Lavasanifar A. Development of mucoadhesive hydrogels based on polyacrylic acid grafted cellulose nanocrystals for local cisplatin delivery. Carbohydrate Polymers 2021;255:117332. [DOI: 10.1016/j.carbpol.2020.117332] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
264 Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019;11:E71. [PMID: 30736486 DOI: 10.3390/pharmaceutics11020071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
265 Raghupathi K, Kumar V, Sridhar U, Ribbe AE, He H, Thayumanavan S. Role of Oligoethylene Glycol Side Chain Length in Responsive Polymeric Nanoassemblies. Langmuir 2019;35:7929-36. [DOI: 10.1021/acs.langmuir.9b00676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
266 Hezaveh H, Muhamad II. Effect of MgO nanofillers on burst release reduction from hydrogel nanocomposites. J Mater Sci Mater Med 2013;24:1443-53. [PMID: 23515904 DOI: 10.1007/s10856-013-4914-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
267 Rimondino GN, Miceli E, Molina M, Wedepohl S, Thierbach S, Rühl E, Strumia M, Martinelli M, Calderón M. Rational design of dendritic thermoresponsive nanogels that undergo phase transition under endolysosomal conditions. J Mater Chem B 2017;5:866-74. [PMID: 32263855 DOI: 10.1039/c6tb02001a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 3.2] [Reference Citation Analysis]
268 Manek E, Domján A, Madarász J, László K. Interactions in aromatic probe molecule loaded poly(N-isopropylacrylamide) hydrogels and implications for drug delivery. European Polymer Journal 2015;68:657-64. [DOI: 10.1016/j.eurpolymj.2015.03.043] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
269 Guo J, Wang Y, Wang J, Zheng X, Chang D, Wang S, Jiang T. A novel nanogel delivery of poly-α, β-polyasparthydrazide by reverse microemulsion and its redox-responsive release of 5-Fluorouridine. Asian Journal of Pharmaceutical Sciences 2016;11:735-43. [DOI: 10.1016/j.ajps.2016.05.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
270 Sahiner N, Sagbas S, Aktas N, Silan C. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids Surf B Biointerfaces 2016;142:334-43. [PMID: 26970821 DOI: 10.1016/j.colsurfb.2016.03.006] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
271 Razmimanesh F, Amjad-Iranagh S, Modarress H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J Mol Model 2015;21:165. [PMID: 26044358 DOI: 10.1007/s00894-015-2705-2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
272 Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science 2009;34:1261-82. [DOI: 10.1016/j.progpolymsci.2009.08.001] [Cited by in Crossref: 370] [Cited by in F6Publishing: 269] [Article Influence: 28.5] [Reference Citation Analysis]
273 Wang X, Peng Y, Peña J, Xing J. Preparation of ultrasmall nanogels by facile emulsion-free photopolymerization at 532 nm. J Colloid Interface Sci 2021;582:711-9. [PMID: 32911416 DOI: 10.1016/j.jcis.2020.08.056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
274 Davis HE, Leach JK. Designing bioactive delivery systems for tissue regeneration. Ann Biomed Eng 2011;39:1-13. [PMID: 20676773 DOI: 10.1007/s10439-010-0135-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
275 de Araújo DR, da Silva DC, Barbosa RM, Franz-montan M, Cereda CM, Padula C, Santi P, de Paula E. Strategies for delivering local anesthetics to the skin: focus on liposomes, solid lipid nanoparticles, hydrogels and patches. Expert Opinion on Drug Delivery 2013;10:1551-63. [DOI: 10.1517/17425247.2013.828031] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
276 Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL. Injectable hydrogels. J Polym Sci B Polym Phys 2012;50:881-903. [DOI: 10.1002/polb.23081] [Cited by in Crossref: 108] [Cited by in F6Publishing: 73] [Article Influence: 10.8] [Reference Citation Analysis]
277 Aminabhavi TM, Deshmukh AS. Polysaccharide-Based Hydrogels as Biomaterials. In: Kalia S, editor. Polymeric Hydrogels as Smart Biomaterials. Cham: Springer International Publishing; 2016. pp. 45-71. [DOI: 10.1007/978-3-319-25322-0_3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
278 Mahdavinia GR, Etemadi H, Soleymani F. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydrate Polymers 2015;128:112-21. [DOI: 10.1016/j.carbpol.2015.04.022] [Cited by in Crossref: 80] [Cited by in F6Publishing: 63] [Article Influence: 11.4] [Reference Citation Analysis]
279 Moustafa AB, Sobh RA, Rabie AM, Nasr HE, Ayoub MMH. Synthesis and in vitro release of guest drugs-loaded copolymer nanospheres MMA/HEMA via differential microemulsion polymerization. J Appl Polym Sci 2013;129:853-65. [DOI: 10.1002/app.38635] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
280 Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh DA. Targeted nanogels: a versatile platform for drug delivery to tumors. Mol Cancer Ther 2011;10:972-82. [PMID: 21518727 DOI: 10.1158/1535-7163.MCT-10-0729] [Cited by in Crossref: 55] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
281 Pentlavalli S, Chambers P, Sathy BN, O'Doherty M, Chalanqui M, Kelly DJ, Haut-Donahue T, McCarthy HO, Dunne NJ. Simple Radical Polymerization of Poly(Alginate-Graft-N-Isopropylacrylamide) Injectable Thermoresponsive Hydrogel with the Potential for Localized and Sustained Delivery of Stem Cells and Bioactive Molecules. Macromol Biosci 2017;17. [PMID: 28714139 DOI: 10.1002/mabi.201700118] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
282 Piazza RD, Brandt JV, Gobo GG, Tedesco AC, Primo FL, Marques RFC, Junior MJ. mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;555:142-9. [DOI: 10.1016/j.colsurfa.2018.06.076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
283 Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 2013;9:7081-92. [PMID: 23507088 DOI: 10.1016/j.actbio.2013.03.005] [Cited by in Crossref: 246] [Cited by in F6Publishing: 209] [Article Influence: 27.3] [Reference Citation Analysis]
284 Murtezi E, Ciftci M, Yagci Y. Synthesis of clickable hydrogels and linear polymers by type II photoinitiation: Synthesis of clickable hydrogels. Polym Int 2015;64:588-94. [DOI: 10.1002/pi.4786] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
285 Solano-delgado LC, Bravo-sanabria CA, Ardila-suárez C, Ramírez-caballero GE. Stimuli-Responsive Hydrogels Based on Polyglycerol Crosslinked with Citric and Fatty Acids. International Journal of Polymer Science 2018;2018:1-8. [DOI: 10.1155/2018/3267361] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
286 Mahanta AK, Senapati S, Maiti P. Retracted Article: A polyurethane–chitosan brush as an injectable hydrogel for controlled drug delivery and tissue engineering. Polym Chem 2017;8:6233-49. [DOI: 10.1039/c7py01218g] [Cited by in Crossref: 42] [Cited by in F6Publishing: 2] [Article Influence: 8.4] [Reference Citation Analysis]
287 Bourbon AI, Pereira RN, Pastrana LM, Vicente AA, Cerqueira MA. Protein-Based Nanostructures for Food Applications. Gels 2019;5:E9. [PMID: 30813359 DOI: 10.3390/gels5010009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
288 Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts 2016;6:49-67. [PMID: 27340624 DOI: 10.15171/bi.2016.07] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 11.5] [Reference Citation Analysis]
289 Azizi E, Namazi A, Haririan I, Fouladdel S, Khoshayand MR, Shotorbani PY, Nomani A, Gazori T. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector. Int J Nanomedicine 2010;5:455-61. [PMID: 20957167 DOI: 10.2147/ijn.s9551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
290 Li J, Shi Q, Wu X, Li C, Chen X. In vitro and in vivo evaluation of 3D biodegradable thermo/pH sensitive sol-gel reversible hydroxybutyl chitosan hydrogel. Materials Science and Engineering: C 2020;108:110419. [DOI: 10.1016/j.msec.2019.110419] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
291 Hamidi M, Rafiei P, Azadi A, Mohammadi-Samani S. Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J Pharm Sci 2011;100:1702-11. [PMID: 21374608 DOI: 10.1002/jps.22395] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
292 De Cicco F, Porta A, Sansone F, Aquino RP, Del Gaudio P. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. International Journal of Pharmaceutics 2014;473:30-7. [DOI: 10.1016/j.ijpharm.2014.06.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
293 Hung HS, Kao WC, Shen CC, Chang KB, Tang CM, Yang MY, Yang YC, Yeh CA, Li JJ, Hsieh HH. Inflammatory Modulation of Polyethylene Glycol-AuNP for Regulation of the Neural Differentiation Capacity of Mesenchymal Stem Cells. Cells 2021;10:2854. [PMID: 34831077 DOI: 10.3390/cells10112854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
294 Najafiasl M, Osfouri S, Azin R, Zaeri S. Alginate-based electrospun core/shell nanofibers containing dexpanthenol: A good candidate for wound dressing. Journal of Drug Delivery Science and Technology 2020;57:101708. [DOI: 10.1016/j.jddst.2020.101708] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
295 Erthal LCS, Gobbo OL, Ruiz-Hernandez E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater 2021;121:89-102. [PMID: 33227487 DOI: 10.1016/j.actbio.2020.11.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
296 Kang X, Yu Y, Bao Y, Cai W, Cui S. Real time quantification of the chemical cross-link density of a hydrogel by in situ UV-vis spectroscopy. Polym Chem 2015;6:4252-7. [DOI: 10.1039/c5py00513b] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
297 Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C. Tissue Engineering to Improve Immature Testicular Tissue and Cell Transplantation Outcomes: One Step Closer to Fertility Restoration for Prepubertal Boys Exposed to Gonadotoxic Treatments. Int J Mol Sci 2018;19:E286. [PMID: 29346308 DOI: 10.3390/ijms19010286] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
298 Chen Y, Zeng G, Liu W. Robust and stimuli-responsive POSS hybrid PDMAEMA hydrogels for controlled drug release: ROBUST AND STIMULI-RESPONSIVE POSS HYBRID PDMAEMA HYDROGELS. J Biomed Mater Res 2016;104:2345-55. [DOI: 10.1002/jbm.a.35771] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
299 Masterson J, Kluge B, Burdette A, Sr GL. Sustained acoustic medicine; sonophoresis for nonsteroidal anti-inflammatory drug delivery in arthritis. Ther Deliv 2020;11:363-72. [PMID: 32657251 DOI: 10.4155/tde-2020-0009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
300 Song HS, Kwon OS, Kim JH, Conde J, Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 2017;89:187-200. [PMID: 27020065 DOI: 10.1016/j.bios.2016.03.045] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 12.5] [Reference Citation Analysis]
301 Zhang H, Wang W, Ding J, Lu Y, Xu J, Wang A. An upgraded and universal strategy to reinforce chitosan/polyvinylpyrrolidone film by incorporating active silica nanorods derived from natural palygorskite. Int J Biol Macromol 2020;165:1276-85. [PMID: 33035527 DOI: 10.1016/j.ijbiomac.2020.09.241] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
302 Lv S, Liu L, Yang W. Preparation of Soft Hydrogel Nanoparticles with PNIPAm Hair and Characterization of Their Temperature-Induced Aggregation. Langmuir 2010;26:2076-82. [DOI: 10.1021/la9025766] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
303 Gainza G, Chu W, Guy R, Pedraz J, Hernandez R, Delgado-charro B, Igartua M. Development and in vitro evaluation of lipid nanoparticle-based dressings for topical treatment of chronic wounds. International Journal of Pharmaceutics 2015;490:404-11. [DOI: 10.1016/j.ijpharm.2015.05.075] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
304 Wu W, Zhou S. Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Rev 2010;1. [PMID: 22110866 DOI: 10.3402/nano.v1i0.5730] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
305 Ulker Z, Erkey C. An emerging platform for drug delivery: aerogel based systems. J Control Release 2014;177:51-63. [PMID: 24394377 DOI: 10.1016/j.jconrel.2013.12.033] [Cited by in Crossref: 186] [Cited by in F6Publishing: 141] [Article Influence: 23.3] [Reference Citation Analysis]
306 Sharma S, Virk K, Sharma K, Bose SK, Kumar V, Sharma V, Focarete ML, Kalia S. Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. Journal of Molecular Structure 2020;1215:128298. [DOI: 10.1016/j.molstruc.2020.128298] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
307 Kamel R, Abbas HA. Self-assembled carbohydrate hydrogels for prolonged pain management. Pharm Dev Technol 2013;18:990-1004. [PMID: 21950732 DOI: 10.3109/10837450.2011.609992] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
308 Zhang M, Corona PT, Ruocco N, Alvarez D, Malo de Molina P, Mitragotri S, Helgeson ME. Controlling Complex Nanoemulsion Morphology Using Asymmetric Cosurfactants for the Preparation of Polymer Nanocapsules. Langmuir 2018;34:978-90. [DOI: 10.1021/acs.langmuir.7b02843] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
309 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53:12320-12364. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Cited by in Crossref: 460] [Cited by in F6Publishing: 527] [Article Influence: 57.5] [Reference Citation Analysis]
310 Jabeen S, Maswal M, Chat OA, Rather GM, Dar AA. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids and Surfaces B: Biointerfaces 2016;139:211-8. [DOI: 10.1016/j.colsurfb.2015.12.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
311 Chuysinuan P, Chimnoi N, Reuk-ngam N, Khlaychan P, Makarasen A, Wetprasit N, Dechtrirat D, Supaphol P, Techasakul S. Development of gelatin hydrogel pads incorporated with Eupatorium adenophorum essential oil as antibacterial wound dressing. Polym Bull 2019;76:701-24. [DOI: 10.1007/s00289-018-2395-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
312 Daniel-da-Silva AL, Ferreira L, Gil AM, Trindade T. Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels. J Colloid Interface Sci 2011;355:512-7. [PMID: 21251667 DOI: 10.1016/j.jcis.2010.12.071] [Cited by in Crossref: 70] [Cited by in F6Publishing: 49] [Article Influence: 5.8] [Reference Citation Analysis]
313 Lee YK, Kopelman R. Targeted, Multifunctional Hydrogel Nanoparticles for Imaging and Treatment of Cancer. In: Svenson S, Prud'homme RK, editors. Multifunctional Nanoparticles for Drug Delivery Applications. Boston: Springer US; 2012. pp. 225-55. [DOI: 10.1007/978-1-4614-2305-8_11] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
314 Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C Mater Biol Appl 2021;124:112042. [PMID: 33947542 DOI: 10.1016/j.msec.2021.112042] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
315 Wei WH, Dong XM, Liu CG. In vitro investigation of self-assembled nanoparticles based on hyaluronic acid-deoxycholic acid conjugates for controlled release doxorubicin: effect of degree of substitution of deoxycholic acid. Int J Mol Sci 2015;16:7195-209. [PMID: 25837468 DOI: 10.3390/ijms16047195] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
316 Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020;12:E510. [PMID: 32503171 DOI: 10.3390/pharmaceutics12060510] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
317 Spagnul C, Turner LC, Giuntini F, Greenman J, Boyle RW. Synthesis and bactericidal properties of porphyrins immobilized in a polyacrylamide support: influence of metal complexation on photoactivity. J Mater Chem B 2017;5:1834-45. [DOI: 10.1039/c6tb03198f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 3.4] [Reference Citation Analysis]
318 Giulbudagian M, Hönzke S, Bergueiro J, Işık D, Schumacher F, Saeidpour S, Lohan SB, Meinke MC, Teutloff C, Schäfer-korting M, Yealland G, Kleuser B, Hedtrich S, Calderón M. Enhanced topical delivery of dexamethasone by β-cyclodextrin decorated thermoresponsive nanogels. Nanoscale 2018;10:469-79. [DOI: 10.1039/c7nr04480a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 3] [Article Influence: 6.8] [Reference Citation Analysis]
319 Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 2021;174:482-503. [PMID: 34015417 DOI: 10.1016/j.addr.2021.05.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
320 Cardoso MJ, Costa RR, Mano JF. Marine Origin Polysaccharides in Drug Delivery Systems. Mar Drugs 2016;14:E34. [PMID: 26861358 DOI: 10.3390/md14020034] [Cited by in Crossref: 122] [Cited by in F6Publishing: 93] [Article Influence: 20.3] [Reference Citation Analysis]
321 Gulfam M, Kim JE, Lee JM, Ku B, Chung BH, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012;28:8216-8223. [PMID: 22568862 DOI: 10.1021/la300691n] [Cited by in Crossref: 85] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
322 Xu M, Qian J, Liu X, Liu T, Wang H. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery. Materials Science and Engineering: C 2015;50:341-7. [DOI: 10.1016/j.msec.2015.01.098] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
323 Wang Y, Xu H, Ma L. Recent advances of thermally responsive nanogels for cancer therapy. Therapeutic Delivery 2015;6:1157-69. [DOI: 10.4155/tde.15.63] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
324 Kordalivand N, Tondini E, Lau CYJ, Vermonden T, Mastrobattista E, Hennink WE, Ossendorp F, Nostrum CFV. Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. J Control Release 2019;315:114-25. [PMID: 31672626 DOI: 10.1016/j.jconrel.2019.10.048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
325 Chen Q, Tian X, Fan J, Tong H, Ao Q, Wang X. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Molecules 2020;25:E756. [PMID: 32050529 DOI: 10.3390/molecules25030756] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
326 Tian L, Wang X, Qi J, Yao Q, Oderinde O, Yao C, Song W, Shu W, Chen P, Wang Y. Improvement of the surface wettability of silicone hydrogel films by self-assembled hydroxypropyltrimethyl ammonium chloride chitosan mixed colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;558:422-8. [DOI: 10.1016/j.colsurfa.2018.08.073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
327 Maddiboyina B, Desu PK, Vasam M, Challa VT, Surendra AV, Rao RS, Alagarsamy S, Jhawat V. An insight of nanogels as novel drug delivery system with potential hybrid nanogel applications. J Biomater Sci Polym Ed 2021;:1-17. [PMID: 34547214 DOI: 10.1080/09205063.2021.1982643] [Reference Citation Analysis]
328 Qiao L, Wang X, Gao Y, Wei Q, Hu W, Wu L, Li P, Zhu R, Wang Q. Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale 2016;8:17241-9. [DOI: 10.1039/c6nr05943k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 4.2] [Reference Citation Analysis]
329 Ho DK, Nichols BLB, Edgar KJ, Murgia X, Loretz B, Lehr CM. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. Eur J Pharm Biopharm 2019;144:110-24. [PMID: 31493510 DOI: 10.1016/j.ejpb.2019.09.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 12.7] [Reference Citation Analysis]
330 Zhang L, Qin H, Li J, Qiu J, Huang J, Li M, Guan Y. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B 2018;6:7451-61. [DOI: 10.1039/c8tb02113a] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
331 Bashyal S, Shin CY, Hyun SM, Jang SW, Lee S. Preparation, Characterization, and In Vivo Pharmacokinetic Evaluation of Polyvinyl Alcohol and Polyvinyl Pyrrolidone Blended Hydrogels for Transdermal Delivery of Donepezil HCl. Pharmaceutics 2020;12:E270. [PMID: 32188083 DOI: 10.3390/pharmaceutics12030270] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
332 Kamal T, Park S. Synthesis, characterization, and physical properties of a poly(acrylamide-co-4-cyanobiphenyl-4′-oxyundecylacrylate). New J Chem 2015;39:220-3. [DOI: 10.1039/c4nj01685h] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
333 Duffy CV, David L, Crouzier T. Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomaterialia 2015;20:51-9. [DOI: 10.1016/j.actbio.2015.03.024] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
334 Doshi N, Mitragotri S. Designer Biomaterials for Nanomedicine. Adv Funct Mater 2009;19:3843-54. [DOI: 10.1002/adfm.200901538] [Cited by in Crossref: 159] [Cited by in F6Publishing: 105] [Article Influence: 12.2] [Reference Citation Analysis]
335 Feng Y, Chen C, Zhang L, Tian H, Yuan W. Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione. Trans Tianjin Univ 2012;18:315-9. [DOI: 10.1007/s12209-012-1864-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
336 Shahbazi M, Hamidi M. The impact of preparation parameters on typical attributes of chitosan-heparin nanohydrogels: particle size, loading efficiency, and drug release. Drug Development and Industrial Pharmacy 2012;39:1774-82. [DOI: 10.3109/03639045.2012.736518] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
337 Qin Z, Niu R, Tang C, Xia J, Ji F, Dong D, Zhang H, Zhang S, Li J, Yao F. A Dual-Crosslinked Strategy to Construct Physical Hydrogels with High Strength, Toughness, Good Mechanical Recoverability, and Shape-Memory Ability. Macromol Mater Eng 2018;303:1700396. [DOI: 10.1002/mame.201700396] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 7.8] [Reference Citation Analysis]
338 Laftah WA, Hashim S, Ibrahim AN. Polymer Hydrogels: A Review. Polymer-Plastics Technology and Engineering 2011;50:1475-86. [DOI: 10.1080/03602559.2011.593082] [Cited by in Crossref: 236] [Cited by in F6Publishing: 117] [Article Influence: 21.5] [Reference Citation Analysis]
339 Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front Bioeng Biotechnol 2020;8:228. [PMID: 32266248 DOI: 10.3389/fbioe.2020.00228] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 14.5] [Reference Citation Analysis]
340 Mateescu A, Wang Y, Dostalek J, Jonas U. Thin hydrogel films for optical biosensor applications. Membranes (Basel) 2012;2:40-69. [PMID: 24957962 DOI: 10.3390/membranes2010040] [Cited by in Crossref: 96] [Cited by in F6Publishing: 70] [Article Influence: 9.6] [Reference Citation Analysis]
341 Dehousse V, Garbacki N, Colige A, Evrard B. Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 2010;31:1839-49. [PMID: 19948356 DOI: 10.1016/j.biomaterials.2009.11.028] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
342 Whittaker J, Balu R, Choudhury NR, Dutta NK. Biomimetic protein-based elastomeric hydrogels for biomedical applications: Biomimetic protein-based elastomeric hydrogels. Polym Int 2014;63:1545-57. [DOI: 10.1002/pi.4670] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
343 Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomedicine & Pharmacotherapy 2018;103:598-613. [DOI: 10.1016/j.biopha.2018.04.055] [Cited by in Crossref: 137] [Cited by in F6Publishing: 111] [Article Influence: 34.3] [Reference Citation Analysis]
344 Zhang R, Mcclements DJ. Characterization of Gastrointestinal Fate of Nanoemulsions. Nanoemulsions. Elsevier; 2018. pp. 577-612. [DOI: 10.1016/b978-0-12-811838-2.00018-7] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
345 Santos A, de Oliveira FWF, Silva FHA, Maria DA, Ardisson JD, Macêdo WADA, Palmieri HEL, Franco MB. Synthesis and characterization of iron-PVA hydrogel microspheres and their use in the arsenic (V) removal from aqueous solution. Chemical Engineering Journal 2012;210:432-43. [DOI: 10.1016/j.cej.2012.08.078] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
346 Debroy D, Oakey J, Li D. Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication. Journal of Colloid and Interface Science 2018;510:334-44. [DOI: 10.1016/j.jcis.2017.09.081] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
347 Zheng Y, Ouyang WQ, Wei YP, Syed SF, Hao CS, Wang BZ, Shang YH. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine 2016;11:5971-87. [PMID: 27877042 DOI: 10.2147/IJN.S119286] [Cited by in Crossref: 36] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
348 Ghanbarzadeh S, Arami S. Formulation and Evaluation of Piroxicam Transferosomal Gel: An Approach for Penetration Enhancement. Journal of Drug Delivery Science and Technology 2013;23:587-90. [DOI: 10.1016/s1773-2247(13)50089-x] [Cited by in Crossref: 22] [Article Influence: 2.4] [Reference Citation Analysis]
349 Lu S, Neoh KG, Kang ET, Mahendran R, Chiong E. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy. Eur J Pharm Sci 2015;72:57-68. [PMID: 25772330 DOI: 10.1016/j.ejps.2015.03.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
350 Zambrano B, Cañizalez E, Silva P, Briceño A. A bottom-up route for the preparation of novel hierarchical nanostructured hybrid molybdenum oxide–hydrogel composites. New J Chem 2011;35:288-91. [DOI: 10.1039/c0nj00671h] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
351 Jain S, Patel N, Madan P, Lin S. Formulation and rheological evaluation of ethosome-loaded carbopol hydrogel for transdermal application. Drug Development and Industrial Pharmacy 2016;42:1315-24. [DOI: 10.3109/03639045.2015.1132227] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
352 García J, Ruiz-durántez E, Valderruten N. Interpenetrating polymer networks hydrogels of chitosan and poly(2-hydroxyethyl methacrylate) for controlled release of quetiapine. Reactive and Functional Polymers 2017;117:52-9. [DOI: 10.1016/j.reactfunctpolym.2017.06.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
353 Lee WY, Asadujjaman M, Jee J. Long acting injectable formulations: the state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Investig 2019;49:459-76. [DOI: 10.1007/s40005-019-00449-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 7.3] [Reference Citation Analysis]
354 Kumar P, Behl G, Kaur S, Yadav N, Liu B, Chhikara A. Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. J Biomater Sci Polym Ed 2021;32:385-404. [PMID: 33054642 DOI: 10.1080/09205063.2020.1837504] [Reference Citation Analysis]
355 Ansari R, Sadati SM, Mozafari N, Ashrafi H, Azadi A. Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders. European Polymer Journal 2020;128:109607. [DOI: 10.1016/j.eurpolymj.2020.109607] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
356 Bai XY, Yan Y, Wang L, Zhao LG, Wang K. Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv 2016;23:1926-32. [PMID: 25693641 DOI: 10.3109/10717544.2014.996924] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
357 Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization. Pharmaceutical Development and Technology 2018;23:751-60. [DOI: 10.1080/10837450.2017.1295067] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 6.4] [Reference Citation Analysis]
358 Mamidi N, Delgadillo RMV. Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces. Colloids Surf B Biointerfaces 2021;204:111819. [PMID: 33964528 DOI: 10.1016/j.colsurfb.2021.111819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
359 Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond) 2012;7:1577-90. [PMID: 23148540 DOI: 10.2217/nnm.12.128] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 8.4] [Reference Citation Analysis]
360 Munim SA, Raza ZA. Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J Porous Mater 2019;26:881-901. [DOI: 10.1007/s10934-018-0687-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
361 Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC. Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release 2011;152:57-66. [PMID: 21392550 DOI: 10.1016/j.jconrel.2011.02.029] [Cited by in Crossref: 172] [Cited by in F6Publishing: 156] [Article Influence: 15.6] [Reference Citation Analysis]
362 Perera MM, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym Chem 2020;11:1410-23. [DOI: 10.1039/c9py01694e] [Cited by in Crossref: 34] [Article Influence: 17.0] [Reference Citation Analysis]
363 Lai WF, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J Control Release 2009;134:158-68. [PMID: 19100795 DOI: 10.1016/j.jconrel.2008.11.021] [Cited by in Crossref: 167] [Cited by in F6Publishing: 144] [Article Influence: 11.9] [Reference Citation Analysis]
364 Męczyńska-Wielgosz S, Piotrowska A, Majkowska-Pilip A, Bilewicz A, Kruszewski M. Effect of Surface Functionalization on the Cellular Uptake and Toxicity of Nanozeolite A. Nanoscale Res Lett 2016;11:123. [PMID: 26935303 DOI: 10.1186/s11671-016-1334-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
365 Parisi OI, Morelli C, Scrivano L, Sinicropi MS, Cesario MG, Candamano S, Puoci F, Sisci D. Controlled release of sunitinib in targeted cancer therapy: smart magnetically responsive hydrogels as restricted access materials. RSC Adv 2015;5:65308-15. [DOI: 10.1039/c5ra12229e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
366 Naidu PSR, Gavriel N, Gray CGG, Bartlett CA, Toomey LM, Kretzmann JA, Patalwala D, Mcgonigle T, Denham E, Hee C, Ho D, Taylor NL, Norret M, Smith NM, Dunlop SA, Iyer KS, Fitzgerald M. Elucidating the Inability of Functionalized Nanoparticles to Cross the Blood–Brain Barrier and Target Specific Cells in Vivo. ACS Appl Mater Interfaces 2019;11:22085-95. [DOI: 10.1021/acsami.9b01356] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
367 Zhang X, Li C, Hu Y, Liu R, He L, Fang S. A novel temperature and pH dual-responsive hybrid hydrogel with polyhedral oligomeric silsesquioxane as crosslinker: synthesis, characterization and drug release properties. Polym Int 2014;63:2030-41. [DOI: 10.1002/pi.4757] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
368 Nicu R, Ciolacu F, Ciolacu DE. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics 2021;13:1125. [PMID: 34452086 DOI: 10.3390/pharmaceutics13081125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
369 Caballero Aguilar LM, Silva SM, Moulton SE. Growth factor delivery: Defining the next generation platforms for tissue engineering. Journal of Controlled Release 2019;306:40-58. [DOI: 10.1016/j.jconrel.2019.05.028] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 20.0] [Reference Citation Analysis]
370 Aznar E, Sancenón F, Marcos MD, Martínez-máñez R, Stroeve P, Cano J, Amorós P. Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir 2012;28:2986-96. [DOI: 10.1021/la204438j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
371 Azadi A, Hamidi M, Khoshayand M, Amini M, Rouini M. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery. Carbohydrate Polymers 2012;90:462-71. [DOI: 10.1016/j.carbpol.2012.05.066] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
372 Sinno N, Taylor E, Milosevic M, Jaffray DA, Coolens C. Incorporating cross-voxel exchange into the analysis of dynamic contrast-enhanced imaging data: theory, simulations and experimental results. Phys Med Biol 2021;66. [PMID: 34650009 DOI: 10.1088/1361-6560/ac2205] [Reference Citation Analysis]
373 Xu Y, Li Y, Cao X, Chen Q, An Z. Versatile RAFT dispersion polymerization in cononsolvents for the synthesis of thermoresponsive nanogels with controlled composition, functionality and architecture. Polym Chem 2014;5:6244-55. [DOI: 10.1039/c4py00867g] [Cited by in Crossref: 39] [Article Influence: 4.9] [Reference Citation Analysis]
374 Alamdarnejad G, Sharif A, Taranejoo S, Janmaleki M, Kalaee MR, Dadgar M, Khakpour M. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. J Mater Sci Mater Med 2013;24:1939-49. [PMID: 23665921 DOI: 10.1007/s10856-013-4947-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
375 Namazi H, Belali S. Starch-g-lactic acid/montmorillonite nanocomposite: Synthesis, characterization and controlled drug release study: Starch-g-lactic acid/montmorillonite nanocomposite. Starch - Stärke 2016;68:177-87. [DOI: 10.1002/star.201400226] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
376 Park EJ, Richez AP, Birkin NA, Lee H, Arrowsmith N, Thurecht KJ, Howdle SM. New vinyl ester copolymers as stabilisers for dispersion polymerisation in scCO2. Polymer 2011;52:5403-9. [DOI: 10.1016/j.polymer.2011.09.038] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
377 Walker GW, Kookana RS, Smith NE, Kah M, Doolette CL, Reeves PT, Lovell W, Anderson DJ, Turney TW, Navarro DA. Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation. J Agric Food Chem 2018;66:6480-6. [PMID: 28812885 DOI: 10.1021/acs.jafc.7b02373] [Cited by in Crossref: 55] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
378 Marzban A, Akbarzadeh A, Ardestani MS, Ardestani F, Akbari M. Synthesis of nano-niosomal deferoxamine and evaluation of its functional characteristics to apply as an iron-chelating agent. Can J Chem Eng 2018;96:107-12. [DOI: 10.1002/cjce.23048] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
379 Das S, Subuddhi U. Cyclodextrin Mediated Controlled Release of Naproxen from pH-Sensitive Chitosan/Poly(Vinyl Alcohol) Hydrogels for Colon Targeted Delivery. Ind Eng Chem Res 2013;52:14192-200. [DOI: 10.1021/ie402121f] [Cited by in Crossref: 59] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]
380 Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech 2019;20. [DOI: 10.1208/s12249-019-1470-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
381 Li C, Mu C, Lin W, Ngai T. Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels. ACS Appl Mater Interfaces 2015;7:18732-41. [PMID: 26202134 DOI: 10.1021/acsami.5b05287] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 9.6] [Reference Citation Analysis]
382 Hildebrandt H, Paloheimo O, Mäntylä E, Willman S, Hakanen S, Albrecht K, Groll J, Möller M, Vihinen-Ranta M. Reactive Self-Assembly and Specific Cellular Delivery of NCO-sP(EO-stat-PO)-Derived Nanogels. Macromol Biosci 2018;18:e1800094. [PMID: 29974620 DOI: 10.1002/mabi.201800094] [Reference Citation Analysis]
383 Hileuskaya KS, Kraskouski AN, Ladutska AI, Novik GI, Agabekov VE. PREPARATION AND PROPERTIES OF KANAMYCIN-CONTAINING HYDROGELS BASED ON PECTIN-Ag NANOCOMPOSITE. Dokl Akad nauk 2018;62:432-8. [DOI: 10.29235/1561-8323-2018-62-4-432-438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
384 Chen Y, Chen Y, Nan J, Wang C, Chu F. Hollow poly(N-isopropylacrylamide)-co-poly(acrylic acid) microgels with high loading capacity for drugs. J Appl Polym Sci 2011. [DOI: 10.1002/app.35515] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
385 Kandile NG, Mohamed HM. New chitosan derivatives inspired on heterocyclic anhydride of potential bioactive for medical applications. Int J Biol Macromol 2021;182:1543-53. [PMID: 34022310 DOI: 10.1016/j.ijbiomac.2021.05.076] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
386 Jafari SM, McClements DJ. Nanotechnology Approaches for Increasing Nutrient Bioavailability. Adv Food Nutr Res 2017;81:1-30. [PMID: 28317602 DOI: 10.1016/bs.afnr.2016.12.008] [Cited by in Crossref: 144] [Cited by in F6Publishing: 71] [Article Influence: 28.8] [Reference Citation Analysis]
387 Bilalis P, Varlas S, Kiafa A, Velentzas A, Stravopodis D, Iatrou H. Preparation of hybrid triple-stimuli responsive nanogels based on poly(L-histidine). J Polym Sci Part A: Polym Chem 2016;54:1278-88. [DOI: 10.1002/pola.27971] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
388 Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem Int Ed Engl 2014;53:12436-40. [PMID: 25044856 DOI: 10.1002/anie.201403846] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
389 Xie Z, Shen J, Sun H, Li J, Wang X. Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed Pharmacother 2021;137:111333. [PMID: 33571834 DOI: 10.1016/j.biopha.2021.111333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
390 Banerjee S, Sahoo AK, Chattopadhyay A, Ghosh SS. Hydrogel nanocarrier encapsulated recombinant IκBα as a novel anticancer protein therapeutics. RSC Adv 2013;3:14123. [DOI: 10.1039/c3ra23181j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
391 Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 2021;11:1634-54. [PMID: 33694082 DOI: 10.1007/s13346-021-00954-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
392 Sun W, Thies S, Zhang J, Peng C, Tang G, Shen M, Pich A, Shi X. Gadolinium-Loaded Poly(N-vinylcaprolactam) Nanogels: Synthesis, Characterization, and Application for Enhanced Tumor MR Imaging. ACS Appl Mater Interfaces 2017;9:3411-8. [PMID: 28067034 DOI: 10.1021/acsami.6b14219] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
393 Rafiee A, Alimohammadian MH, Gazori T, Riazi-rad F, Fatemi SMR, Parizadeh A, Haririan I, Havaskary M. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pacific Journal of Tropical Disease 2014;4:372-7. [DOI: 10.1016/s2222-1808(14)60590-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 1] [Article Influence: 4.1] [Reference Citation Analysis]
394 Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 2016;39:1181-92. [PMID: 27352214 DOI: 10.1007/s12272-016-0782-0] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 6.7] [Reference Citation Analysis]
395 Pereira RF, Almeida HA, Bártolo PJ. Biofabrication of Hydrogel Constructs. In: Coelho J, editor. Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Dordrecht: Springer Netherlands; 2013. pp. 225-54. [DOI: 10.1007/978-94-007-6010-3_8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
396 Badranova GU, Gotovtsev PM, Zubavichus YV, Staroselskiy IA, Vasiliev AL, Trunkin IN, Fedorov MV. Biopolymer-based hydrogels for encapsulation of photocatalytic TiO 2 nanoparticles prepared by the freezing/thawing method. Journal of Molecular Liquids 2016;223:16-20. [DOI: 10.1016/j.molliq.2016.07.135] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
397 Sun X, Zebibula A, Dong X, Li G, Zhang G, Zhang D, Qian J, He S. Targeted and imaging-guided in vivo photodynamic therapy for tumors using dual-function, aggregation-induced emission nanoparticles. Nano Res 2018;11:2756-70. [DOI: 10.1007/s12274-017-1906-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
398 Zoppe JO, Venditti RA, Rojas OJ. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science 2012;369:202-9. [DOI: 10.1016/j.jcis.2011.12.011] [Cited by in Crossref: 243] [Cited by in F6Publishing: 196] [Article Influence: 24.3] [Reference Citation Analysis]
399 Barron V, Killion JA, Pilkington L, Burke G, Geever LM, Lyons JG, Mccullagh E, Higginbotham CL. Development of chemically cross-linked hydrophilic–hydrophobic hydrogels for drug delivery applications. European Polymer Journal 2016;75:25-35. [DOI: 10.1016/j.eurpolymj.2015.10.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
400 Roberts D, Rochas C, Saiani A, Miller AF. Effect of Peptide and Guest Charge on the Structural, Mechanical and Release Properties of β-Sheet Forming Peptides. Langmuir 2012;28:16196-206. [DOI: 10.1021/la303328p] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 5.3] [Reference Citation Analysis]
401 Zhu K, Chen X, Yu D, He Y, Song G. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β -glucan and its bio-release property for vitamin B 12 delivery: β -Glucan hydrogel and vitamin B 12 delivery. J Sci Food Agric 2018;98:2617-23. [DOI: 10.1002/jsfa.8754] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
402 Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 2011;63:1257-66. [PMID: 21745509 DOI: 10.1016/j.addr.2011.06.009] [Cited by in Crossref: 360] [Cited by in F6Publishing: 292] [Article Influence: 32.7] [Reference Citation Analysis]
403 Kurczewska J, Lewandowski D, Olejnik A, Schroeder G, Nowak I. Double barrier as an effective method for slower delivery rate of ibuprofen. International Journal of Pharmaceutics 2014;472:248-50. [DOI: 10.1016/j.ijpharm.2014.06.037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
404 Liu H, Zhao Y, Zou Y, Huang W, Zhu L, Liu F, Wang D, Guo K, Hu J, Chen J, Ye L, Li X, Lin L. Heparin-poloxamer hydrogel-encapsulated rhFGF21 enhances wound healing in diabetic mice. FASEB J 2019;33:9858-70. [PMID: 31166803 DOI: 10.1096/fj.201802600RR] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
405 Wu X, Xu A. Carbonaceous hydrogels and aerogels for supercapacitors. J Mater Chem A 2014;2:4852-64. [DOI: 10.1039/c3ta13929h] [Cited by in Crossref: 108] [Cited by in F6Publishing: 1] [Article Influence: 13.5] [Reference Citation Analysis]
406 Zeineldin R, Syoufjy J. Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy. Methods Mol Biol 2017;1530:3-12. [PMID: 28150193 DOI: 10.1007/978-1-4939-6646-2_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
407 Lin L, Xu W, Liang H, He L, Liu S, Li Y, Li B, Chen Y. Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids and Surfaces B: Biointerfaces 2015;126:459-66. [DOI: 10.1016/j.colsurfb.2014.12.051] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
408 Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: The application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl 2016;60:560-8. [PMID: 26706564 DOI: 10.1016/j.msec.2015.11.041] [Cited by in Crossref: 143] [Cited by in F6Publishing: 114] [Article Influence: 20.4] [Reference Citation Analysis]
409 Oh JK. Engineering of nanometer-sized cross-linked hydrogels for biomedical applications. Can J Chem 2010;88:173-84. [DOI: 10.1139/v09-158] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
410 Bellich B, Borgogna M, Cok M, Cesàro A. Release Properties of Hydrogels: Water Evaporation from Alginate Gel Beads. Food Biophysics 2011;6:259-66. [DOI: 10.1007/s11483-011-9206-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
411 Solomon MR, O'Connor NA, Paik DC, Turro NJ. Nitroalcohol Induced Hydrogel Formation in Amine-Functionalized Polymers. J Appl Polym Sci 2010;117:1193-6. [PMID: 24833806 DOI: 10.1002/app.31944] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
412 Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev 2017;110-111:112-26. [PMID: 27370248 DOI: 10.1016/j.addr.2016.06.015] [Cited by in Crossref: 197] [Cited by in F6Publishing: 182] [Article Influence: 32.8] [Reference Citation Analysis]
413 Bian S, Zheng J, Yang W. Dual stimuli-responsive microgels based on photolabile crosslinker: Temperature sensitivity and light-induced degradation. J Polym Sci Part A: Polym Chem 2014;52:1676-85. [DOI: 10.1002/pola.27165] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
414 Torres-garcía R, Flores-estrada J, Cauich-rodríguez JV, Flores-reyes M, Flores-merino MV. Design of a polyacrylamide and gelatin hydrogel as a synthetic extracellular matrix. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1825082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
415 Rodik RV, Klymchenko AS, Mely Y, Kalchenko VI. Calixarenes and related macrocycles as gene delivery vehicles. J Incl Phenom Macrocycl Chem 2014;80:189-200. [DOI: 10.1007/s10847-014-0412-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
416 Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 2011;6:3281-93. [PMID: 22228996 DOI: 10.2147/IJN.S27285] [Cited by in Crossref: 16] [Cited by in F6Publishing: 35] [Article Influence: 1.5] [Reference Citation Analysis]
417 Vu T, Xue Y, Vuong T, Erbe M, Bennet C, Palazzo B, Popielski L, Rodriguez N, Hu X. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials. Int J Mol Sci 2016;17:E1497. [PMID: 27618011 DOI: 10.3390/ijms17091497] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
418 Yuan Z, Liu H, Wu H, Wang Y, Liu Q, Wang Y, Lincoln SF, Guo X, Wang J. Cyclodextrin Hydrogels: Rapid Removal of Aromatic Micropollutants and Adsorption Mechanisms. J Chem Eng Data 2020;65:678-89. [DOI: 10.1021/acs.jced.9b00913] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
419 Fu J, Zhao Y, Zhu Y, Chen F. Organics Modified Mesoporous Silica for Controlled Drug Delivery Systems. In: Tiwari A, Tiwari A, editors. Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering. Hoboken: John Wiley & Sons, Inc.; 2013. pp. 237-68. [DOI: 10.1002/9781118644591.ch7] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
420 Yang G, Liu Y, Jin S, Zhao C. Development of Core‐Shell Nanoparticle Drug Delivery Systems Based on Biomimetic Mineralization. ChemBioChem 2020;21:2871-9. [DOI: 10.1002/cbic.202000105] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
421 Ke Y, Zhou C, Zhou Y, Wang S, Chan SH, Long Y. Emerging Thermal-Responsive Materials and Integrated Techniques Targeting the Energy-Efficient Smart Window Application. Adv Funct Mater 2018;28:1800113. [DOI: 10.1002/adfm.201800113] [Cited by in Crossref: 141] [Cited by in F6Publishing: 48] [Article Influence: 35.3] [Reference Citation Analysis]
422 An Z, Qiu Q, Liu G. Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chem Commun 2011;47:12424. [DOI: 10.1039/c1cc13955j] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 5.5] [Reference Citation Analysis]
423 Wen Y, Oh JK. Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Adv 2014;4:229-37. [DOI: 10.1039/c3ra46072j] [Cited by in Crossref: 29] [Article Influence: 3.6] [Reference Citation Analysis]
424 Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 2015;65:252-67. [DOI: 10.1016/j.eurpolymj.2014.11.024] [Cited by in Crossref: 1173] [Cited by in F6Publishing: 605] [Article Influence: 167.6] [Reference Citation Analysis]
425 Moogooee M, Ramezanzadeh H, Jasoori S, Omidi Y, Davaran S. Synthesis and in vitro Studies of Cross-Linked Hydrogel Nanoparticles Containing Amoxicillin. Journal of Pharmaceutical Sciences 2011;100:1057-66. [DOI: 10.1002/jps.22351] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
426 Vrignaud S, Benoit J, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011;32:8593-604. [DOI: 10.1016/j.biomaterials.2011.07.057] [Cited by in Crossref: 177] [Cited by in F6Publishing: 147] [Article Influence: 16.1] [Reference Citation Analysis]
427 Abd El-rehim HA, Hegazy EA, Hamed AA, Swilem AE. Controlling the size and swellability of stimuli-responsive polyvinylpyrrolidone–poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization. European Polymer Journal 2013;49:601-12. [DOI: 10.1016/j.eurpolymj.2012.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
428 Wang Y, Chien Y, Wu C, Liu D. Magnolol-Loaded Core–Shell Hydrogel Nanoparticles: Drug Release, Intracellular Uptake, and Controlled Cytotoxicity for the Inhibition of Migration of Vascular Smooth Muscle Cells. Mol Pharmaceutics 2011;8:2339-49. [DOI: 10.1021/mp200257y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
429 Zhang J, Lin X, Liu J, Zhao J, Dong H, Deng L, Liu J, Dong A. Sequential thermo-induced self-gelation and acid-triggered self-release process of drug-conjugated nanoparticles: a strategy for the sustained and controlled drug delivery to tumors. J Mater Chem B 2013;1:4667. [DOI: 10.1039/c3tb20597e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
430 Groll J, Singh S, Albrecht K, Moeller M. Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. J Polym Sci A Polym Chem 2009;47:5543-9. [DOI: 10.1002/pola.23595] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 4.8] [Reference Citation Analysis]
431 Jain A, Sahu A, Jain A, Gulbake A. Prodrugs and Bioconjugate Hydrogels: A Valuable Strategy for the Prolonged-Delivery of Drugs. In: Spizzirri U, Cirillo G, editors. Functional Hydrogels in Drug Delivery. Taylor & Francis Group: CRC Press; 2017. pp. 88-112. [DOI: 10.1201/9781315152271-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
432 Abdelsamie SM, Kamel AO, Sammour OA, Ibrahim SM. Terbinafine hydrochloride nanovesicular gel: In vitro characterization, ex vivo permeation and clinical investigation. European Journal of Pharmaceutical Sciences 2016;88:91-100. [DOI: 10.1016/j.ejps.2016.04.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
433 Ge S, Liu Q, Li M, Liu J, Lu H, Li F, Zhang S, Sun Q, Xiong L. Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocolloids 2018;75:1-12. [DOI: 10.1016/j.foodhyd.2017.09.023] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 9.8] [Reference Citation Analysis]
434 Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA. A protocol for rheological characterization of hydrogels for tissue engineering strategies: A Protocol for Rheological Characterization of Hydrogels. J Biomed Mater Res 2014;102:1063-73. [DOI: 10.1002/jbm.b.33088] [Cited by in Crossref: 163] [Cited by in F6Publishing: 142] [Article Influence: 18.1] [Reference Citation Analysis]
435 Dos Santos KC, da Silva MF, Pereira-Filho ER, Fernandes JB, Polikarpov I, Forim MR. Polymeric nanoparticles loaded with the 3,5,3'-triiodothyroacetic acid (Triac), a thyroid hormone: factorial design, characterization, and release kinetics. Nanotechnol Sci Appl 2012;5:37-48. [PMID: 24198495 DOI: 10.2147/NSA.S32837] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
436 Samonina-Kosicka J, Weitzel DH, Hofmann CL, Hendargo H, Hanna G, Dewhirst MW, Palmer GM, Fraser CL. Luminescent difluoroboron β-diketonate PEG-PLA oxygen nanosensors for tumor imaging. Macromol Rapid Commun 2015;36:694-9. [PMID: 25753154 DOI: 10.1002/marc.201500022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 2.9] [Reference Citation Analysis]
437 Suner SS, Sahiner M, Sengel SB, Rees DJ, Reed WF, Sahiner N. Responsive biopolymer-based microgels/nanogels for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1. Elsevier; 2018. pp. 453-500. [DOI: 10.1016/b978-0-08-101997-9.00021-7] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
438 Sheth T, Seshadri S, Prileszky T, Helgeson ME. Multiple nanoemulsions. Nat Rev Mater 2020;5:214-28. [DOI: 10.1038/s41578-019-0161-9] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
439 Hiranphinyophat S, Asaumi Y, Fujii S, Iwasaki Y. Surface Grafting Polyphosphoesters on Cellulose Nanocrystals To Improve the Emulsification Efficacy. Langmuir 2019;35:11443-51. [PMID: 31389701 DOI: 10.1021/acs.langmuir.9b01584] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
440 Chin SL, Xiao R, Cooper BG, Varongchayakul N, Buch K, Kim D, Grinstaff MW. Macromolecular photoinitiators enhance the hydrophilicity and lubricity of natural rubber: ARTICLE. J Appl Polym Sci 2016;133. [DOI: 10.1002/app.43930] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
441 Bhunia T, Giri A, Nasim T, Chattopadhyay D, Bandyopadhyay A. Physical, mechanical, and transdermal diltiazem release analysis of nanosilica tailored various poly(vinyl alcohol) membranes. J Appl Polym Sci 2013;130:2076-86. [DOI: 10.1002/app.39404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
442 Zhao X, Cui H, Chen W, Wang Y, Cui B, Sun C, Meng Z, Liu G. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 2014;9:e98919. [PMID: 24911360 DOI: 10.1371/journal.pone.0098919] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
443 Liu W, Zhang W, Yu X, Zhang G, Su Z. Synthesis and biomedical applications of fluorescent nanogels. Polym Chem 2016;7:5749-62. [DOI: 10.1039/c6py01021k] [Cited by in Crossref: 39] [Article Influence: 6.5] [Reference Citation Analysis]
444 Zhang Q, Re Ko N, Kwon Oh J. Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 2012;48:7542. [DOI: 10.1039/c2cc32408c] [Cited by in Crossref: 293] [Cited by in F6Publishing: 251] [Article Influence: 29.3] [Reference Citation Analysis]
445 Song Y, Wang M, Li S, Jin H, Cai X, Du D, Li H, Chen C, Lin Y. Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids. Small 2018;14:1803544. [DOI: 10.1002/smll.201803544] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
446 Dong X, Liu C. Preparation and Characterization of Self-Assembled Nanoparticles of Hyaluronic Acid-Deoxycholic Acid Conjugates. Journal of Nanomaterials 2010;2010:1-9. [DOI: 10.1155/2010/906936] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
447 Das D, Pal S. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 2015;5:25014-50. [DOI: 10.1039/c4ra16103c] [Cited by in Crossref: 85] [Article Influence: 12.1] [Reference Citation Analysis]
448 Besse HC, Chen Y, Scheeren HW, Metselaar JM, Lammers T, Moonen CTW, Hennink WE, Deckers R. A Doxorubicin-Glucuronide Prodrug Released from Nanogels Activated by High-Intensity Focused Ultrasound Liberated β-Glucuronidase. Pharmaceutics 2020;12:E536. [PMID: 32532061 DOI: 10.3390/pharmaceutics12060536] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
449 Hong SH, Patel T, Ip S, Garg S, Oh JK. Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. Langmuir 2018;34:3316-25. [PMID: 29485889 DOI: 10.1021/acs.langmuir.8b00338] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
450 Omar SM, Maziad NA, El-Tantawy NM. Design of Isoniazid Smart Nanogel by Gamma Radiation-Induced Template Polymerization for Biomedical Application. Pharm Res 2017;34:1872-85. [PMID: 28620888 DOI: 10.1007/s11095-017-2196-1] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
451 Zhao J. Chitosan-Based Gels: Drug Delivery Systems. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis; 2015. pp. 1546-77. [DOI: 10.1081/e-ebpp-120052285] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
452 Ahmed ME, Mohamed HM, Mohamed MI, Kandile NG. Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: Synthesis and characterization. International Journal of Biological Macromolecules 2020;162:1388-97. [DOI: 10.1016/j.ijbiomac.2020.08.048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
453 Sharma RK, Yassin AE. Nanostructure-based platforms-current prospective in ophthalmic drug delivery. Indian J Ophthalmol 2014;62:768-72. [PMID: 25116766 DOI: 10.4103/0301-4738.138301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
454 Wang Y, Wang L, Yan M, Dong S, Hao J. Near-Infrared-Light-Responsive Magnetic DNA Microgels for Photon- and Magneto-Manipulated Cancer Therapy. ACS Appl Mater Interfaces 2017;9:28185-94. [PMID: 28766338 DOI: 10.1021/acsami.7b05502] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 5.4] [Reference Citation Analysis]
455 Taktak FF, Bütün V. Synthesis and physical gels of pH- and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer 2010;51:3618-26. [DOI: 10.1016/j.polymer.2010.06.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
456 Li H, Zhou Z, Zhang F, Guo Y, Yang X, Jiang H, Tan F, Oupicky D, Sun M. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Res 2018;11:4627-42. [DOI: 10.1007/s12274-018-2044-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
457 Liu W, Pan H, Zhang C, Zhao L, Zhao R, Zhu Y, Pan W. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs. Int J Mol Sci 2016;17:E1171. [PMID: 27455239 DOI: 10.3390/ijms17071171] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
458 Su S, Wang H, Liu X, Wu Y, Nie G. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 2013;34:3523-33. [DOI: 10.1016/j.biomaterials.2013.01.083] [Cited by in Crossref: 94] [Cited by in F6Publishing: 91] [Article Influence: 10.4] [Reference Citation Analysis]
459 Bucatariu S, Constantin M, Ascenzi P, Fundueanu G. Poly(lactide- co -glycolide)/cyclodextrin (polyethyleneimine) microspheres for controlled delivery of dexamethasone. Reactive and Functional Polymers 2016;107:46-53. [DOI: 10.1016/j.reactfunctpolym.2016.08.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
460 Mallakpour S, Zadehnazari A. Thermoplastic Vinyl Polymers: From Macro to Nanostructure. Polymer-Plastics Technology and Engineering 2013;52:1423-66. [DOI: 10.1080/03602559.2013.828233] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
461 Karimi A, Wan Daud WMA. Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: A review. Polym Compos 2015;38:1086-102. [DOI: 10.1002/pc.23671] [Cited by in Crossref: 31] [Cited by in F6Publishing: 12] [Article Influence: 4.4] [Reference Citation Analysis]
462 Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Scalable imprinting of shape-specific polymeric nanocarriers using a release layer of switchable water solubility. ACS Nano 2012;6:2524-31. [PMID: 22385068 DOI: 10.1021/nn2049152] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
463 Seyfoori A, Koshkaki M, Majidzadeh-a K. Nanohybrid Stimuli-Responsive Microgels: A New Approach in Cancer Therapy. Nanoarchitectonics for Smart Delivery and Drug Targeting. Elsevier; 2016. pp. 715-42. [DOI: 10.1016/b978-0-323-47347-7.00026-4] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
464 Hu L, Sarker AK, Islam MR, Li X, Lu Z, Serpe MJ. Poly ( N -isopropylacrylamide) microgel-based assemblies: Highlight. J Polym Sci Part A: Polym Chem 2013;51:3004-20. [DOI: 10.1002/pola.26702] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
465 Farhat W, Chatelain F, Marret A, Faivre L, Arakelian L, Cattan P, Fuchs A. Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials 2021;267:120465. [PMID: 33129189 DOI: 10.1016/j.biomaterials.2020.120465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
466 Stucchi S, Colombo D, Guizzardi R, D'Aloia A, Collini M, Bouzin M, Costa B, Ceriani M, Natalello A, Pallavicini P, Cipolla L. Squarate Cross-Linked Gelatin Hydrogels as Three-Dimensional Scaffolds for Biomedical Applications. Langmuir 2021;37:14050-8. [PMID: 34806889 DOI: 10.1021/acs.langmuir.1c02080] [Reference Citation Analysis]
467 Zayed M, Tourne-Peteilh C, Ramonda M, Rethore G, Weiss P, Martinez J, Subra G, Mehdi A, Devoisselle JM, Legrand P. Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. Int J Pharm 2017;532:790-801. [PMID: 28755992 DOI: 10.1016/j.ijpharm.2017.07.074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
468 Kang TH, Lee S, Kwon JA, Song J, Choi I. Photothermally Enhanced Molecular Delivery and Cellular Positioning on Patterned Plasmonic Interfaces. ACS Appl Mater Interfaces 2019;11:36420-7. [PMID: 31509376 DOI: 10.1021/acsami.9b13576] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
469 Rahmati M, Ehterami A, Saberani R, Abbaszadeh-Goudarzi G, Rezaei Kolarijani N, Khastar H, Garmabi B, Salehi M. Improving sciatic nerve regeneration by using alginate/chitosan hydrogel containing berberine. Drug Deliv Transl Res 2021;11:1983-93. [PMID: 33034886 DOI: 10.1007/s13346-020-00860-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
470 Newsom JP, Payne KA, Krebs MD. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater 2019;88:32-41. [PMID: 30769137 DOI: 10.1016/j.actbio.2019.02.011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
471 Oliveira AS, Alcântara AC, Pergher SB. Bionanocomposite systems based on montmorillonite and biopolymers for the controlled release of olanzapine. Materials Science and Engineering: C 2017;75:1250-8. [DOI: 10.1016/j.msec.2017.03.044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
472 Song W, Lima AC, Mano JF. Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 2010;6:5868. [DOI: 10.1039/c0sm00901f] [Cited by in Crossref: 79] [Cited by in F6Publishing: 61] [Article Influence: 6.6] [Reference Citation Analysis]
473 Barati M, Mohammadi Samani S, Pourtalebi Jahromi L, Ashrafi H, Azadi A. Controlled-release in-situ gel forming formulation of tramadol containing chitosan-based pro-nanogels. International Journal of Biological Macromolecules 2018;118:1449-54. [DOI: 10.1016/j.ijbiomac.2018.06.152] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
474 Habibi K, Mamaghani M, Nikpassand M. Control releasing 5-aminosalicylic acid using pH-sensitive hydrogel with novel albumin cross-linker. J Incl Phenom Macrocycl Chem 2018;92:411-7. [DOI: 10.1007/s10847-018-0863-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
475 Wang J, Loh KP, Wang Z, Yan Y, Zhong Y, Xu QH, Ho PC. Fluorescent nanogel of arsenic sulfide nanoclusters. Angew Chem Int Ed Engl 2009;48:6282-5. [PMID: 19621402 DOI: 10.1002/anie.200900586] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
476 Soares KSR, Gláucia-Silva F, Daniele-Silva A, Torres-Rêgo M, Araújo NK, Menezes YAS, Damasceno IZ, Tambourgi DV, da Silva-Júnior AA, Fernandes-Pedrosa MF. Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using Cross-Linked Chitosan Nanoparticles as an Immunoadjuvant. Toxins (Basel) 2018;10:E158. [PMID: 29659491 DOI: 10.3390/toxins10040158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
477 Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A. Synergistic Anticancer Activity of Fluorescent Copper Nanoclusters and Cisplatin Delivered through a Hydrogel Nanocarrier. ACS Appl Mater Interfaces 2015;7:209-22. [DOI: 10.1021/am505799q] [Cited by in Crossref: 67] [Cited by in F6Publishing: 54] [Article Influence: 8.4] [Reference Citation Analysis]
478 Barros SC, da Silva AA, Costa DB, Cesarino I, Costa CM, Lanceros-méndez S, Pawlicka A, Silva MM. Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose 2014;21:4531-44. [DOI: 10.1007/s10570-014-0442-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
479 Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. Journal of Controlled Release 2012;162:45-55. [DOI: 10.1016/j.jconrel.2012.05.051] [Cited by in Crossref: 198] [Cited by in F6Publishing: 195] [Article Influence: 19.8] [Reference Citation Analysis]
480 Patel YN, Patel MP. Adsorption of azo dyes from water by new poly (3-acrylamidopropyl)-trimethylammonium chloride-co-N,N-dimethylacrylamide superabsorbent hydrogel—Equilibrium and kinetic studies. Journal of Environmental Chemical Engineering 2013;1:1368-74. [DOI: 10.1016/j.jece.2013.09.024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
481 Hosseini M, Farjadian F, Makhlouf ASH. Smart Stimuli-Responsive Nano-sized Hosts for Drug Delivery. In: Hosseini M, Makhlouf ASH, editors. Industrial Applications for Intelligent Polymers and Coatings. Cham: Springer International Publishing; 2016. pp. 1-26. [DOI: 10.1007/978-3-319-26893-4_1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
482 Wang C, Okubayashi S. 3D aerogel of cellulose triacetate with supercritical antisolvent process for drug delivery. The Journal of Supercritical Fluids 2019;148:33-41. [DOI: 10.1016/j.supflu.2019.02.026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
483 Park SY, Kim W, Choi JB, Kim S. Physical and mechanical properties of alginate-based hydrogel film as carrier for release of acetylthiocholine. Int J Precis Eng Manuf 2018;19:129-35. [DOI: 10.1007/s12541-018-0015-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
484 Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev 2016;116:2826-85. [DOI: 10.1021/acs.chemrev.5b00148] [Cited by in Crossref: 834] [Cited by in F6Publishing: 700] [Article Influence: 139.0] [Reference Citation Analysis]
485 Song Y, Zhou Y, Chen L. Wood cellulose-based polyelectrolyte complex nanoparticles as protein carriers. J Mater Chem 2012;22:2512-9. [DOI: 10.1039/c1jm13735b] [Cited by in Crossref: 25] [Article Influence: 2.5] [Reference Citation Analysis]
486 Komabayashi T, Wadajkar A, Santimano S, Ahn C, Zhu Q, Opperman LA, Bellinger LL, Yang J, Nguyen KT. Preliminary study of light-cured hydrogel for endodontic drug delivery vehicle. J Investig Clin Dent 2016;7:87-92. [PMID: 25048311 DOI: 10.1111/jicd.12118] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
487 Malik NS, Ahmad M, Minhas MU, Tulain R, Barkat K, Khalid I, Khalid Q. Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation. Front Chem 2020;8:50. [PMID: 32117876 DOI: 10.3389/fchem.2020.00050] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
488 Seetapan N, Srisithipantakul N, Kiatkamjornwong S. Synthesis of acrylamide- co -(itaconic acid) superabsorbent polymers and associated silica superabsorbent polymer composites. Polym Eng Sci 2011;51:764-75. [DOI: 10.1002/pen.21882] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
489 Jafari SM. An overview of nanoencapsulation techniques and their classification. Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Elsevier; 2017. pp. 1-34. [DOI: 10.1016/b978-0-12-809436-5.00001-x] [Cited by in Crossref: 14] [Article Influence: 2.8] [Reference Citation Analysis]
490 Banerjee H, Suhail M, Ren H. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics (Basel) 2018;3:E15. [PMID: 31105237 DOI: 10.3390/biomimetics3030015] [Cited by in Crossref: 93] [Cited by in F6Publishing: 47] [Article Influence: 23.3] [Reference Citation Analysis]
491 Akhlaghi SP, Peng B, Yao Z, Tam KC. Sustainable nanomaterials derived from polysaccharides and amphiphilic compounds. Soft Matter 2013;9:7905. [DOI: 10.1039/c3sm50358e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
492 Boni FI, Almeida A, Lechanteur A, Sarmento B, Cury BSF, Gremião MPD. Mucoadhesive nanostructured polyelectrolytes complexes modulate the intestinal permeability of methotrexate. European Journal of Pharmaceutical Sciences 2018;111:73-82. [DOI: 10.1016/j.ejps.2017.09.042] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
493 Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. Small 2021;17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Reference Citation Analysis]
494 Fathi M, Barar J, Aghanejad A, Omidi Y. Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 2015;5:159-64. [PMID: 26929918 DOI: 10.15171/bi.2015.31] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 5.6] [Reference Citation Analysis]
495 Khan M, Ahmad F, Koivisto JT, Kellomäki M. Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent. Colloid and Interface Science Communications 2020;39:100322. [DOI: 10.1016/j.colcom.2020.100322] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
496 Ferreira LM, Kiill CP, Pedreiro LN, Santos AM, Gremião MPD. Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 181-221. [DOI: 10.1016/b978-0-12-813627-0.00005-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
497 Zahid AA, Ahmed R, Raza ur Rehman S, Augustine R, Tariq M, Hasan A. Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. International Journal of Biological Macromolecules 2019;136:901-10. [DOI: 10.1016/j.ijbiomac.2019.06.136] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
498 Bordenave N, Janaswamy S, Yao Y. Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydrate Polymers 2014;103:234-43. [DOI: 10.1016/j.carbpol.2013.11.031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
499 Gul R, Ahmed N, Ullah N, Khan MI, Elaissari A, Rehman A. Biodegradable Ingredient-Based Emulgel Loaded with Ketoprofen Nanoparticles. AAPS PharmSciTech 2018;19:1869-81. [DOI: 10.1208/s12249-018-0997-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
500 Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12-27. [PMID: 19796660 DOI: 10.1016/j.addr.2009.08.004] [Cited by in Crossref: 653] [Cited by in F6Publishing: 575] [Article Influence: 50.2] [Reference Citation Analysis]
501 Sobh RA, Mohamed WS, Moustafa AB, Nasr HE. Encapsulation of Curcumin and Curcumin Derivative in Polymeric Nanospheres. Polymer-Plastics Technology and Engineering 2015;54:1457-67. [DOI: 10.1080/03602559.2014.1003230] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
502 Sun X, Tyagi P, Agate S, Lucia L, Mccord M, Pal L. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydrate Polymers 2019;208:495-503. [DOI: 10.1016/j.carbpol.2018.12.067] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
503 D’arrigo G, Navarro G, Di Meo C, Matricardi P, Torchilin V. Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multi-drug delivery system for a combination therapy in cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics 2014;87:208-16. [DOI: 10.1016/j.ejpb.2013.11.001] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 6.6] [Reference Citation Analysis]
504 Das D, Das R, Ghosh P, Dhara S, Panda AB, Pal S. Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Adv 2013;3:25340. [DOI: 10.1039/c3ra44716b] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 9.1] [Reference Citation Analysis]
505 Papadimitriou SA, Achilias DS, Bikiaris DN. Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems. International Journal of Pharmaceutics 2012;430:318-27. [DOI: 10.1016/j.ijpharm.2012.04.004] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 6.0] [Reference Citation Analysis]
506 Marciello M, Rossi S, Caramella C, Remuñán-López C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr Polym 2017;170:43-51. [PMID: 28522002 DOI: 10.1016/j.carbpol.2017.04.051] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
507 Sun G, Lee NS, Neumann WL, Freskos JN, Shieh JJ, Dorshow RB, Wooley KL. A fundamental investigation of cross-linking efficiencies within discrete nanostructures, using the cross-linker as a reporting molecule. Soft Matter 2009;5:3422. [DOI: 10.1039/b907835e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
508 Johnson AK, Kaczor J, Han H, Kaur M, Tian G, Rao L, Qiang Y, Paszczynski AJ. Highly hydrated poly(allylamine)/silica magnetic resin. J Nanopart Res 2011;13:4881-95. [DOI: 10.1007/s11051-011-0467-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
509 Khoee S, Abedini N. One-pot synthesis of amphiphilic nanogels from vinylated SPIONs/HEMA/PEG via a combination of click chemistry and surfactant-free emulsion photopolymerization: Unveiling of the protein-nanoparticle interactions. Polymer 2014;55:5635-47. [DOI: 10.1016/j.polymer.2014.09.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
510 Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 2015;117:524-36. [PMID: 25498667 DOI: 10.1016/j.carbpol.2014.09.094] [Cited by in Crossref: 190] [Cited by in F6Publishing: 164] [Article Influence: 23.8] [Reference Citation Analysis]
511 Zampini G, Matino D, Quaglia G, Tarpani L, Gargaro M, Cecchetti F, Iorio A, Fallarino F, Latterini L. Experimental evidences on the role of silica nanoparticles surface morphology on the loading, release and activity of three proteins. Microporous and Mesoporous Materials 2019;287:220-7. [DOI: 10.1016/j.micromeso.2019.06.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
512 Gu Y, Yang LM, Chen J, Wang LL, Chen B. Hydrogel-swelling driven delivery device for corrosion resistance of metal in water. Water Sci Technol 2015;72:2270-6. [PMID: 26676016 DOI: 10.2166/wst.2015.451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
513 Liu J, Du X, Zhang X. Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica. Chemistry 2011;17:810-5. [PMID: 21226095 DOI: 10.1002/chem.201002899] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 5.6] [Reference Citation Analysis]
514 Voncina B, Zemljič Fras L, Ristic T. Active textile dressings for wound healing. Advances in Smart Medical Textiles. Elsevier; 2016. pp. 73-92. [DOI: 10.1016/b978-1-78242-379-9.00004-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
515 Choi D, Heo J, Park JH, Jo Y, Jeong H, Chang M, Choi J, Hong J. Nano-film coatings onto collagen hydrogels with desired drug release. Journal of Industrial and Engineering Chemistry 2016;36:326-33. [DOI: 10.1016/j.jiec.2016.02.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
516 Gola A, Sacharczuk M, Musiał W. Synthesis of AMPSA Polymeric Derivatives Monitored by Electrical Conductivity and Evaluation of Thermosensitive Properties of Resulting Microspheres. Molecules 2019;24:E1164. [PMID: 30909617 DOI: 10.3390/molecules24061164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
517 Cámara CI, Lurgo FE, Fanani ML, Wilke N. Mechanical Stability of Lipid Membranes Decorated with Dextran Sulfate. ACS Omega 2018;3:11673-83. [PMID: 31459263 DOI: 10.1021/acsomega.8b01537] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
518 Stocke NA, Arnold SM, Hilt JZ. Responsive Hydrogel Nanoparticles for Pulmonary Delivery. J Drug Deliv Sci Technol 2015;29:143-51. [PMID: 26339298 DOI: 10.1016/j.jddst.2015.06.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
519 Bou S, Wang X, Anton N, Klymchenko AS, Collot M. Near infrared fluorogenic probe as a prodrug model for evaluating cargo release by nanoemulsions. J Mater Chem B 2020;8:5938-44. [DOI: 10.1039/d0tb00783h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
520 Mangalathillam S, Rejinold NS, Nair A, Lakshmanan V, Nair SV, Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 2012;4:239-50. [DOI: 10.1039/c1nr11271f] [Cited by in Crossref: 146] [Cited by in F6Publishing: 41] [Article Influence: 14.6] [Reference Citation Analysis]
521 Altman RM, Christoffersen EL, Jones KK, Krause VM, Richmond GL. Playing Favorites: Preferential Adsorption of Nonionic over Anionic Surfactants at the Liquid/Liquid Interface. Langmuir 2021;37:12213-22. [PMID: 34607422 DOI: 10.1021/acs.langmuir.1c02189] [Reference Citation Analysis]
522 Yamada Y, Hozumi K, Katagiri F, Kikkawa Y, Nomizu M. Biological activity of laminin peptide-conjugated alginate and chitosan matrices. Biopolymers 2010;94:711-20. [PMID: 20564024 DOI: 10.1002/bip.21429] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
523 Torabi N, Dobakhti F, Haniloo A. Albendazole and Praziquantel Chitosan Nanoparticles: Preparation, Characterization, and In Vitro Release Study. Iran J Sci Technol Trans Sci 2018;42:1269-75. [DOI: 10.1007/s40995-017-0150-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
524 Lee Y, Kataoka K. Delivery of Nucleic Acid Drugs. In: Murakami A, editor. Nucleic Acid Drugs. Berlin: Springer Berlin Heidelberg; 2012. pp. 95-134. [DOI: 10.1007/12_2011_129] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
525 Caponigro V, Marini F, Gowen A. Hydration of hydrogels studied by near-infrared hyperspectral imaging: hydrogels Near Infrared Hyperspectral Imaging. Journal of Chemometrics 2018;32:e2972. [DOI: 10.1002/cem.2972] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
526 Gluz E, Grinberg I, Corem-salkmon E, Mizrahi D, Margel S. Engineering of new crosslinked near-infrared fluorescent polyethylene glycol bisphosphonate nanoparticles for bone targeting. J Polym Sci Part A: Polym Chem 2013;51:4282-91. [DOI: 10.1002/pola.26858] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
527 Horniblow RD, Dowle M, Iqbal TH, Latunde-Dada GO, Palmer RE, Pikramenou Z, Tselepis C. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism. PLoS One 2015;10:e0138240. [PMID: 26378798 DOI: 10.1371/journal.pone.0138240] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
528 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem 2014;126:12520-68. [DOI: 10.1002/ange.201403036] [Cited by in Crossref: 73] [Cited by in F6Publishing: 55] [Article Influence: 9.1] [Reference Citation Analysis]
529 Kamperman T, Henke S, Zoetebier B, Ruiterkamp N, Wang R, Pouran B, Weinans H, Karperien M, Leijten J. Nanoemulsion-induced enzymatic crosslinking of tyramine-functionalized polymer droplets. J Mater Chem B 2017;5:4835-44. [PMID: 32263999 DOI: 10.1039/c7tb00686a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
530 Ebrahimi R, Salavaty M. Controlled drug delivery of ciprofloxacin from ultrasonic hydrogel. e-Polymers 2018;18:187-95. [DOI: 10.1515/epoly-2017-0123] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
531 Junlapong K, Maijan P, Chaibundit C, Chantarak S. Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. International Journal of Biological Macromolecules 2020;158:258-64. [DOI: 10.1016/j.ijbiomac.2020.04.247] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
532 Das Purkayastha M, Manhar AK. Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. In: Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanoscience in Food and Agriculture 2. Cham: Springer International Publishing; 2016. pp. 59-128. [DOI: 10.1007/978-3-319-39306-3_3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
533 Wei X, Niu Y, Xu Y, Du Y, Hu F, Hong Yuan. Salicylic Acid-grafted Chitosan Oligosaccharide Nanoparticle for Paclitaxel Delivery. Journal of Bioactive and Compatible Polymers 2010;25:319-35. [DOI: 10.1177/0883911510363548] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
534 Ding Y, Shen SZ, Sun H, Sun K, Liu F, Qi Y, Yan J. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Materials Science and Engineering: C 2015;48:487-98. [DOI: 10.1016/j.msec.2014.12.036] [Cited by in Crossref: 109] [Cited by in F6Publishing: 76] [Article Influence: 15.6] [Reference Citation Analysis]
535 Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, Garduño ML, Garcia ML, Calpena AC. Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. Int J Pharm 2016;501:350-61. [PMID: 26844786 DOI: 10.1016/j.ijpharm.2016.01.071] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
536 Seeber M, Zdyrko B, Burtovvy R, Andrukh T, Tsai C, Owens JR, Kornev KG, Luzinov I. Surface grafting of thermoresponsive microgel nanoparticles. Soft Matter 2011;7:9962. [DOI: 10.1039/c1sm05924f] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
537 Aderibigbe B, Aderibigbe I, Popoola P. Design and Biological Evaluation of Delivery Systems Containing Bisphosphonates. Pharmaceutics 2016;9:E2. [PMID: 28035945 DOI: 10.3390/pharmaceutics9010002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
538 Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol 2018;37:2625-35. [DOI: 10.1002/adv.21938] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
539 Ghaffari R, Eslahi N, Tamjid E, Simchi A. Dual-Sensitive Hydrogel Nanoparticles Based on Conjugated Thermoresponsive Copolymers and Protein Filaments for Triggerable Drug Delivery. ACS Appl Mater Interfaces 2018;10:19336-46. [DOI: 10.1021/acsami.8b01154] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
540 Hao Q, Chen Y, Huang Z, Xu JF, Sun Z, Zhang X. Supramolecular Chemotherapy: Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Oxaliplatin to Normal Cells and Improving Its Anticancer Bioactivity Against Colorectal Cancer. ACS Appl Mater Interfaces 2018;10:5365-72. [PMID: 29355009 DOI: 10.1021/acsami.7b19784] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 12.8] [Reference Citation Analysis]
541 Date P, Tanwar A, Ladage P, Kodam KM, Ottoor D. Carbon dots-incorporated pH-responsive agarose-PVA hydrogel nanocomposites for the controlled release of norfloxacin drug. Polym Bull 2020;77:5323-44. [DOI: 10.1007/s00289-019-03015-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
542 Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports 2020;140:100543. [DOI: 10.1016/j.mser.2020.100543] [Cited by in Crossref: 125] [Cited by in F6Publishing: 43] [Article Influence: 62.5] [Reference Citation Analysis]
543 Zhang L, Chen L, Xiang Y, Liu Z, Mao X, Zhang L, Deng L, Zhang Y, Cheng L, Sun X, Cui W. Multifunctional integrally-medicalized hydrogel system with internal synergy for efficient tissue regeneration. Chemical Engineering Journal 2021;406:126839. [DOI: 10.1016/j.cej.2020.126839] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
544 George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019;561:244-64. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Cited by in Crossref: 147] [Cited by in F6Publishing: 97] [Article Influence: 49.0] [Reference Citation Analysis]
545 Mahdavinia GR, Asgari A. Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 2013;70:2451-70. [DOI: 10.1007/s00289-013-0966-4] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
546 Kadri R, Ben Messaoud G, Tamayol A, Aliakbarian B, Zhang HY, Hasan M, Sánchez-gonzález L, Arab-tehrany E. Preparation and characterization of nanofunctionalized alginate/methacrylated gelatin hybrid hydrogels. RSC Adv 2016;6:27879-84. [DOI: 10.1039/c6ra03699f] [Cited by in Crossref: 15] [Article Influence: 2.5] [Reference Citation Analysis]
547 Alaimo D, Grignard B, Kuppan C, Adriaensen Y, Genet MJ, Dupont-gillain C, Gohy J, Fustin C, Detrembleur C, Jérôme C. A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polym Chem 2017;8:581-91. [DOI: 10.1039/c6py01633b] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
548 Cheng W, Liu Y. Redox-responsive hydrogels. Biopolymer-Based Composites. Elsevier; 2017. pp. 31-60. [DOI: 10.1016/b978-0-08-101914-6.00002-8] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
549 Su Y, Xie Z, Kim GB, Dong C, Yang J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 2015;1:201-17. [PMID: 25984572 DOI: 10.1021/ab500179h] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
550 Wang Y, Xu H, Wang J, Ge L, Zhu J. Development of a Thermally Responsive Nanogel Based on Chitosan–Poly(N-Isopropylacrylamide- co -Acrylamide) for Paclitaxel Delivery. Journal of Pharmaceutical Sciences 2014;103:2012-21. [DOI: 10.1002/jps.23995] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
551 Bahari Javan N, Montazeri H, Rezaie Shirmard L, Jafary Omid N, Barbari GR, Amini M, Ghahremani MH, Rafiee-tehrani M, Abedin Dorkoosh F. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide. European Journal of Pharmaceutical Sciences 2017;101:167-81. [DOI: 10.1016/j.ejps.2017.02.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
552 Paula HCBD, Oliveira EFD, Abreu FOMS, Paula RCMD, Morais SMD, Forte MMC. Esferas (beads) de alginato como agente encapsulante de óleo de croton zehntneri Pax et Hoffm. Polímeros 2010;20:112-20. [DOI: 10.1590/s0104-14282010005000019] [Cited by in Crossref: 15] [Article Influence: 1.3] [Reference Citation Analysis]
553 Xu X, Heath C, Pejcic B, Wood CD. CO 2 capture by amine infused hydrogels (AIHs). J Mater Chem A 2018;6:4829-38. [DOI: 10.1039/c8ta00602d] [Cited by in Crossref: 23] [Article Influence: 5.8] [Reference Citation Analysis]
554 Nigro V, Angelini R, Bertoldo M, Ruzicka B. Swelling of responsive-microgels: experiments versus models. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;532:389-96. [DOI: 10.1016/j.colsurfa.2017.04.059] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]
555 Choonara YE, Pillay V, Ndesendo VM, du Toit LC, Kumar P, Khan RA, Murphy CS, Jarvis D. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids and Surfaces B: Biointerfaces 2011;87:243-54. [DOI: 10.1016/j.colsurfb.2011.05.025] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
556 Su H, Zhang W, Wu Y, Han X, Liu G, Jia Q, Shan S. Schiff base-containing dextran nanogel as pH-sensitive drug delivery system of doxorubicin: Synthesis and characterization. J Biomater Appl 2018;33:170-81. [DOI: 10.1177/0885328218783969] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
557 Kono H, Teshirogi T. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. International Journal of Biological Macromolecules 2015;72:299-308. [DOI: 10.1016/j.ijbiomac.2014.08.030] [Cited by in Crossref: 70] [Cited by in F6Publishing: 51] [Article Influence: 10.0] [Reference Citation Analysis]
558 Ye C, Kulkarni DD, Dai H, Tsukruk VV. Programmable Arrays of “Micro-Bubble” Constructs via Self-Encapsulation. Adv Funct Mater 2014;24:4364-73. [DOI: 10.1002/adfm.201400254] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
559 Sowasod N, Nakagawa K, Tanthapanichakoon W, Charinpanitkul T. Development of encapsulation technique for curcumin loaded O/W emulsion using chitosan based cryotropic gelation. Materials Science and Engineering: C 2012;32:790-8. [DOI: 10.1016/j.msec.2012.01.027] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
560 Milane L, Ganesh S, Shah S, Duan ZF, Amiji M. Multi-modal strategies for overcoming tumor drug resistance: hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology. J Control Release 2011;155:237-47. [PMID: 21497176 DOI: 10.1016/j.jconrel.2011.03.032] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 7.7] [Reference Citation Analysis]
561 Jensen BE, Hosta-Rigau L, Spycher PR, Reimhult E, Städler B, Zelikin AN. Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes. Nanoscale 2013;5:6758-66. [PMID: 23685735 DOI: 10.1039/c3nr01662e] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
562 Ma D, Zhang J, Zhang C, Men Y, Sun H, Li L, Yi L, Xi Z. A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel. Org Biomol Chem 2018;16:3353-7. [DOI: 10.1039/c8ob00169c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
563 Vladisavljević GT. Membrane Emulsification in Pharmaceutics and Biotechnology. Current Trends and Future Developments on (Bio-) Membranes. Elsevier; 2019. pp. 167-222. [DOI: 10.1016/b978-0-12-813606-5.00007-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
564 Kandile NG, Mohamed HM. Chitosan nanoparticle hydrogel based sebacoyl moiety with remarkable capability for metal ion removal from aqueous systems. International Journal of Biological Macromolecules 2019;122:578-86. [DOI: 10.1016/j.ijbiomac.2018.10.198] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
565 Zheng H, Xie H, Wu H, Wang F, Liu X, Yu W, Ma X. Investigation of spherical hydrogel surface with optical interferometer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015;484:457-62. [DOI: 10.1016/j.colsurfa.2015.08.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
566 Rocha Soares KS, Oliveira AR, Daniele-silva A, Glaucia-silva F, Caroni ALP, Fernandes-pedrosa MF, da Silva-júnior AA. Self-assembled scorpion venom proteins cross-linked chitosan nanoparticles for use in the immunotherapy. Journal of Molecular Liquids 2017;241:540-8. [DOI: 10.1016/j.molliq.2017.06.071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
567 Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM. Measuring melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 2015;87:4973-9. [PMID: 25844641 DOI: 10.1021/acs.analchem.5b00776] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
568 de Castro RJS, Domingues MAF, Ohara A, Okuro PK, dos Santos JG, Brexó RP, Sato HH. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure 2017;14:17-29. [DOI: 10.1016/j.foostr.2017.05.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 19] [Article Influence: 9.8] [Reference Citation Analysis]
569 Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2019;16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 11.5] [Reference Citation Analysis]
570 Zheng WJ, An N, Yang JH, Zhou J, Chen YM. Tough Al-alginate/Poly( N -isopropylacrylamide) Hydrogel with Tunable LCST for Soft Robotics. ACS Appl Mater Interfaces 2015;7:1758-64. [DOI: 10.1021/am507339r] [Cited by in Crossref: 241] [Cited by in F6Publishing: 164] [Article Influence: 34.4] [Reference Citation Analysis]
571 Spadari CC, Wirth F, Lopes LB, Ishida K. New Approaches for Cryptococcosis Treatment. Microorganisms 2020;8:E613. [PMID: 32340403 DOI: 10.3390/microorganisms8040613] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
572 Deshmukh S, Mooney DA, Macelroy JM. Molecular simulation study of the effect of cross-linker on the properties of poly( N -isopropyl acrylamide) hydrogel. Molecular Simulation 2011;37:846-54. [DOI: 10.1080/08927022.2011.566608] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
573 Sharifzadeh G, Hosseinkhani H. Biomolecule-Responsive Hydrogels in Medicine. Adv Healthc Mater 2017;6. [PMID: 29057617 DOI: 10.1002/adhm.201700801] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
574 Suhail M, Fang CW, Khan A, Minhas MU, Wu PC. Fabrication and In Vitro Evaluation of pH-Sensitive Polymeric Hydrogels as Controlled Release Carriers. Gels 2021;7:110. [PMID: 34449621 DOI: 10.3390/gels7030110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
575 Sasaki Y, Akiyoshi K. Nanogel Engineering by Associating Polymers for Biomedical Applications. In: Lyon LA, Serpe MJ, editors. Hydrogel Micro and Nanoparticles. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. pp. 187-208. [DOI: 10.1002/9783527646425.ch8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
576 Fu X, Shen Y, Ma Y, Fu W, Li Z. Tunable supramolecular hydrogels from polypeptide-PEG-polypeptide triblock copolymers. Sci China Chem 2015;58:1005-12. [DOI: 10.1007/s11426-014-5297-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
577 Wang K, Han Z. Injectable hydrogels for ophthalmic applications. J Control Release 2017;268:212-24. [PMID: 29061512 DOI: 10.1016/j.jconrel.2017.10.031] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 9.4] [Reference Citation Analysis]
578 Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS Nano 2021;15:18895-930. [PMID: 34870413 DOI: 10.1021/acsnano.1c08334] [Reference Citation Analysis]
579 Lilly JL, Romero G, Xu W, Shin HY, Berron BJ. Characterization of molecular transport in ultrathin hydrogel coatings for cellular immunoprotection. Biomacromolecules 2015;16:541-9. [PMID: 25592156 DOI: 10.1021/bm501594x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
580 Vinogradov SV. Nanogels in the race for drug delivery. Nanomedicine 2010;5:165-8. [DOI: 10.2217/nnm.09.103] [Cited by in Crossref: 69] [Cited by in F6Publishing: 54] [Article Influence: 5.8] [Reference Citation Analysis]
581 Jiang P, Li S, Lai J, Zheng H, Lin C, Shi P, Wang Y. Nanoparticle-Programmed Surface for Drug Release and Cell Regulation via Reversible Hybridization Reaction. ACS Appl Mater Interfaces 2017;9:4467-74. [PMID: 28117570 DOI: 10.1021/acsami.6b14355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
582 Zhang D, Fu Y, Huang L, Zhang Y, Ren B, Zhong M, Yang J, Zheng J. Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. J Mater Chem B 2018;6:950-60. [DOI: 10.1039/c7tb03018e] [Cited by in Crossref: 51] [Cited by in F6Publishing: 1] [Article Influence: 12.8] [Reference Citation Analysis]
583 Pachioni-vasconcelos JDA, Lopes AM, Apolinário AC, Valenzuela-oses JK, Costa JSR, Nascimento LDO, Pessoa A, Barbosa LRS, Rangel-yagui CDO. Nanostructures for protein drug delivery. Biomater Sci 2016;4:205-18. [DOI: 10.1039/c5bm00360a] [Cited by in Crossref: 64] [Cited by in F6Publishing: 19] [Article Influence: 10.7] [Reference Citation Analysis]
584 Xia N, Wan W, Zhu S, Liu Q. Preparation of crystalline nanocellulose/hydroxypropyl β cyclodextrin/carboxymethyl cellulose polyelectrolyte complexes and their controlled release of neohesperidin-copper (II) in vitro. Int J Biol Macromol 2020;163:1518-28. [PMID: 32771507 DOI: 10.1016/j.ijbiomac.2020.07.272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
585 Zhou H, Li T, Duan YY. Reduce impedance of intracortical iridium oxide microelectrodes by hydrogel coatings. Sensors and Actuators B: Chemical 2012;161:198-202. [DOI: 10.1016/j.snb.2011.10.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
586 Lütfi G, Müzeyyen D. Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharmaceutical Development and Technology 2011;18:701-9. [DOI: 10.3109/10837450.2012.705298] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
587 Peng J, Qi T, Liao J, Fan M, Luo F, Li H, Qian Z. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Nanoscale 2012;4:2694-704. [PMID: 22426443 DOI: 10.1039/c2nr30147d] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.8] [Reference Citation Analysis]
588 Sonia TA, Sharma CP. Oral insulin delivery – challenges and strategies. Oral Delivery of Insulin. Elsevier; 2014. pp. 113-68. [DOI: 10.1533/9781908818683.113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
589 Taylor-Pashow KM, Della Rocca J, Huxford RC, Lin W. Hybrid nanomaterials for biomedical applications. Chem Commun (Camb) 2010;46:5832-49. [PMID: 20623072 DOI: 10.1039/c002073g] [Cited by in Crossref: 206] [Cited by in F6Publishing: 165] [Article Influence: 17.2] [Reference Citation Analysis]
590 Liu P, Luo Q, Guan Y, Zhang Y. Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer 2010;51:2668-75. [DOI: 10.1016/j.polymer.2010.04.011] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
591 Gu H, Mu S, Qiu G, Liu X, Zhang L, Yuan Y, Astruc D. Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coordination Chemistry Reviews 2018;364:51-85. [DOI: 10.1016/j.ccr.2018.03.013] [Cited by in Crossref: 64] [Cited by in F6Publishing: 38] [Article Influence: 16.0] [Reference Citation Analysis]
592 Khan M, Lo IM. A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Research 2016;106:259-71. [DOI: 10.1016/j.watres.2016.10.008] [Cited by in Crossref: 144] [Cited by in F6Publishing: 107] [Article Influence: 24.0] [Reference Citation Analysis]
593 Natkański P, Kuśtrowski P, Białas A, Piwowarska Z, Michalik M. Thermal stability of montmorillonite polyacrylamide and polyacrylate nanocomposites and adsorption of Fe(III) ions. Applied Clay Science 2013;75-76:153-7. [DOI: 10.1016/j.clay.2013.02.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 3.9] [Reference Citation Analysis]
594 Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2016;23:2371-90. [PMID: 25544604 DOI: 10.3109/10717544.2014.991001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 4.5] [Reference Citation Analysis]
595 Loira-pastoriza C, Sapin-minet A, Diab R, Grossiord J, Maincent P. Low molecular weight heparin gels, based on nanoparticles, for topical delivery. International Journal of Pharmaceutics 2012;426:256-62. [DOI: 10.1016/j.ijpharm.2012.01.044] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
596 Zhao L, Gwon H, Lim Y, Nho Y, Kim SY. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications. Radiation Physics and Chemistry 2015;106:404-12. [DOI: 10.1016/j.radphyschem.2014.08.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
597 Kim S, Kim M, Koh WG. Preparation of Surface-Reinforced Superabsorbent Polymer Hydrogel Microspheres via Incorporation of In Situ Synthesized Silver Nanoparticles. Polymers (Basel) 2021;13:902. [PMID: 33804248 DOI: 10.3390/polym13060902] [Reference Citation Analysis]
598 Sasaki Y, Akiyoshi K. Self-assembled Nanogel Engineering for Advanced Biomedical Technology. Chem Lett 2012;41:202-8. [DOI: 10.1246/cl.2012.202] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
599 Quintanar-Guerrero D, Ganem-Quintanar A, Nava-Arzaluz MG, Piñón-Segundo E. Silica xerogels as pharmaceutical drug carriers. Expert Opin Drug Deliv 2009;6:485-98. [PMID: 19413456 DOI: 10.1517/17425240902902307] [Cited by in Crossref: 56] [Cited by in F6Publishing: 42] [Article Influence: 4.3] [Reference Citation Analysis]
600 Gao H, Chan N, Oh JK, Matyjaszewski K. Designing Hydrogels by ATRP. In: Loh XJ, editor. In-Situ Gelling Polymers. Singapore: Springer; 2015. pp. 69-105. [DOI: 10.1007/978-981-287-152-7_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
601 Schimka S, Lomadze N, Rabe M, Kopyshev A, Lehmann M, von Klitzing R, Rumyantsev AM, Kramarenko EY, Santer S. Photosensitive microgels containing azobenzene surfactants of different charges. Phys Chem Chem Phys 2017;19:108-17. [DOI: 10.1039/c6cp04555c] [Cited by in Crossref: 38] [Cited by in F6Publishing: 7] [Article Influence: 7.6] [Reference Citation Analysis]
602 Anumolu SS, Singh Y, Gao D, Stein S, Sinko PJ. Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J Control Release 2009;137:152-9. [PMID: 19341773 DOI: 10.1016/j.jconrel.2009.03.016] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 4.4] [Reference Citation Analysis]
603 Du AW, Stenzel MH. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014;15:1097-114. [DOI: 10.1021/bm500169p] [Cited by in Crossref: 126] [Cited by in F6Publishing: 109] [Article Influence: 15.8] [Reference Citation Analysis]
604 Ruiz-palomero C, Soriano ML, Benítez-martínez S, Valcárcel M. Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sensors and Actuators B: Chemical 2017;245:946-53. [DOI: 10.1016/j.snb.2017.02.006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
605 Lee A, Lundberg P, Klinger D, Lee BF, Hawker CJ, Lynd NA. Physiologically relevant, pH-responsive PEG-based block and statistical copolymers with N,N-diisopropylamine units. Polym Chem 2013;4:5735-42. [PMID: 25484931 DOI: 10.1039/C3PY00747B] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
606 Iglesias N, Galbis E, Valencia C, De-Paz MV, Galbis JA. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery. Polymers (Basel) 2018;10:E392. [PMID: 30966427 DOI: 10.3390/polym10040392] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
607 de Matos SP, Lucca LG, Koester LS. Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta 2019;195:204-14. [DOI: 10.1016/j.talanta.2018.11.029] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 10.7] [Reference Citation Analysis]
608 Karadağ E, Kundakci S, Barış Üzüm Ö. Water Sorption and Dye Uptake Studies of Highly Swollen AAm/AMPS Hydrogels and Semi-IPNs with PEG. Polymer-Plastics Technology and Engineering 2009;48:1217-29. [DOI: 10.1080/03602550903159044] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
609 Zhang C, Gau E, Sun W, Zhu J, Schmidt BM, Pich A, Shi X. Influence of size, crosslinking degree and surface structure of poly(N-vinylcaprolactam)-based microgels on their penetration into multicellular tumor spheroids. Biomater Sci 2019;7:4738-47. [PMID: 31502601 DOI: 10.1039/c9bm01132c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
610 Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull 2015;5:57-67. [PMID: 25789220 DOI: 10.5681/apb.2015.008] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
611 Lo KW, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med. 2012;7:535-549. [PMID: 22817627 DOI: 10.2217/rme.12.33] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 7.9] [Reference Citation Analysis]
612 Andreasen SØ, Chong SF, Wohl BM, Goldie KN, Zelikin AN. Poly(vinyl alcohol) physical hydrogel nanoparticles, not polymer solutions, exert inhibition of nitric oxide synthesis in cultured macrophages. Biomacromolecules 2013;14:1687-95. [PMID: 23560438 DOI: 10.1021/bm400369u] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
613 Chen S, Yong X. Elastocapillary interactions of thermoresponsive microgels across the volume phase transition temperatures. Journal of Colloid and Interface Science 2021;584:275-80. [DOI: 10.1016/j.jcis.2020.09.085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
614 Pereira EI, Giroto AS, Bortolin A, Yamamoto CF, Marconcini JM, de Campos Bernardi AC, Ribeiro C. Perspectives in Nanocomposites for the Slow and Controlled Release of Agrochemicals: Fertilizers and Pesticides. In: Rai M, Ribeiro C, Mattoso L, Duran N, editors. Nanotechnologies in Food and Agriculture. Cham: Springer International Publishing; 2015. pp. 241-65. [DOI: 10.1007/978-3-319-14024-7_11] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
615 Ravera M, Gabano E, Bonzani D, Zanellato I, Arrais A, Cantamessa S, Biggiogera M, Osella D. Hybrid inorganic (nonporous silica)/organic (alginate) core-shell platform for targeting a cisplatin-based Pt(IV) anticancer prodrug. J Inorg Biochem 2018;189:185-91. [PMID: 30312905 DOI: 10.1016/j.jinorgbio.2018.09.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
616 Han A, Rujijanagul G, Randorn C. Preparation of hydroxyapatite hydrogel for bone-like materials via novel self-initiated photocatalytic polymerization. Materials Letters 2017;193:142-5. [DOI: 10.1016/j.matlet.2017.01.098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
617 Dong K, Lei Q, Guo R, Wu X, Zhang Y, Cui N, Shi JY, Lu T. Regulating intracellular ROS signal by a dual pH/reducing-responsive nanogels system promotes tumor cell apoptosis. Int J Nanomedicine 2019;14:5713-28. [PMID: 31413571 DOI: 10.2147/IJN.S208089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
618 Lv X, Yuan M, Pei Y, Liu C, Wang X, Wu L, Cheng D, Ma X, Sun X. The Enhancement of Antiviral Activity of Chloroinconazide by Aglinate-based Nanogel and Its Plant Growth Promotion Effect. J Agric Food Chem 2021;69:4992-5002. [PMID: 33904309 DOI: 10.1021/acs.jafc.1c00941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
619 Shoukat H, Buksh K, Noreen S, Pervaiz F, Maqbool I. Hydrogels as potential drug-delivery systems: network design and applications. Ther Deliv 2021;12:375-96. [PMID: 33792360 DOI: 10.4155/tde-2020-0114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
620 Tan L, Xu X, Song J, Luo F, Qian Z. Synthesis, characterization, and acute oral toxicity evaluation of pH-sensitive hydrogel based on MPEG, poly(ε-caprolactone), and itaconic acid. Biomed Res Int 2013;2013:239838. [PMID: 24364030 DOI: 10.1155/2013/239838] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
621 Dai L, Cheng T, Wang Y, Lu H, Nie S, He H, Duan C, Ni Y. Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose 2019;26:6891-901. [DOI: 10.1007/s10570-019-02579-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
622 Mazurkiewicz-Pawlicka M, Nowak M, Malolepszy A, Witowski A, Wasik D, Hu Y, Stobinski L. Graphene Oxide with Controlled Content of Oxygen Groups as a Filler for Polymer Composites Used for Infrared Radiation Shielding. Nanomaterials (Basel) 2019;10:E32. [PMID: 31877714 DOI: 10.3390/nano10010032] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
623 Park M, Kim BS, Shin HK, Park SJ, Kim HY. Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater Sci Eng C Mater Biol Appl 2013;33:5051-7. [PMID: 24094223 DOI: 10.1016/j.msec.2013.08.032] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
624 Nguyen TM, Lee S, Lee SB. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery. Nanomedicine 2014;9:2263-72. [DOI: 10.2217/nnm.13.153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
625 Cui J, Cui H, Wang Y, Sun C, Li K, Ren H, Du W. Application of PEI-Modified Magnetic Nanoparticles as Gene Transfer Vector for the Genetic Modification of Animals. Advances in Materials Science and Engineering 2012;2012:1-6. [DOI: 10.1155/2012/764521] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
626 Alziyadi MO, Denton AR. Osmotic pressure and swelling behavior of ionic microcapsules. J Chem Phys 2021;155:214904. [PMID: 34879668 DOI: 10.1063/5.0064282] [Reference Citation Analysis]
627 Denmark DJ, Bradley J, Mukherjee D, Alonso J, Shakespeare S, Bernal N, Phan MH, Srikanth H, Witanachchi S, Mukherjee P. Remote triggering of thermoresponsive PNIPAM by iron oxide nanoparticles. RSC Adv 2016;6:5641-52. [DOI: 10.1039/c5ra21617f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
628 Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:509-33. [PMID: 25581024 DOI: 10.1002/wnan.1328] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 8.1] [Reference Citation Analysis]
629 Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 2010;10:366-76. [PMID: 20836092 DOI: 10.1002/tcr.201000008] [Cited by in Crossref: 56] [Cited by in F6Publishing: 67] [Article Influence: 4.7] [Reference Citation Analysis]
630 Pinkerton NM, Zhang SW, Youngblood RL, Gao D, Li S, Benson BR, Anthony J, Stone HA, Sinko PJ, Prud'homme RK. Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery. Biomacromolecules 2014;15:252-61. [PMID: 24410445 DOI: 10.1021/bm4015232] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
631 Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharmaceutical Development and Technology 2016;21:367-78. [DOI: 10.3109/10837450.2014.999785] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
632 Takafuji M, Alam MA, Goto H, Ihara H. Microspherical hydrogel particles based on silica nanoparticle-webbed polymer networks. Journal of Colloid and Interface Science 2015;455:32-8. [DOI: 10.1016/j.jcis.2015.05.034] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
633 Holloway JL, Ma H, Rai R, Hankenson KD, Burdick JA. Synergistic Effects of SDF-1α and BMP-2 Delivery from Proteolytically Degradable Hyaluronic Acid Hydrogels for Bone Repair. Macromol Biosci 2015;15:1218-23. [PMID: 26059079 DOI: 10.1002/mabi.201500178] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
634 Li L, Jiang R, Chen J, Wang M, Ge X. One-step synthesis of self-healable hydrogels by the spontaneous phase separation of linear multi-block copolymers during the emulsion copolymerization. Chinese Chemical Letters 2017;28:868-74. [DOI: 10.1016/j.cclet.2016.12.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
635 Ashrafi H, Azadi A. Chitosan-based hydrogel nanoparticle amazing behaviors during transmission electron microscopy. International Journal of Biological Macromolecules 2016;84:31-4. [DOI: 10.1016/j.ijbiomac.2015.11.089] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
636 Rajar K, Karakus B, Koc K, Alveroglu E. One pot synthesis and characterization of Fe3O4 Nanorod-PNIPA Nanogel Composite for protein adsorption. Materials Science and Engineering: C 2016;68:59-64. [DOI: 10.1016/j.msec.2016.05.095] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
637 Goponenko AV, Dzenis YA. Role of Mechanical Factors in Applications of Stimuli-Responsive Polymer Gels - Status and Prospects. Polymer (Guildf) 2016;101:415-49. [PMID: 28348443 DOI: 10.1016/j.polymer.2016.08.068] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
638 Jing Z, Ma Z, Li C, Jia Y, Luo M, Ma X, Zhou S, Zhang B. Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery. Bioorganic & Medicinal Chemistry Letters 2017;27:1003-6. [DOI: 10.1016/j.bmcl.2016.12.072] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
639 Piacentini E, Bazzarelli F, Poerio T, Albisa A, Irusta S, Mendoza G, Sebastian V, Giorno L. Encapsulation of water-soluble drugs in Poly (vinyl alcohol) (PVA)- microparticles via membrane emulsification: Influence of process and formulation parameters on structural and functional properties. Materials Today Communications 2020;24:100967. [DOI: 10.1016/j.mtcomm.2020.100967] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
640 Wang X, Song F, Qian D, He Y, Nie W, Wang X, Wang Y. Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chemical Engineering Journal 2018;349:588-94. [DOI: 10.1016/j.cej.2018.05.081] [Cited by in Crossref: 91] [Cited by in F6Publishing: 58] [Article Influence: 22.8] [Reference Citation Analysis]
641 Estrada AC, Daniel-da-silva AL, Trindade T. Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv 2013;3:10828. [DOI: 10.1039/c3ra40662h] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
642 Lai WF, Wong WT. Property-Tuneable Microgels Fabricated by Using Flow-Focusing Microfluidic Geometry for Bioactive Agent Delivery. Pharmaceutics 2021;13:787. [PMID: 34070328 DOI: 10.3390/pharmaceutics13060787] [Reference Citation Analysis]
643 Guan Y, Zhang Y. PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter 2011;7:6375. [DOI: 10.1039/c0sm01541e] [Cited by in Crossref: 318] [Cited by in F6Publishing: 214] [Article Influence: 28.9] [Reference Citation Analysis]
644 Fejerskov B, Jensen BEB, Jensen NBS, Chong S, Zelikin AN. Engineering Surface Adhered Poly(vinyl alcohol) Physical Hydrogels as Enzymatic Microreactors. ACS Appl Mater Interfaces 2012;4:4981-90. [DOI: 10.1021/am3013467] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
645 Rudov AA, Gelissen APH, Lotze G, Schmid A, Eckert T, Pich A, Richtering W, Potemkin II. Intramicrogel Complexation of Oppositely Charged Compartments As a Route to Quasi-Hollow Structures. Macromolecules 2017;50:4435-45. [DOI: 10.1021/acs.macromol.7b00553] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
646 Su H, Jia Q, Shan S. Synthesis and characterization of Schiff base contained dextran microgels in water-in-oil inverse microemulsion. Carbohydrate Polymers 2016;152:156-62. [DOI: 10.1016/j.carbpol.2016.06.091] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
647 Mendes AC, Zelikin AN. Enzyme Prodrug Therapy Engineered into Biomaterials. Adv Funct Mater 2014;24:5202-10. [DOI: 10.1002/adfm.201304312] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
648 Li M, Zhou HH, Li T, Li CY, Xia ZY, Duan YY. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes. Neural Regen Res 2015;10:2048-53. [PMID: 26889197 DOI: 10.4103/1673-5374.172325] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
649 Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science 2014;209:163-71. [DOI: 10.1016/j.cis.2014.03.009] [Cited by in Crossref: 228] [Cited by in F6Publishing: 168] [Article Influence: 28.5] [Reference Citation Analysis]
650 Sangian D, Ide Y, Bando Y, Rowan AE, Yamauchi Y. Materials Nanoarchitectonics Using 2D Layered Materials: Recent Developments in the Intercalation Process. Small 2018;:e1800551. [PMID: 29962072 DOI: 10.1002/smll.201800551] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 6.8] [Reference Citation Analysis]
651 Tagliabue A, Landsgesell J, Mella M, Holm C. Can oppositely charged polyelectrolyte stars form a gel? A simulational study. Soft Matter 2021;17:1574-88. [PMID: 33351002 DOI: 10.1039/d0sm01617a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
652 Jaiswal S, Dutta PK, Kumar S, Koh J, Lee MC, Lim JW, Pandey S, Garg P. Synthesis, characterization and application of chitosan-N-(4-hydroxyphenyl)-methacrylamide derivative as a drug and gene carrier. Int J Biol Macromol 2022;195:75-85. [PMID: 34883163 DOI: 10.1016/j.ijbiomac.2021.11.204] [Reference Citation Analysis]
653 Sohail M, Ahmad M, Minhas MU, Ali L, Khalid I, Rashid H. Controlled delivery of valsartan by cross-linked polymeric matrices: Synthesis, in vitro and in vivo evaluation. International Journal of Pharmaceutics 2015;487:110-9. [DOI: 10.1016/j.ijpharm.2015.04.013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
654 Ahmadian Y, Bakravi A, Hashemi H, Namazi H. Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull 2019;76:1967-83. [DOI: 10.1007/s00289-018-2477-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 16] [Article Influence: 10.8] [Reference Citation Analysis]
655 Anand M, Sathyapriya P, Maruthupandy M, Hameedha Beevi A. Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Frontiers in Laboratory Medicine 2018;2:72-8. [DOI: 10.1016/j.flm.2018.07.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
656 Lin L, Larsson M, Liu D. A novel dual-structure, self-healable, polysaccharide based hybrid nanogel for biomedical uses. Soft Matter 2011;7:5816. [DOI: 10.1039/c1sm05249g] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
657 Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017;10:E54. [PMID: 28608822 DOI: 10.3390/ph10020054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
658 Majedi FS, Hasani-sadrabadi MM, Vandersarl JJ, Mokarram N, Hojjati-emami S, Dashtimoghadam E, Bonakdar S, Shokrgozar MA, Bertsch A, Renaud P. On-Chip Fabrication of Paclitaxel-Loaded Chitosan Nanoparticles for Cancer Therapeutics. Adv Funct Mater 2014;24:432-41. [DOI: 10.1002/adfm.201301628] [Cited by in Crossref: 69] [Cited by in F6Publishing: 43] [Article Influence: 7.7] [Reference Citation Analysis]
659 Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. Adv Therap 2019;2:1800091. [DOI: 10.1002/adtp.201800091] [Cited by in Crossref: 52] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
660 Chen ZG, Zheng JW, Yuan ML, Zhang L, Yuan WE. A novel topical nano-propranolol for treatment of infantile hemangiomas. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1109-15. [DOI: 10.1016/j.nano.2015.02.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
661 Saji Joseph J, Tebogo Malindisa S, Ntwasa M. Two-Dimensional (2D) and Three-Dimensional (3D) Cell Culturing in Drug Discovery. In: Ali Mehanna R, editor. Cell Culture. IntechOpen; 2019. [DOI: 10.5772/intechopen.81552] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
662 He C, Liu D, Lin W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. Chem Rev 2015;115:11079-108. [PMID: 26312730 DOI: 10.1021/acs.chemrev.5b00125] [Cited by in Crossref: 623] [Cited by in F6Publishing: 514] [Article Influence: 89.0] [Reference Citation Analysis]
663 Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev 2012;112:2853-88. [PMID: 22360637 DOI: 10.1021/cr200157d] [Cited by in Crossref: 774] [Cited by in F6Publishing: 693] [Article Influence: 77.4] [Reference Citation Analysis]
664 Holloway JL, Ma H, Rai R, Burdick JA. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J Control Release 2014;191:63-70. [PMID: 24905414 DOI: 10.1016/j.jconrel.2014.05.053] [Cited by in Crossref: 83] [Cited by in F6Publishing: 71] [Article Influence: 10.4] [Reference Citation Analysis]
665 Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev 2012;64:1205-19. [PMID: 22433784 DOI: 10.1016/j.addr.2012.03.006] [Cited by in Crossref: 110] [Cited by in F6Publishing: 107] [Article Influence: 11.0] [Reference Citation Analysis]
666 Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 2018;23:1436-43. [PMID: 29775669 DOI: 10.1016/j.drudis.2018.05.018] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
667 Ourani-Pourdashti S, Azadi A. Pollens in therapeutic/diagnostic systems and immune system targeting. J Control Release 2021;340:308-17. [PMID: 34763004 DOI: 10.1016/j.jconrel.2021.11.008] [Reference Citation Analysis]
668 Hazra M, Dasgupta Mandal D, Mandal T, Bhuniya S, Ghosh M. Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharm J 2015;23:429-36. [PMID: 27134546 DOI: 10.1016/j.jsps.2015.01.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 4.9] [Reference Citation Analysis]
669 Kordalivand N, Li D, Beztsinna N, Sastre Torano J, Mastrobattista E, van Nostrum CF, Hennink WE, Vermonden T. Polyethyleneimine coated nanogels for the intracellular delivery of RNase A for cancer therapy. Chemical Engineering Journal 2018;340:32-41. [DOI: 10.1016/j.cej.2017.12.071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
670 Raja MAG, Katas H, Abd Hamid Z. Penetration and Silencing Activity of VEGF Dicer Substrate siRNA Vectorized by Chitosan Nanoparticles in Monolayer Culture and a Solid Tumor Model In Vitro for Potential Application in Tumor Therapy. Journal of Nanomaterials 2016;2016:1-16. [DOI: 10.1155/2016/7201204] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
671 Mohite BV, Koli SH, Patil SV. Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. In: Mondal MIH, editor. Cellulose-Based Superabsorbent Hydrogels. Cham: Springer International Publishing; 2019. pp. 1255-76. [DOI: 10.1007/978-3-319-77830-3_2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
672 Oehrl A, Schötz S, Haag R. Synthesis of pH-degradable polyglycerol-based nanogels by iEDDA-mediated crosslinking for encapsulation of asparaginase using inverse nanoprecipitation. Colloid Polym Sci 2020;298:719-33. [DOI: 10.1007/s00396-020-04675-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
673 Kuang D, Jiang F, Wu F, Kaur K, Ghosh S, Kundu SC, Lu S. Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 2019;134:838-45. [PMID: 31103592 DOI: 10.1016/j.ijbiomac.2019.05.068] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
674 Kheirabadi M, Bagheri R, Kabiri K. Structure, swelling and mechanical behavior of a cationic full-IPN hydrogel reinforced with modified nanoclay. Iran Polym J 2015;24:379-88. [DOI: 10.1007/s13726-015-0330-7] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
675 Chaturvedi K, Ganguly K, More UA, Reddy KR, Dugge T, Naik B, Aminabhavi TM, Noolvi MN. Sodium alginate in drug delivery and biomedical areas. Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier; 2019. pp. 59-100. [DOI: 10.1016/b978-0-12-817055-7.00003-0] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
676 Hess U, Shahabi S, Treccani L, Streckbein P, Heiss C, Rezwan K. Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy. Materials Science and Engineering: C 2017;77:427-35. [DOI: 10.1016/j.msec.2017.03.164] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 5.4] [Reference Citation Analysis]
677 Silindir-gunay M, Karpuz M, Ozer AY. Targeted Alpha Therapy and Nanocarrier Approach. Cancer Biotherapy and Radiopharmaceuticals 2020;35:446-58. [DOI: 10.1089/cbr.2019.3213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
678 Zhao Y, Tavares AC, Gauthier MA. Nano-engineered electro-responsive drug delivery systems. J Mater Chem B 2016;4:3019-30. [DOI: 10.1039/c6tb00049e] [Cited by in Crossref: 49] [Article Influence: 8.2] [Reference Citation Analysis]
679 Kiryukhin MV, Man SM, Gorelik SR, Subramanian GS, Low HY, Sukhorukov GB. Fabrication and mechanical properties of microchambers made of polyelectrolyte multilayers. Soft Matter 2011;7:6550. [DOI: 10.1039/c1sm05101f] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
680 Zhao Q, Sun J, Lin Y, Zhou Q. Study of the properties of hydrolyzed polyacrylamide hydrogels with various pore structures and rapid pH-sensitivities. Reactive and Functional Polymers 2010;70:602-9. [DOI: 10.1016/j.reactfunctpolym.2010.04.010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
681 Barbosa M, Martins MCL, Gomes P. Grafting Techniques towards Production of Peptide-Tethered Hydrogels, a Novel Class of Materials with Biomedical Interest. Gels 2015;1:194-218. [PMID: 30674173 DOI: 10.3390/gels1020194] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
682 Tomeh MA, Hadianamrei R, Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int J Mol Sci 2019;20:E1033. [PMID: 30818786 DOI: 10.3390/ijms20051033] [Cited by in Crossref: 160] [Cited by in F6Publishing: 139] [Article Influence: 53.3] [Reference Citation Analysis]
683 Jiang H, Tian R, Hu W, Jia Y, Yuan P, Wang J, Zhang L. Formulation and evaluation of gastroretentive floating drug delivery system of dipyridamole. Drug Development and Industrial Pharmacy 2014;41:674-80. [DOI: 10.3109/03639045.2014.893355] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
684 Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M, Moeller M, Zwadlo-klarwasser G, Groll J. Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry. ACS Nano 2010;4:3073-86. [DOI: 10.1021/nn100262h] [Cited by in Crossref: 159] [Cited by in F6Publishing: 154] [Article Influence: 13.3] [Reference Citation Analysis]
685 Mahdavinia GR, Hasanpour J, Rahmani Z, Karami S, Etemadi H. Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye. Cellulose 2013;20:2591-604. [DOI: 10.1007/s10570-013-0004-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
686 He D, He X, Wang K, Cao J, Zhao Y. A Light-Responsive Reversible Molecule-Gated System Using Thymine-Modified Mesoporous Silica Nanoparticles. Langmuir 2012;28:4003-8. [DOI: 10.1021/la2047504] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 8.2] [Reference Citation Analysis]
687 Schmidt B, Rokicka J, Janik J, Wilpiszewska K. Preparation and Characterization of Potato Starch Copolymers with a High Natural Polymer Content for the Removal of Cu(II) and Fe(III) from Solutions. Polymers (Basel) 2020;12:E2562. [PMID: 33142870 DOI: 10.3390/polym12112562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
688 Cho SH, Hong JH, Noh YW, Lee E, Lee CS, Lim YT. Raspberry-like poly(γ-glutamic acid) hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs. Int J Nanomedicine 2016;11:5621-32. [PMID: 27822040 DOI: 10.2147/IJN.S117862] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
689 Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, Vanage G, Patravale V. Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci 2010;99:4992-5010. [PMID: 20821383 DOI: 10.1002/jps.22191] [Cited by in Crossref: 72] [Cited by in F6Publishing: 56] [Article Influence: 6.5] [Reference Citation Analysis]
690 Matthews BM, Maley AM, Kartub KM, Corn RM. Characterizing the Incorporation of DNA into Single NIPAm Hydrogel Nanoparticles with Surface Plasmon Resonance Imaging Measurements. J Phys Chem C 2019;123:6090-6. [DOI: 10.1021/acs.jpcc.9b00444] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
691 Verheyen E, Delain-Bioton L, der Wal Sv, El Morabit N, Hennink WE, van Nostrum CF. Protein macromonomers for covalent immobilization and subsequent triggered release from hydrogels. J Control Release 2010;148:e18-9. [PMID: 21529598 DOI: 10.1016/j.jconrel.2010.07.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
692 Afshar M, Dini G, Vaezifar S, Mehdikhani M, Movahedi B. Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. Journal of Drug Delivery Science and Technology 2020;56:101530. [DOI: 10.1016/j.jddst.2020.101530] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
693 Fedotcheva TA, Olenin AY, Starostin KM, Lisichkin GV, Banin VV, Shimanovskii NL. Prospects for Using Gold, Silver, and Iron Oxide Nanoparticles for Increasing the Efficacy of Chemotherapy. Pharm Chem J 2015;49:220-30. [DOI: 10.1007/s11094-015-1260-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.9] [Reference Citation Analysis]
694 Climent E, Bernardos A, Martínez-Máñez R, Maquieira A, Marcos MD, Pastor-Navarro N, Puchades R, Sancenón F, Soto J, Amorós P. Controlled delivery systems using antibody-capped mesoporous nanocontainers. J Am Chem Soc 2009;131:14075-80. [PMID: 19739626 DOI: 10.1021/ja904456d] [Cited by in Crossref: 215] [Cited by in F6Publishing: 191] [Article Influence: 16.5] [Reference Citation Analysis]
695 Mi P, Ju X, Xie R, Wu H, Ma J, Chu L. A novel stimuli-responsive hydrogel for K+-induced controlled-release. Polymer 2010;51:1648-53. [DOI: 10.1016/j.polymer.2010.02.018] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
696 Faivre J, Sudre G, Montembault A, Benayoun S, Banquy X, Delair T, David L. Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection. Soft Matter 2018;14:2068-76. [DOI: 10.1039/c8sm00215k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
697 Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. International Journal of Biological Macromolecules 2020;151:677-90. [DOI: 10.1016/j.ijbiomac.2020.02.192] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 12.5] [Reference Citation Analysis]
698 Klinger D, Landfester K. Photo-sensitive PMMA microgels: light-triggered swelling and degradation. Soft Matter 2011;7:1426-40. [DOI: 10.1039/c0sm00638f] [Cited by in Crossref: 65] [Cited by in F6Publishing: 1] [Article Influence: 5.9] [Reference Citation Analysis]
699 Khoee S, Asadi H. Nanogels: Chemical Approaches to Preparation. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis; 2015. pp. 5266-93. [DOI: 10.1081/e-ebpp-120050693] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
700 Tavakol M, Vasheghani-farahani E, Dolatabadi-farahani T, Hashemi-najafabadi S. Sulfasalazine release from alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan. Carbohydrate Polymers 2009;77:326-30. [DOI: 10.1016/j.carbpol.2009.01.005] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 4.8] [Reference Citation Analysis]
701 Nigro V, Ripanti F, Angelini R, Sarra A, Bertoldo M, Buratti E, Postorino P, Ruzicka B. Molecular mechanisms driving the microgels behaviour: A Raman spectroscopy and dynamic light scattering study. Journal of Molecular Liquids 2019;284:718-24. [DOI: 10.1016/j.molliq.2019.04.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
702 He C, Lu J, Lin W. Hybrid nanoparticles for combination therapy of cancer. J Control Release 2015;219:224-36. [PMID: 26387745 DOI: 10.1016/j.jconrel.2015.09.029] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 10.9] [Reference Citation Analysis]
703 Tiwari P, Verma R, Basu A, Christman RM, Tiwari AK, Waikar D, Dutt konar A. Proteolysis-Resistant Self-Assembled ω -Amino Acid Dipeptide-Based Biocompatible Hydrogels as Drug Delivery Vehicle. ChemistrySelect 2017;2:6623-31. [DOI: 10.1002/slct.201701172] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
704 Palantöken S, Bethke K, Zivanovic V, Kalinka G, Kneipp J, Rademann K. Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties. J Appl Polym Sci 2020;137:48380. [DOI: 10.1002/app.48380] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
705 Bartovsky P, Ribes A, Agostini A, Benito A, Martínez-máñez R. Delivery modulation in silica mesoporous supports via functionalization in the pore outlets with a Zn(II)–bis(2-pyridylmethyl)amine complex. Inorganica Chimica Acta 2014;417:263-9. [DOI: 10.1016/j.ica.2014.01.036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
706 Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020;328:817-33. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
707 Liu J, Liu H, Kang H, Donovan M, Zhu Z, Tan W. Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. Anal Bioanal Chem 2012;402:187-94. [PMID: 22052153 DOI: 10.1007/s00216-011-5414-4] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
708 Hu B, Wang SS, Li J, Zeng XX, Huang QR. Assembly of Bioactive Peptide–Chitosan Nanocomplexes. J Phys Chem B 2011;115:7515-23. [DOI: 10.1021/jp2013557] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 5.4] [Reference Citation Analysis]
709 Koo J, Kim J, Lee H, Chung H, Lee Y, Yi W, Sohn D. Formation and characterization of poly(acrylic acid) on silica particles irradiated by γ-ray radiation. Macromol Res 2012;20:138-42. [DOI: 10.1007/s13233-012-0078-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
710 Ortiz mellet C, Benito J, García fernández J. Preorganized, Macromolecular, Gene-Delivery Systems. Chem Eur J 2010;16:6728-42. [DOI: 10.1002/chem.201000076] [Cited by in Crossref: 100] [Cited by in F6Publishing: 86] [Article Influence: 8.3] [Reference Citation Analysis]
711 Choi YR, Kim H, Ahn GY, Lee MJ, Park JR, Jun D, Ryu T, Park JW, Shin E, Choi S. Fabrication of dihydroxyflavone-conjugated hyaluronic acid nanogels for targeted antitumoral effect. Colloids and Surfaces B: Biointerfaces 2018;171:690-7. [DOI: 10.1016/j.colsurfb.2018.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
712 Ammar HO, El-nahhas SA, Ghorab MM, Salama AH. Chitosan/cyclodextrin nanoparticles as drug delivery system. J Incl Phenom Macrocycl Chem 2012;72:127-36. [DOI: 10.1007/s10847-011-9950-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
713 Lu S, Neoh KG, Huang C, Shi Z, Kang E. Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. Journal of Colloid and Interface Science 2013;412:46-55. [DOI: 10.1016/j.jcis.2013.09.011] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
714 Messager L, Portecop N, Hachet E, Lapeyre V, Pignot-paintrand I, Catargi B, Auzély-velty R, Ravaine V. Photochemical crosslinking of hyaluronic acid confined in nanoemulsions: towards nanogels with a controlled structure. J Mater Chem B 2013;1:3369. [DOI: 10.1039/c3tb20300j] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
715 Luppi B, Bigucci F, Cerchiara T, Zecchi V. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opinion on Drug Delivery 2010;7:811-28. [DOI: 10.1517/17425247.2010.495981] [Cited by in Crossref: 73] [Cited by in F6Publishing: 58] [Article Influence: 6.1] [Reference Citation Analysis]
716 Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. Prog Brain Res 2020;258:101-55. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [