BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1153-1166. [PMID: 18486268 DOI: 10.1016/j.addr.2008.03.005] [Cited by in Crossref: 598] [Cited by in F6Publishing: 545] [Article Influence: 42.7] [Reference Citation Analysis]
Number Citing Articles
1 Endo-takahashi Y, Negishi Y. Gene and oligonucleotide delivery via micro- and nanobubbles by ultrasound exposure. Drug Metabolism and Pharmacokinetics 2022. [DOI: 10.1016/j.dmpk.2022.100445] [Reference Citation Analysis]
2 Sun S, Xu Y, Fu P, Chen M, Sun S, Zhao R, Wang J, Liang X, Wang S. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1α-siRNA. Nanoscale 2018;10:19945-56. [PMID: 30346453 DOI: 10.1039/c8nr03074j] [Cited by in Crossref: 36] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
3 Mo R, Jiang T, Gu Z. Enhanced Anticancer Efficacy by ATP-Mediated Liposomal Drug Delivery. Angew Chem 2014;126:5925-30. [DOI: 10.1002/ange.201400268] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
4 Li P, Zheng Y, Ran H, Tan J, Lin Y, Zhang Q, Ren J, Wang Z. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. Journal of Controlled Release 2012;162:349-54. [DOI: 10.1016/j.jconrel.2012.07.009] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 7.4] [Reference Citation Analysis]
5 Alzaraa A, Gravante G, Chung WY, Al-Leswas D, Bruno M, Dennison AR, Lloyd DM. Targeted microbubbles in the experimental and clinical setting. Am J Surg. 2012;204:355-366. [PMID: 22920405 DOI: 10.1016/j.amjsurg.2011.10.024] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
6 Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013;10:573-92. [PMID: 23448121 DOI: 10.1517/17425247.2013.772578] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
7 Yamashita S, Fukushima H, Niidome Y, Mori T, Katayama Y, Niidome T. Controlled-Release System Mediated by a Retro Diels–Alder Reaction Induced by the Photothermal Effect of Gold Nanorods. Langmuir 2011;27:14621-6. [DOI: 10.1021/la2036746] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 4.2] [Reference Citation Analysis]
8 Timko BP, Dvir T, Kohane DS. Remotely Triggerable Drug Delivery Systems. Adv Mater 2010;22:4925-43. [DOI: 10.1002/adma.201002072] [Cited by in Crossref: 460] [Cited by in F6Publishing: 401] [Article Influence: 38.3] [Reference Citation Analysis]
9 Chao C, Jin X, Teng L, Stokes AA, Fan X. Bubble Dislodgment in a Capillary Network with Microscopic Multichannels and Multibifurcation Features. Langmuir 2019;35:3194-203. [PMID: 30721065 DOI: 10.1021/acs.langmuir.8b03323] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
10 Hassanpour S, Kim HJ, Saadati A, Tebon P, Xue C, van den Dolder FW, Thakor J, Baradaran B, Mosafer J, Baghbanzadeh A, de Barros NR, Hashemzaei M, Lee KJ, Lee J, Zhang S, Sun W, Cho HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Mokhtarzadeh A, Khademhosseini A. Thrombolytic Agents: Nanocarriers in Controlled Release. Small 2020;16:e2001647. [PMID: 32790000 DOI: 10.1002/smll.202001647] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
11 Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Suppression of Melanoma Growth and Metastasis by DNA Vaccination Using an Ultrasound-Responsive and Mannose-Modified Gene Carrier. Mol Pharmaceutics 2011;8:543-54. [DOI: 10.1021/mp100369n] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
12 Deng CX. Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2010;1:819-48. [PMID: 21785679 DOI: 10.4155/tde.10.66] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
13 Ajmal S. Contrast-Enhanced Ultrasonography: Review and Applications. Cureus 2021;13:e18243. [PMID: 34712527 DOI: 10.7759/cureus.18243] [Reference Citation Analysis]
14 Sanna V, Pintus G, Bandiera P, Anedda R, Punzoni S, Sanna B, Migaleddu V, Uzzau S, Sechi M. Development of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of novel ultrasound contrast agents. Mol Pharm 2011;8:748-57. [PMID: 21545176 DOI: 10.1021/mp100360g] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 5.0] [Reference Citation Analysis]
15 Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018;13:1051-66. [PMID: 29790803 DOI: 10.2217/nnm-2017-0328] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
16 Mura S, Couvreur P. Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews 2012;64:1394-416. [DOI: 10.1016/j.addr.2012.06.006] [Cited by in Crossref: 291] [Cited by in F6Publishing: 267] [Article Influence: 29.1] [Reference Citation Analysis]
17 Wiedemair W, Tukovic Z, Jasak H, Poulikakos D, Kurtcuoglu V. The breakup of intravascular microbubbles and its impact on the endothelium. Biomech Model Mechanobiol 2017;16:611-24. [PMID: 27734169 DOI: 10.1007/s10237-016-0840-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
18 Hagimori M, Mendoza-Ortega EE, Krafft MP. Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting. Beilstein J Org Chem 2021;17:511-8. [PMID: 33727974 DOI: 10.3762/bjoc.17.45] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Fan Z, Kumon RE, Park J, Deng CX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release 2010;142:31-9. [PMID: 19818371 DOI: 10.1016/j.jconrel.2009.09.031] [Cited by in Crossref: 107] [Cited by in F6Publishing: 95] [Article Influence: 8.2] [Reference Citation Analysis]
20 Un K, Kawakami S, Yoshida M, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. Efficient suppression of murine intracellular adhesion molecule-1 using ultrasound-responsive and mannose-modified lipoplexes inhibits acute hepatic inflammation. Hepatology 2012;56:259-69. [PMID: 22271390 DOI: 10.1002/hep.25607] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 3.7] [Reference Citation Analysis]
21 Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park I, Kim WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 2010;31:4204-13. [DOI: 10.1016/j.biomaterials.2010.01.123] [Cited by in Crossref: 115] [Cited by in F6Publishing: 104] [Article Influence: 9.6] [Reference Citation Analysis]
22 Kontaxi G, Stergiou YG, Mouza AA. Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid. Micromachines (Basel) 2021;12:71. [PMID: 33440872 DOI: 10.3390/mi12010071] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Qin P, Han T, Yu ACH, Xu L. Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. J Control Release 2018;272:169-81. [PMID: 29305924 DOI: 10.1016/j.jconrel.2018.01.001] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 18.3] [Reference Citation Analysis]
24 Díaz-López R, Tsapis N, Fattal E. Liquid perfluorocarbons as contrast agents for ultrasonography and (19)F-MRI. Pharm Res. 2010;27:1-16. [PMID: 19902338 DOI: 10.1007/s11095-009-0001-5] [Cited by in Crossref: 105] [Cited by in F6Publishing: 101] [Article Influence: 8.1] [Reference Citation Analysis]
25 Modarai B, Humphries J, Gossage J, Waltham M, Burnand K, Kanaganayagam G, Afuwape A, Paleolog E, Smith A, Wadoodi A. Adenovirus-Mediated VEGF Gene Therapy Enhances Venous Thrombus Recanalization and Resolution. ATVB 2008;28:1753-9. [DOI: 10.1161/atvbaha.108.170571] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
26 Bioley G, Bussat P, Lassus A, Schneider M, Terrettaz J, Corthésy B. The phagocytosis of gas-filled microbubbles by human and murine antigen-presenting cells. Biomaterials 2012;33:333-42. [PMID: 21983137 DOI: 10.1016/j.biomaterials.2011.09.045] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
27 Huynh E, Jin CS, Wilson BC, Zheng G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 2014;25:796-801. [PMID: 24621279 DOI: 10.1021/bc5000725] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 7.9] [Reference Citation Analysis]
28 Yang L, Wang Y, Li X, Pan D, Li L, Peng J, Hou L, Chen Z. Rapid determination of a fluorinated gas in a lipid microbubble contrast agent by ultrasound-mediated microbubble destruction and GC-MS. Anal Methods 2016;8:3353-8. [DOI: 10.1039/c5ay01912e] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, Pich A, Storm G, van Zandvoort M, Kiessling F. Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation. Adv Funct Mater 2015;25:36-43. [PMID: 25729344 DOI: 10.1002/adfm.201401199] [Cited by in Crossref: 82] [Cited by in F6Publishing: 81] [Article Influence: 10.3] [Reference Citation Analysis]
30 Manoharan D, Li W, Yeh C. Advances in controlled gas-releasing nanomaterials for therapeutic applications. Nanoscale Horiz 2019;4:557-78. [DOI: 10.1039/c8nh00191j] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
31 Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 2010;6:195-213. [PMID: 20195269 DOI: 10.1038/nrendo.2010.20] [Cited by in Crossref: 207] [Cited by in F6Publishing: 192] [Article Influence: 17.3] [Reference Citation Analysis]
32 Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021;:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Reference Citation Analysis]
33 Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol. 2015;6:197. [PMID: 26441654 DOI: 10.3389/fphar.2015.00197] [Cited by in Crossref: 127] [Cited by in F6Publishing: 104] [Article Influence: 18.1] [Reference Citation Analysis]
34 Díaz-López R, Tsapis N, Santin M, Bridal SL, Nicolas V, Jaillard D, Libong D, Chaminade P, Marsaud V, Vauthier C, Fattal E. The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 2010;31:1723-31. [PMID: 19948357 DOI: 10.1016/j.biomaterials.2009.11.044] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 5.9] [Reference Citation Analysis]
35 Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin Shell Microbubbles with Intrinsic Ultrasound and Photoacoustic Properties. J Am Chem Soc 2012;134:16464-7. [DOI: 10.1021/ja305988f] [Cited by in Crossref: 139] [Cited by in F6Publishing: 125] [Article Influence: 13.9] [Reference Citation Analysis]
36 Qin P, Xu L, Zhong W, Yu AC. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability. Ultrasound Med Biol 2012;38:1085-96. [PMID: 22502880 DOI: 10.1016/j.ultrasmedbio.2012.02.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
37 Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 2011;6:1017-25. [PMID: 21720513 DOI: 10.2147/IJN.S17040] [Cited by in Crossref: 88] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
38 Gao Y, Chan CU, Gu Q, Lin X, Zhang W, Yeo DCL, Alsema AM, Arora M, Chong MSK, Shi P, Ohl C, Xu C. Controlled nanoparticle release from stable magnetic microbubble oscillations. NPG Asia Mater 2016;8:e260-e260. [DOI: 10.1038/am.2016.37] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
39 Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S, Terreno E. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B Biointerfaces 2015;129:39-46. [PMID: 25819364 DOI: 10.1016/j.colsurfb.2015.03.023] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 6.1] [Reference Citation Analysis]
40 O'Neill BE, Rapoport N. Phase-shift, stimuli-responsive drug carriers for targeted delivery. Ther Deliv 2011;2:1165-87. [PMID: 22059114 DOI: 10.4155/tde.11.81] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
41 Ramaswamy K, Marx V, Laser D, Kenny T, Chi T, Bailey M, Sorensen MD, Grubbs RH, Stoller ML. Targeted microbubbles: a novel application for the treatment of kidney stones. BJU Int 2015;116:9-16. [PMID: 25402588 DOI: 10.1111/bju.12996] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
42 Staples BJ, Pitt WG, Roeder BL, Husseini GA, Rajeev D, Schaalje GB. Distribution of doxorubicin in rats undergoing ultrasonic drug delivery. J Pharm Sci 2010;99:3122-31. [PMID: 20166203 DOI: 10.1002/jps.22088] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
43 Chattaraj R, Hammer DA, Lee D, Sehgal CM. Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow. Ultrasound Med Biol 2021;47:2676-91. [PMID: 34112553 DOI: 10.1016/j.ultrasmedbio.2021.04.025] [Reference Citation Analysis]
44 Moran CM. Ultrasonic contrast agents. Clinical Ultrasound. Elsevier; 2011. pp. 77-89. [DOI: 10.1016/b978-0-7020-3131-1.00006-7] [Cited by in Crossref: 5] [Article Influence: 0.5] [Reference Citation Analysis]
45 Falatah HA, Lacerda Q, Chaga M, Wessner CE, Forsberg F, Leeper DB, Eisenbrey JR. Activation of Phase Change Contrast Agents Using Ionizing Radiation. J Ultrasound Med 2021. [PMID: 34866197 DOI: 10.1002/jum.15910] [Reference Citation Analysis]
46 Kwekkeboom RF, Lei Z, Bogaards SJ, Aiazian E, Kamp O, Paulus WJ, Sluijter JP, Musters RJ. Ultrasound and microbubble-induced local delivery of MicroRNA-based therapeutics. Ultrasound Med Biol. 2015;41:163-176. [PMID: 25438841 DOI: 10.1016/j.ultrasmedbio.2014.08.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
47 Ho Y, Hsu H, Kang S, Fan C, Chang C, Yeh C. Ultrasonic Transdermal Delivery System with Acid–Base Neutralization-Generated CO 2 Microbubble Cavitation. ACS Appl Bio Mater 2020;3:1968-75. [DOI: 10.1021/acsabm.9b01126] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Fu YY, Zhang L, Yang Y, Liu CW, He YN, Li P, Yu X. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. Int J Nanomedicine 2019;14:1805-15. [PMID: 30880981 DOI: 10.2147/IJN.S186571] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
49 Jia C, Xu L, Han T, Cai P, Yu ACH, Qin P. Generation of Reactive Oxygen Species in Heterogeneously Sonoporated Cells by Microbubbles with Single-Pulse Ultrasound. Ultrasound Med Biol 2018;44:1074-85. [PMID: 29499918 DOI: 10.1016/j.ultrasmedbio.2018.01.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
50 Gauthier M, Yin Q, Cheng J, O'Brien WD Jr. Design of Albumin-Coated Microbubbles Loaded With Polylactide Nanoparticles. J Ultrasound Med 2015;34:1363-72. [PMID: 26206822 DOI: 10.7863/ultra.34.8.1363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
51 Yang Y, Liu J, Sun X, Feng L, Zhu W, Liu Z, Chen M. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res 2016;9:139-48. [DOI: 10.1007/s12274-015-0898-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 32] [Article Influence: 7.7] [Reference Citation Analysis]
52 Segers T, Lohse D, Versluis M, Frinking P. Universal Equations for the Coalescence Probability and Long-Term Size Stability of Phospholipid-Coated Monodisperse Microbubbles Formed by Flow Focusing. Langmuir 2017;33:10329-39. [DOI: 10.1021/acs.langmuir.7b02547] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
53 Khan MS, Hwang J, Seo Y, Shin K, Lee K, Park C, Choi Y, Hong JW, Choi J. Engineering oxygen nanobubbles for the effective reversal of hypoxia. Artif Cells Nanomed Biotechnol 2018;46:S318-27. [PMID: 30032670 DOI: 10.1080/21691401.2018.1492420] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
54 Wang Y, Kohane DS. External triggering and triggered targeting strategies for drug delivery. Nat Rev Mater 2017;2. [DOI: 10.1038/natrevmats.2017.20] [Cited by in Crossref: 185] [Cited by in F6Publishing: 103] [Article Influence: 37.0] [Reference Citation Analysis]
55 Choi JH, Seo DW. The Expanding Role of Contrast-Enhanced Endoscopic Ultrasound in Pancreatobiliary Disease. Gut Liver 2015;9:707-13. [PMID: 26503571 DOI: 10.5009/gnl15077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
56 Segers T, Kruizinga P, Kok MP, Lajoinie G, de Jong N, Versluis M. Monodisperse Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep Tissue Imaging Potential. Ultrasound in Medicine & Biology 2018;44:1482-92. [DOI: 10.1016/j.ultrasmedbio.2018.03.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
57 Zhao C, Cao W, Zheng H, Xiao Z, Hu J, Yang L, Chen M, Liang G, Zheng S, Zhao C. Acid-responsive nanoparticles as a novel oxidative stress-inducing anticancer therapeutic agent for colon cancer. Int J Nanomedicine 2019;14:1597-618. [PMID: 30880968 DOI: 10.2147/IJN.S189923] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
58 Alvarez-lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun 2014;50:7743-65. [DOI: 10.1039/c4cc01429d] [Cited by in Crossref: 237] [Cited by in F6Publishing: 48] [Article Influence: 29.6] [Reference Citation Analysis]
59 Segers T, Lassus A, Bussat P, Gaud E, Frinking P. Improved coalescence stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at elevated temperatures. Lab Chip 2019;19:158-67. [DOI: 10.1039/c8lc00886h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
60 Yang S, Yu T, Huang H, Ku M, Tseng S, Tsai C, Chen H, Hsu L, Liu C. Light-driven manipulation of picobubbles on a titanium oxide phthalocyanine-based optoelectronic chip. Appl Phys Lett 2011;98:153512. [DOI: 10.1063/1.3580760] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
61 Ma Y, Wang Z, Zhang M, Han Z, Chen D, Zhu Q, Gao W, Qian Z, Gu Y. A Telomerase-Specific Doxorubicin-Releasing Molecular Beacon for Cancer Theranostics. Angew Chem 2016;128:3365-9. [DOI: 10.1002/ange.201509182] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
62 Shafi AS, Mcclements J, Albaijan I, Abou-saleh RH, Moran C, Koutsos V. Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties. Colloids and Surfaces B: Biointerfaces 2019;181:506-15. [DOI: 10.1016/j.colsurfb.2019.04.062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Paul S, Nahire R, Mallik S, Sarkar K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Comput Mech 2014;53:413-35. [PMID: 26097272 DOI: 10.1007/s00466-013-0962-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
64 Gao S, Cheng X, Li J. Lipid nanobubbles as an ultrasound-triggered artesunate delivery system for imaging-guided, tumor-targeted chemotherapy. Onco Targets Ther 2019;12:1841-50. [PMID: 30881036 DOI: 10.2147/OTT.S190208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
65 Baillet J, Desvergnes V, Hamoud A, Latxague L, Barthélémy P. Lipid and Nucleic Acid Chemistries: Combining the Best of Both Worlds to Construct Advanced Biomaterials. Adv Mater 2018;30:1705078. [DOI: 10.1002/adma.201705078] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
66 Vetterlein C, Vásquez R, Bolaños K, Acosta GA, Guzman F, Albericio F, Celis F, Campos M, Kogan MJ, Araya E. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods. Colloids Surf B Biointerfaces 2018;166:323-9. [PMID: 29625410 DOI: 10.1016/j.colsurfb.2018.03.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
67 Li J, Xi A, Qiao H, Liu Z. Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro/nanobubbles. Cancer Letters 2020;475:92-8. [DOI: 10.1016/j.canlet.2020.01.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
68 Kodama T, Aoi A, Watanabe Y, Horie S, Kodama M, Li L, Chen R, Teramoto N, Morikawa H, Mori S, Fukumoto M. Evaluation of transfection efficiency in skeletal muscle using nano/microbubbles and ultrasound. Ultrasound Med Biol 2010;36:1196-205. [PMID: 20620706 DOI: 10.1016/j.ultrasmedbio.2010.04.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
69 Okunaga S, Takasu A, Meshii N, Imai T, Hamada M, Iwai S, Yura Y. Ultrasound as a method to enhance antitumor ability of oncolytic herpes simplex virus for head and neck cancer. Cancer Gene Ther 2015;22:163-8. [PMID: 25656776 DOI: 10.1038/cgt.2015.3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
70 Zheng T, Wang J, Wang Q, Nie C, Shi Z, Wang X, Gao Z. A bibliometric analysis of micro/nano-bubble related research: current trends, present application, and future prospects. Scientometrics 2016;109:53-71. [DOI: 10.1007/s11192-016-2004-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
71 Peng Y, Seekell RP, Cole AR, Lamothe JR, Lock AT, van den Bosch S, Tang X, Kheir JN, Polizzotti BD. Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid. Angew Chem 2018;130:1285-90. [DOI: 10.1002/ange.201711839] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
72 Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021;172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
73 Weng L. Technologies and Applications Toward Preservation of Cells in a Dry State for Therapies. Biopreserv Biobank 2021;19:332-41. [PMID: 33493407 DOI: 10.1089/bio.2020.0130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Kubiak T, Banaszak J, Józefczak A, Rozynek Z. Direction-Specific Release from Capsules with Homogeneous or Janus Shells Using an Ultrasound Approach. ACS Appl Mater Interfaces 2020;12:15810-22. [DOI: 10.1021/acsami.9b21484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
75 Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015;73:214-30. [PMID: 26410788 DOI: 10.1016/j.biomaterials.2015.09.018] [Cited by in Crossref: 137] [Cited by in F6Publishing: 128] [Article Influence: 19.6] [Reference Citation Analysis]
76 Lu Y, Huskens J, Pang W, Duan X. Hypersonic poration of supported lipid bilayers. Mater Chem Front 2019;3:782-90. [DOI: 10.1039/c8qm00589c] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
77 Liou JC, Peng CW, Chen ZX. Investigation of Cylindrical Piezoelectric and Specific Multi-Channel Circular MEMS-Transducer Array Resonator of Ultrasonic Ablation. Micromachines (Basel) 2021;12:371. [PMID: 33808313 DOI: 10.3390/mi12040371] [Reference Citation Analysis]
78 Zhang B, Chen M, Zhang Y, Chen W, Zhang L, Chen L. An ultrasonic nanobubble-mediated PNP/fludarabine suicide gene system: A new approach for the treatment of hepatocellular carcinoma. PLoS One 2018;13:e0196686. [PMID: 29718963 DOI: 10.1371/journal.pone.0196686] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
79 Prabhakar A, Banerjee R. Nanobubble Liposome Complexes for Diagnostic Imaging and Ultrasound-Triggered Drug Delivery in Cancers: A Theranostic Approach. ACS Omega 2019;4:15567-80. [PMID: 31572858 DOI: 10.1021/acsomega.9b01924] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 9.7] [Reference Citation Analysis]
80 Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021;294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Wang CH, Huang YF, Yeh CK. Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 2011;27:6971-6. [PMID: 21553884 DOI: 10.1021/la2011259] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 5.1] [Reference Citation Analysis]
82 Murugappan SK, Zhou Y. Transsclera Drug Delivery by Pulsed High-Intensity Focused Ultrasound (HIFU): An Ex Vivo Study. Curr Eye Res 2015;40:1172-80. [PMID: 25380302 DOI: 10.3109/02713683.2014.980006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
83 Behnia S, Mobadersani F, Yahyavi M, Rezavand A. Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn 2013;74:559-70. [DOI: 10.1007/s11071-013-0988-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
84 Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials. 2012;33:3262-3269. [PMID: 22289265 DOI: 10.1016/j.biomaterials.2012.01.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 133] [Article Influence: 16.8] [Reference Citation Analysis]
85 Feshitan JA, Chen CC, Kwan JJ, Borden MA. Microbubble size isolation by differential centrifugation. J Colloid Interface Sci 2009;329:316-24. [PMID: 18950786 DOI: 10.1016/j.jcis.2008.09.066] [Cited by in Crossref: 275] [Cited by in F6Publishing: 234] [Article Influence: 19.6] [Reference Citation Analysis]
86 Arango-Restrepo A, Rubi JM, Kjelstrup S, Angelsen BAJ, Davies CL. Enhancing carrier flux for efficient drug delivery in cancer tissues. Biophys J 2021;120:5255-66. [PMID: 34757075 DOI: 10.1016/j.bpj.2021.10.036] [Reference Citation Analysis]
87 Wang DS, Panje C, Pysz MA, Paulmurugan R, Rosenberg J, Gambhir SS, Schneider M, Willmann JK. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology 2012;264:721-32. [PMID: 22723497 DOI: 10.1148/radiol.12112368] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 6.3] [Reference Citation Analysis]
88 Xu Y, Liang X, Bhattarai P, Sun Y, Zhou Y, Wang S, Chen W, Ge H, Wang J, Cui L, Dai Z. Enhancing Therapeutic Efficacy of Combined Cancer Phototherapy by Ultrasound-Mediated In Situ Conversion of Near-Infrared Cyanine/Porphyrin Microbubbles into Nanoparticles. Adv Funct Mater 2017;27:1704096. [DOI: 10.1002/adfm.201704096] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 6.2] [Reference Citation Analysis]
89 Kitano M, Sakamoto H, Kudo M. Endoscopic ultrasound: contrast enhancement. Gastrointest Endosc Clin N Am. 2012;22:349-58, xi. [PMID: 22632956 DOI: 10.1016/j.giec.2012.04.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
90 Burke CW, Hsiang YH, Alexander E 4th, Kilbanov AL, Price RJ. Covalently linking poly(lactic-co-glycolic acid) nanoparticles to microbubbles before intravenous injection improves their ultrasound-targeted delivery to skeletal muscle. Small 2011;7:1227-35. [PMID: 21456081 DOI: 10.1002/smll.201001934] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
91 He W, Hosseinkhani H, Mohammadinejad R, Roveimiab Z, Hueng D, Ou K, Domb AJ. Polymeric nanoparticles for therapy and imaging: BIOIMAGING TECHNOLOGY. Polym Adv Technol 2014;25:1216-25. [DOI: 10.1002/pat.3381] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
92 Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015;4:193-205. [PMID: 27512682 DOI: 10.2147/OV.S66097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
93 Wang Y, Yin T, Su Z, Qiu C, Wang Y, Zheng R, Chen M, Shuai X. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res 2018;11:3710-21. [DOI: 10.1007/s12274-017-1939-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
94 Lentacker I, Wang N, Vandenbroucke RE, Demeester J, De Smedt SC, Sanders NN. Ultrasound Exposure of Lipoplex Loaded Microbubbles Facilitates Direct Cytoplasmic Entry of the Lipoplexes. Mol Pharmaceutics 2009;6:457-67. [DOI: 10.1021/mp800154s] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 5.5] [Reference Citation Analysis]
95 Wang XQ, Wang W, Peng M, Zhang XZ. Free radicals for cancer theranostics. Biomaterials 2021;266:120474. [PMID: 33125969 DOI: 10.1016/j.biomaterials.2020.120474] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
96 Bertolotto M, Catalano O. Contrast-enhanced Ultrasound: Past, Present, and Future. Ultrasound Clinics 2009;4:339-67. [DOI: 10.1016/j.cult.2009.10.011] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
97 Nadendla K, Sarode B, Friedman SH. Chemical modification of proteins with photocleavable groups. Methods Enzymol 2019;624:113-28. [PMID: 31370926 DOI: 10.1016/bs.mie.2019.04.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
98 Bi H, Ma S, Li Q, Han X. Magnetically triggered drug release from biocompatible microcapsules for potential cancer therapeutics. J Mater Chem B 2016;4:3269-77. [DOI: 10.1039/c5tb02464a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
99 Khan MS, Hwang J, Lee K, Choi Y, Seo Y, Jeon H, Hong JW, Choi J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel) 2019;11:E1464. [PMID: 31569523 DOI: 10.3390/cancers11101464] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
100 Singh R, Husseini GA, Pitt WG. Phase transitions of nanoemulsions using ultrasound: experimental observations. Ultrason Sonochem 2012;19:1120-5. [PMID: 22444691 DOI: 10.1016/j.ultsonch.2012.02.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
101 Tong J, Ding J, Shen X, Chen L, Bian Y, Ma G, Yao Y, Yang F. Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles. PLoS One. 2013;8:e80186. [PMID: 24244646 DOI: 10.1371/journal.pone.0080186] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
102 Fekri F, Delos Santos RC, Karshafian R, Antonescu CN. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms. PLoS One 2016;11:e0156754. [PMID: 27275866 DOI: 10.1371/journal.pone.0156754] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
103 Vlaskou D, Plank C, Mykhaylyk O. Magnetic and acoustically active microbubbles loaded with nucleic acids for gene delivery. Methods Mol Biol 2013;948:205-41. [PMID: 23070773 DOI: 10.1007/978-1-62703-140-0_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
104 Fang J, Lee Y, Chiang W, Hu S. Magnetoresponsive Virus-Mimetic Nanocapsules with Dual Heat-Triggered Sequential-Infected Multiple Drug-Delivery Approach for Combinatorial Tumor Therapy. Small 2015;11:2417-28. [DOI: 10.1002/smll.201402969] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
105 Kovalenko A, Jouhannaud J, Polavarapu P, Krafft MP, Waton G, Pourroy G. Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles. Soft Matter 2014;10:5147-56. [PMID: 24909785 DOI: 10.1039/c4sm00318g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
106 Shen X, Li T, Xie X, Feng Y, Chen Z, Yang H, Wu C, Deng S, Liu Y. PLGA-Based Drug Delivery Systems for Remotely Triggered Cancer Therapeutic and Diagnostic Applications. Front Bioeng Biotechnol 2020;8:381. [PMID: 32432092 DOI: 10.3389/fbioe.2020.00381] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
107 Sun W, Zhao P, Zhou Y, Xing C, Zhao L, Li Z, Yuan L. Ultrasound targeted microbubble destruction assisted exosomal delivery of miR-21 protects the heart from chemotherapy associated cardiotoxicity. Biochem Biophys Res Commun 2020;532:60-7. [PMID: 32828538 DOI: 10.1016/j.bbrc.2020.05.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
108 Jin LF, Li F, Wang HP, Wei F, Qin P, Du LF. Ultrasound targeted microbubble destruction stimulates cellular endocytosis in facilitation of adeno-associated virus delivery. Int J Mol Sci. 2013;14:9737-9750. [PMID: 23652832 DOI: 10.3390/ijms14059737] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
109 Visy A, Jónás G, Szakos D, Horváth-Mezőfi Z, Hidas KI, Barkó A, Friedrich L. Evaluation of ultrasound and microbubbles effect on pork meat during brining process. Ultrason Sonochem 2021;75:105589. [PMID: 34015685 DOI: 10.1016/j.ultsonch.2021.105589] [Reference Citation Analysis]
110 Min HS, Son S, Lee TW, Koo H, Yoon HY, Na JH, Choi Y, Park JH, Lee J, Han MH, Park R, Kim I, Jeong SY, Rhee K, Kim SH, Kwon IC, Kim K. Liver-Specific and Echogenic Hyaluronic Acid Nanoparticles Facilitating Liver Cancer Discrimination. Adv Funct Mater 2013;23:5518-29. [DOI: 10.1002/adfm.201301131] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
111 Gao X, Nan Y, Yuan Y, Gong X, Sun Y, Zhou H, Zong Y, Zhang L, Yu M. Gas‑filled ultrasound microbubbles enhance the immunoactivity of the HSP70‑MAGEA1 fusion protein against MAGEA1‑expressing tumours. Mol Med Rep 2018;18:315-21. [PMID: 29749485 DOI: 10.3892/mmr.2018.9003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Chen H, Hwang JH. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultrasound 2013;1:10. [PMID: 25512858 DOI: 10.1186/2050-5736-1-10] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 6.6] [Reference Citation Analysis]
113 Ho YJ, Chu SW, Liao EC, Fan CH, Chan HL, Wei KC, Yeh CK. Normalization of Tumor Vasculature by Oxygen Microbubbles with Ultrasound. Theranostics. 2019;9:7370-7383. [PMID: 31695774 DOI: 10.7150/thno.37750] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
114 Duan L, Yang F, Song L, Fang K, Tian J, Liang Y, Li M, Xu N, Chen Z, Zhang Y, Gu N. Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter 2015;11:5492-500. [DOI: 10.1039/c5sm00864f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 2.4] [Reference Citation Analysis]
115 Chang LW, Hou ML, Hung SH, Lin LC, Tsai TH. Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging. Int J Nanomedicine 2015;10:3031-42. [PMID: 25945049 DOI: 10.2147/IJN.S78983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
116 Yu H, Chen S, Cao P. Synergistic bactericidal effects and mechanisms of low intensity ultrasound and antibiotics against bacteria: a review. Ultrason Sonochem 2012;19:377-82. [PMID: 22153228 DOI: 10.1016/j.ultsonch.2011.11.010] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 5.2] [Reference Citation Analysis]
117 Eisenbrey JR, Forsberg F. Contrast-enhanced ultrasound for molecular imaging of angiogenesis. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S138-S146. [PMID: 20461376 DOI: 10.1007/s00259-010-1449-6] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 3.6] [Reference Citation Analysis]
118 Capece S, Chiessi E, Cavalli R, Giustetto P, Grishenkov D, Paradossi G. A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Chem Commun 2013;49:5763. [DOI: 10.1039/c3cc42037j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
119 Alvarez-Sánchez MV, Napoléon B. Contrast-enhanced harmonic endoscopic ultrasound imaging: Basic principles, present situation and future perspectives. World J Gastroenterol 2014; 20(42): 15549-15563 [PMID: 25400439 DOI: 10.3748/wjg.v20.i42.15549] [Cited by in CrossRef: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
120 Fu L, Ke HT. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biol Med 2016;13:313-24. [PMID: 27807499 DOI: 10.20892/j.issn.2095-3941.2016.0065] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
121 Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, Yamashita F, Hashida M. Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. Nanomedicine 2014;10:1829-38. [PMID: 24954382 DOI: 10.1016/j.nano.2014.06.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
122 Lea-Banks H, Hynynen K. Sub-millimetre precision of drug delivery in the brain from ultrasound-triggered nanodroplets. J Control Release 2021;338:731-41. [PMID: 34530050 DOI: 10.1016/j.jconrel.2021.09.014] [Reference Citation Analysis]
123 You J, Shao R, Wei X, Gupta S, Li C. Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 2010;6:1022-31. [PMID: 20394071 DOI: 10.1002/smll.201000028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 114] [Article Influence: 11.3] [Reference Citation Analysis]
124 Chattaraj R, Hwang M, Zemerov SD, Dmochowski IJ, Hammer DA, Lee D, Sehgal CM. Ultrasound Responsive Noble Gas Microbubbles for Applications in Image-Guided Gas Delivery. Adv Healthc Mater 2020;9:e1901721. [PMID: 32207250 DOI: 10.1002/adhm.201901721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
125 Nomikou N, Tiwari P, Trehan T, Gulati K, McHale AP. Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo. Acta Biomater 2012;8:1273-80. [PMID: 21958669 DOI: 10.1016/j.actbio.2011.09.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 3.5] [Reference Citation Analysis]
126 Papadopoulos N, Yiallouras C, Damianou C. The Enhancing Effect of Focused Ultrasound on TNK-Tissue Plasminogen Activator-Induced Thrombolysis Using an In Vitro Circulating Flow Model. Journal of Stroke and Cerebrovascular Diseases 2016;25:2891-9. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.052] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
127 Cheng M, Li F, Han T, Yu ACH, Qin P. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions. Ultrason Sonochem 2019;52:512-21. [PMID: 30642801 DOI: 10.1016/j.ultsonch.2018.12.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 4.8] [Reference Citation Analysis]
128 Awad NS, Paul V, AlSawaftah NM, Ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021;4:589-612. [PMID: 33860189 DOI: 10.1021/acsptsci.0c00212] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
129 Chu Y, Liu H, Lou G, Zhang Q, Wu C. Human placenta mesenchymal stem cells expressing exogenous kringle1-5 protein by fiber-modified adenovirus suppress angiogenesis. Cancer Gene Ther 2014;21:200-8. [DOI: 10.1038/cgt.2014.19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
130 Saffari H, Kennedy A, Peterson KA, Gleich GJ, Pease LF 3rd. Non-invasive ultrasound to identify eosinophil granule proteins in eosinophilic esophagitis. Ultrasound Med Biol 2015;41:884-9. [PMID: 25638318 DOI: 10.1016/j.ultrasmedbio.2014.09.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
131 Tarahovsky YS. "Smart" liposomal nanocontainers in biology and medicine. Biochemistry (Mosc) 2010;75:811-24. [PMID: 20673204 DOI: 10.1134/s0006297910070023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
132 Cosco D, Fattal E, Fresta M, Tsapis N. Perfluorocarbon-loaded micro and nanosystems for medical imaging: A state of the art. Journal of Fluorine Chemistry 2015;171:18-26. [DOI: 10.1016/j.jfluchem.2014.10.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
133 Kim J, Kim H, Kim WJ. Single-Layered MoS 2 -PEI-PEG Nanocomposite-Mediated Gene Delivery Controlled by Photo and Redox Stimuli. Small 2016;12:1184-92. [DOI: 10.1002/smll.201501655] [Cited by in Crossref: 128] [Cited by in F6Publishing: 118] [Article Influence: 18.3] [Reference Citation Analysis]
134 Rapoport N. Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. In: Escoffre J, Bouakaz A, editors. Therapeutic Ultrasound. Cham: Springer International Publishing; 2016. pp. 221-41. [DOI: 10.1007/978-3-319-22536-4_13] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
135 Sun IC, Emelianov S. Gas-generating nanoparticles for contrast-enhanced ultrasound imaging. Nanoscale 2019;11:16235-40. [PMID: 31453614 DOI: 10.1039/c9nr04471j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
136 Panje CM, Wang DS, Pysz MA, Paulmurugan R, Ren Y, Tranquart F, Tian L, Willmann JK. Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: effect of DNA and microbubble dose on in vivo transfection efficiency. Theranostics. 2012;2:1078-1091. [PMID: 23227124 DOI: 10.7150/thno.4240] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 5.6] [Reference Citation Analysis]
137 Delaney LJ, MacDonald D, Leung J, Fitzgerald K, Sevit AM, Eisenbrey JR, Patel N, Forsberg F, Kepler CK, Fang T, Kurtz SM, Hickok NJ. Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations. Acta Biomater 2019;93:12-24. [PMID: 30826477 DOI: 10.1016/j.actbio.2019.02.041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
138 Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJ, Deelman LE, Kamp O. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009;104:679-87. [PMID: 19168443 DOI: 10.1161/CIRCRESAHA.108.183806] [Cited by in Crossref: 291] [Cited by in F6Publishing: 112] [Article Influence: 22.4] [Reference Citation Analysis]
139 Liang W, Zhang W, Zhao S, Li Q, Yang Y, Liang H, Ceng R. A study of the ultrasound-targeted microbubble destruction based triplex-forming oligodexinucleotide delivery system to inhibit tissue factor expression. Mol Med Rep 2015;11:903-9. [PMID: 25355395 DOI: 10.3892/mmr.2014.2822] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
140 Kwek BE, Ang TL, Seo DW, Imazu H. Contrast-enhanced harmonic endoscopic ultrasonography of solid pancreatic lesions. Endosc Ultrasound. 2013;2:142-147. [PMID: 24949382 DOI: 10.7178/eus.06.005] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
141 Kim JT, Pyo J, Seol SK, Je JH. Precise Placement of Microbubble Templates at Single Entity Resolution. ACS Macro Lett 2018;7:1267-71. [DOI: 10.1021/acsmacrolett.8b00646] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
142 Papadopoulou V, Tang MX, Balestra C, Eckersley RJ, Karapantsios TD. Circulatory bubble dynamics: from physical to biological aspects. Adv Colloid Interface Sci 2014;206:239-49. [PMID: 24534474 DOI: 10.1016/j.cis.2014.01.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
143 Petriashvili G, Devadze L, Zurabishvili T, Sepashvili N, Chubinidze K. Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres. Biomed Opt Express 2016;7:442-7. [PMID: 26977353 DOI: 10.1364/BOE.7.000442] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
144 Li C, Zhang Y, Li Z, Mei E, Lin J, Li F, Chen C, Qing X, Hou L, Xiong L, Hao H, Yang Y, Huang P. Light-Responsive Biodegradable Nanorattles for Cancer Theranostics. Adv Mater 2018;30:1706150. [DOI: 10.1002/adma.201706150] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 14.2] [Reference Citation Analysis]
145 Shen M, Wang Y, Hu F, Lv L, Chen K, Xing G. Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules 2021;26:6776. [PMID: 34833868 DOI: 10.3390/molecules26226776] [Reference Citation Analysis]
146 Chandan R, Banerjee R. Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Sci Rep 2018;8:2624. [PMID: 29422676 DOI: 10.1038/s41598-018-21084-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
147 Luan Y, Faez T, Gelderblom E, Skachkov I, Geers B, Lentacker I, van der Steen T, Versluis M, de Jong N. Acoustical Properties of Individual Liposome-Loaded Microbubbles. Ultrasound in Medicine & Biology 2012;38:2174-85. [DOI: 10.1016/j.ultrasmedbio.2012.07.023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 3.2] [Reference Citation Analysis]
148 Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 2010;31:7813-26. [DOI: 10.1016/j.biomaterials.2010.06.058] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 5.5] [Reference Citation Analysis]
149 Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018;130:17-38. [PMID: 30009886 DOI: 10.1016/j.addr.2018.07.007] [Cited by in Crossref: 437] [Cited by in F6Publishing: 405] [Article Influence: 109.3] [Reference Citation Analysis]
150 Khan AH, Jiang X, Surwase S, Gultekinoglu M, Bayram C, Sathisaran I, Bhatia D, Ahmed J, Wu B, Ulubayram K, Edirisinghe M, Dalvi SV. Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. Langmuir 2020;36:11429-41. [DOI: 10.1021/acs.langmuir.0c01557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
151 Josefsson L, Goodall D, Emmer Å. Implementation of a ultraviolet area imaging detector for analysis of polyvinyl alcohol microbubbles by capillary electrophoresis. J Chromatogr A 2020;1619:460899. [PMID: 31983415 DOI: 10.1016/j.chroma.2020.460899] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
152 Sanchez MV, Varadarajulu S, Napoleon B. EUS contrast agents: what is available, how do they work, and are they effective? Gastrointest Endosc. 2009;69:S71-S77. [PMID: 19179175 DOI: 10.1016/j.gie.2008.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 2.2] [Reference Citation Analysis]
153 Okunaga S, Takasu A, Meshii N, Imai T, Hamada M, Iwai S, Yura Y. Entry of Oncolytic Herpes Simplex Virus into Human Squamous Cell Carcinoma Cells by Ultrasound. Viruses 2015;7:5610-8. [PMID: 26516901 DOI: 10.3390/v7102890] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
154 Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol 2010;36:1364-75. [PMID: 20691925 DOI: 10.1016/j.ultrasmedbio.2010.04.019] [Cited by in Crossref: 114] [Cited by in F6Publishing: 101] [Article Influence: 10.4] [Reference Citation Analysis]
155 van Elburg B, Collado-Lara G, Bruggert GW, Segers T, Versluis M, Lajoinie G. Feedback-controlled microbubble generator producing one million monodisperse bubbles per second. Rev Sci Instrum 2021;92:035110. [PMID: 33820052 DOI: 10.1063/5.0032140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
156 Guilbert C, Chayer B, Allard L, Yu FTH, Cloutier G. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow. J Biomech 2017;61:26-33. [PMID: 28720200 DOI: 10.1016/j.jbiomech.2017.06.044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
157 Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021;28:49. [PMID: 34154581 DOI: 10.1186/s12929-021-00744-4] [Reference Citation Analysis]
158 Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein J Nanotechnol 2021;12:808-62. [PMID: 34476167 DOI: 10.3762/bjnano.12.64] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Upadhyay A, Yagnik B, Desai P, Dalvi SV. Microbubble-Mediated Enhanced Delivery of Curcumin to Cervical Cancer Cells. ACS Omega 2018;3:12824-31. [PMID: 30411020 DOI: 10.1021/acsomega.8b01737] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
160 Chen KT, Wei KC, Liu HL. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019;10:86. [PMID: 30792657 DOI: 10.3389/fphar.2019.00086] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 15.3] [Reference Citation Analysis]
161 Maples D, McLean K, Sahoo K, Newhardt R, Venkatesan P, Wood B, Ranjan A. Synthesis and characterisation of ultrasound imageable heat-sensitive liposomes for HIFU therapy. Int J Hyperthermia 2015;31:674-85. [PMID: 26185910 DOI: 10.3109/02656736.2015.1057622] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
162 Lee S, Al-Kaabi L, Mawart A, Khandoker A, Alsafar H, Jelinek HF, Khalaf K, Park JH, Kim YC. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction. J Drug Target 2018;26:172-81. [PMID: 28693344 DOI: 10.1080/1061186X.2017.1354001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
163 Baghbani F, Moztarzadeh F, Mohandesi JA, Yazdian F, Mokhtari-dizaji M. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. International Journal of Biological Macromolecules 2016;93:512-9. [DOI: 10.1016/j.ijbiomac.2016.09.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
164 Mulvana H, Eckersley RJ, Tang M, Pankhurst Q, Stride E. Theoretical and Experimental Characterisation of Magnetic Microbubbles. Ultrasound in Medicine & Biology 2012;38:864-75. [DOI: 10.1016/j.ultrasmedbio.2012.01.027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
165 Lebedeva NV, Sanders SN, Ina M, Zhushma AP, Olson SD, Rubinstein M, Sheiko SS. Multicore expandable microbubbles: Controlling density and expansion temperature. Polymer 2016;90:45-52. [DOI: 10.1016/j.polymer.2016.02.050] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
166 Hameed S, Zhang M, Bhattarai P, Mustafa G, Dai Z. Enhancing cancer therapeutic efficacy through ultrasound‐mediated micro‐to‐nano conversion. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1604] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
167 Brismar TB, Grishenkov D, Gustafsson B, Härmark J, Barrefelt A, Kothapalli SV, Margheritelli S, Oddo L, Caidahl K, Hebert H, Paradossi G. Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging. Biomacromolecules 2012;13:1390-9. [PMID: 22458325 DOI: 10.1021/bm300099f] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 5.5] [Reference Citation Analysis]
168 Centner CS, Murphy EM, Priddy MC, Moore JT, Janis BR, Menze MA, DeFilippis AP, Kopechek JA. Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system. Biomicrofluidics 2020;14:024114. [PMID: 32341725 DOI: 10.1063/1.5144617] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
169 Lim EK, Jang E, Lee K, Haam S, Huh YM. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 2013;5:294-317. [PMID: 24300452 DOI: 10.3390/pharmaceutics5020294] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 5.8] [Reference Citation Analysis]
170 Sanches PG, Grüll H, Steinbach OC. See, reach, treat: ultrasound-triggered image-guided drug delivery. Therapeutic Delivery 2011;2:919-34. [DOI: 10.4155/tde.11.63] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
171 Liu J, Guo J, Meng G, Fan D. Superstructural Raman Nanosensors with Integrated Dual Functions for Ultrasensitive Detection and Tunable Release of Molecules. Chem Mater 2018;30:5256-63. [DOI: 10.1021/acs.chemmater.8b01979] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
172 Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 2015;44:4645-71. [DOI: 10.1039/c4cs00270a] [Cited by in Crossref: 93] [Cited by in F6Publishing: 17] [Article Influence: 13.3] [Reference Citation Analysis]
173 Kumar A, Montemagno C, Choi HJ. Smart Microparticles with a pH-responsive Macropore for Targeted Oral Drug Delivery. Sci Rep 2017;7:3059. [PMID: 28596597 DOI: 10.1038/s41598-017-03259-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
174 May JN, Golombek SK, Baues M, Dasgupta A, Drude N, Rix A, Rommel D, von Stillfried S, Appold L, Pola R, Pechar M, van Bloois L, Storm G, Kuehne AJC, Gremse F, Theek B, Kiessling F, Lammers T. Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation. Theranostics 2020;10:1948-59. [PMID: 32042346 DOI: 10.7150/thno.41161] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
175 Chen Y, Liang Y, Jiang P, Li F, Yu B, Yan F. Lipid/PLGA Hybrid Microbubbles as a Versatile Platform for Noninvasive Image-Guided Targeted Drug Delivery. ACS Appl Mater Interfaces 2019;11:41842-52. [DOI: 10.1021/acsami.9b10188] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
176 Segers T, Versluis M. Acoustic bubble sorting for ultrasound contrast agent enrichment. Lab Chip 2014;14:1705-14. [DOI: 10.1039/c3lc51296g] [Cited by in Crossref: 52] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
177 Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 2012;33:1939-47. [PMID: 22142768 DOI: 10.1016/j.biomaterials.2011.11.036] [Cited by in Crossref: 137] [Cited by in F6Publishing: 126] [Article Influence: 12.5] [Reference Citation Analysis]
178 Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014;72:49-64. [PMID: 24270006 DOI: 10.1016/j.addr.2013.11.008] [Cited by in Crossref: 368] [Cited by in F6Publishing: 332] [Article Influence: 40.9] [Reference Citation Analysis]
179 Goethals LR, De Geeter F, Vanhove C, Roosens B, Devos H, Lahoutte T. Improved quantification in pinhole gated myocardial perfusion SPECT using micro-CT and ultrasound information. Contrast Media Mol Imaging 2012;7:167-74. [PMID: 22434629 DOI: 10.1002/cmmi.477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
180 Yang F, Dai X, Peles Y, Cheng P, Li C. Can multiple flow boiling regimes be reduced into a single one in microchannels? Appl Phys Lett 2013;103:043122. [DOI: 10.1063/1.4816594] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
181 Khaing ZZ, Seidlits SK. Hyaluronic acid and neural stem cells: implications for biomaterial design. J Mater Chem B 2015;3:7850-66. [DOI: 10.1039/c5tb00974j] [Cited by in Crossref: 33] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
182 Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 2015;23:16-42. [PMID: 25203857 DOI: 10.3109/1061186X.2014.954119] [Cited by in Crossref: 43] [Cited by in F6Publishing: 9] [Article Influence: 5.4] [Reference Citation Analysis]
183 Du L, Jin Y, Zhou W, Zhao J. Ultrasound-Triggered Drug Release and Enhanced Anticancer Effect of Doxorubicin-Loaded Poly(D,L-Lactide-Co-Glycolide)-Methoxy-Poly(Ethylene Glycol) Nanodroplets. Ultrasound in Medicine & Biology 2011;37:1252-8. [DOI: 10.1016/j.ultrasmedbio.2011.05.012] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
184 Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, Yamashita F, Hashida M. Development of anionic bubble lipopolyplexes for efficient and safe gene transfection with ultrasound exposure in mice. Journal of Controlled Release 2014;176:24-34. [DOI: 10.1016/j.jconrel.2013.12.023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
185 Segers T, de Rond L, de Jong N, Borden M, Versluis M. Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High Production Rates. Langmuir 2016;32:3937-44. [PMID: 27006083 DOI: 10.1021/acs.langmuir.6b00616] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
186 Kim HC, Al-Mahrouki A, Gorjizadeh A, Sadeghi-Naini A, Karshafian R, Czarnota GJ. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement. PLoS One 2014;9:e102343. [PMID: 25051356 DOI: 10.1371/journal.pone.0102343] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
187 Panje CM, Wang DS, Willmann JK. Ultrasound and microbubble-mediated gene delivery in cancer: progress and perspectives. Invest Radiol 2013;48:755-69. [PMID: 23697924 DOI: 10.1097/RLI.0b013e3182982cc1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
188 Mcewan C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, Coussios C, Borden M, Nomikou N, Mchale AP, Callan JF. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. Journal of Controlled Release 2015;203:51-6. [DOI: 10.1016/j.jconrel.2015.02.004] [Cited by in Crossref: 140] [Cited by in F6Publishing: 128] [Article Influence: 20.0] [Reference Citation Analysis]
189 Lin YC, Chen HC, Chen HK, Lin YY, Kuo CY, Wang H, Hung CL, Shih CP, Wang CH. Ultrastructural Changes Associated With the Enhanced Permeability of the Round Window Membrane Mediated by Ultrasound Microbubbles. Front Pharmacol 2019;10:1580. [PMID: 32047431 DOI: 10.3389/fphar.2019.01580] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
190 Do AV, Geary SM, Seol D, Tobias P, Carlsen D, Leelakanok N, Martin JA, Salem AK. Combining ultrasound and intratumoral administration of doxorubicin-loaded microspheres to enhance tumor cell killing. Int J Pharm 2018;539:139-46. [PMID: 29353083 DOI: 10.1016/j.ijpharm.2018.01.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
191 Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P, Penny C, Pillay V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 2014;9:589-613. [PMID: 24489467 DOI: 10.2147/IJN.S50941] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
192 Burgess A, Aubert I, Hynynen K. Focused ultrasound: crossing barriers to treat Alzheimer's disease. Ther Deliv 2011;2:281-6. [PMID: 22833998 DOI: 10.4155/tde.11.5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
193 Ahmad J, Akhter S, Greig NH, Kamal MA, Midoux P, Pichon C. Engineered Nanoparticles Against MDR in Cancer: The State of the Art and its Prospective. Curr Pharm Des 2016;22:4360-73. [PMID: 27319945 DOI: 10.2174/1381612822666160617112111] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
194 Deshayes S, Kasko AM. Polymeric biomaterials with engineered degradation. J Polym Sci Part A: Polym Chem 2013;51:3531-66. [DOI: 10.1002/pola.26765] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 5.8] [Reference Citation Analysis]
195 Yamashita S, Fukushima H, Akiyama Y, Niidome Y, Mori T, Katayama Y, Niidome T. Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorg Med Chem 2011;19:2130-5. [PMID: 21421321 DOI: 10.1016/j.bmc.2011.02.042] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
196 Hou Z, Li L, Zhan C, Zhu P, Chang D, Jiang Q, Ye S, Yang X, Li Y, Xie L, Zhang Q. Preparation and in vitro evaluation of an ultrasound-triggered drug delivery system: 10-hydroxycamptothecin loaded PLA microbubbles. Ultrasonics 2012;52:836-41. [PMID: 22542992 DOI: 10.1016/j.ultras.2011.10.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
197 Park MJ, Kim YS, Yang J, Sun WC, Park H, Chae SY, Namgung MS, Choi KS. Pulsed high-intensity focused ultrasound therapy enhances targeted delivery of cetuximab to colon cancer xenograft model in mice. Ultrasound Med Biol 2013;39:292-9. [PMID: 23219035 DOI: 10.1016/j.ultrasmedbio.2012.10.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
198 Glosser C, Piermarocchi C, Li J, Dault D, Shanker B. Computational dynamics of acoustically driven microsphere systems. Phys Rev E 2016;93:013305. [PMID: 26871188 DOI: 10.1103/PhysRevE.93.013305] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
199 Yu T, Zhang Y, He H, Zhou S, Liu Y, Huang P. Anticancer potency of cytotoxic drugs after exposure to high-intensity focused ultrasound in the presence of microbubbles and hematoporphyrin. Mol Pharm 2011;8:1408-15. [PMID: 21702446 DOI: 10.1021/mp2001846] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
200 Komamura K, Tatsumi R, Tsujita-Kuroda Y, Onoe T, Matsumoto K, Nakamura T, Miyazaki J, Horio T, Sugimachi M. Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction. J Drug Deliv 2011;2011:453619. [PMID: 21512580 DOI: 10.1155/2011/453619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
201 Tay LM, Xu C. Coating microbubbles with nanoparticles for medical imaging and drug delivery. Nanomedicine 2017;12:91-4. [DOI: 10.2217/nnm-2016-0362] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
202 Su X, Rakshit M, Das P, Gupta I, Das D, Pramanik M, Ng KW, Kwan J. Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS Appl Mater Interfaces 2021;13:24422-30. [PMID: 34019376 DOI: 10.1021/acsami.1c01161] [Reference Citation Analysis]
203 Haworth KJ, Mast TD, Radhakrishnan K, Burgess MT, Kopechek JA, Huang SL, McPherson DD, Holland CK. Passive imaging with pulsed ultrasound insonations. J Acoust Soc Am 2012;132:544-53. [PMID: 22779500 DOI: 10.1121/1.4728230] [Cited by in Crossref: 86] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
204 Kim D, Park S, Yoo H, Park S, Kim J, Yum K, Kim K, Kim H. Overcoming anticancer resistance by photodynamic therapy-related efflux pump deactivation and ultrasound-mediated improved drug delivery efficiency. Nano Converg 2020;7:30. [PMID: 32897469 DOI: 10.1186/s40580-020-00241-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
205 Kooiman K, Foppen-Harteveld M, van der Steen AF, de Jong N. Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release 2011;154:35-41. [PMID: 21514333 DOI: 10.1016/j.jconrel.2011.04.008] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 8.6] [Reference Citation Analysis]
206 Beguin E, Gray MD, Logan KA, Nesbitt H, Sheng Y, Kamila S, Barnsley LC, Bau L, McHale AP, Callan JF, Stride E. Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. J Control Release 2020;317:23-33. [PMID: 31733295 DOI: 10.1016/j.jconrel.2019.11.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
207 Nakatsuka MA, Lee JH, Nakayama E, Hung AM, Hsu MJ, Mattrey RF, Esener SC, Cha JN, Goodwin AP. Facile One-Pot Synthesis of Polymer-Phospholipid Composite Microbubbles with Enhanced Drug Loading Capacity for Ultrasound-Triggered Therapy. Soft Matter 2011;2011:1656-9. [PMID: 21799701 DOI: 10.1039/C0SM01131B] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
208 Xu R, Xin H, Li Q, Yang X, Chen H, Li B. Photothermal formation and targeted positioning of bubbles by a fiber taper. Appl Phys Lett 2012;101:054103. [DOI: 10.1063/1.4742132] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
209 Sheeran PS, Dayton PA. Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects. Scientifica (Cairo) 2014;2014:579684. [PMID: 24991447 DOI: 10.1155/2014/579684] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
210 Böhmer MR, Klibanov AL, Tiemann K, Hall CS, Gruell H, Steinbach OC. Ultrasound triggered image-guided drug delivery. Eur J Radiol 2009;70:242-53. [PMID: 19272727 DOI: 10.1016/j.ejrad.2009.01.051] [Cited by in Crossref: 102] [Cited by in F6Publishing: 82] [Article Influence: 7.8] [Reference Citation Analysis]
211 Liu X, Gong P, Song P, Xie F, Miller Ii AL, Chen S, Lu L. Fast functionalization of ultrasound microbubbles using strain promoted click chemistry. Biomater Sci 2018;6:623-32. [PMID: 29411006 DOI: 10.1039/c8bm00004b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
212 Mulvana H, Cochran S, Hill M. Ultrasound assisted particle and cell manipulation on-chip. Adv Drug Deliv Rev 2013;65:1600-10. [PMID: 23906935 DOI: 10.1016/j.addr.2013.07.016] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
213 Sheeran PS, Matsuura N, Borden MA, Williams R, Matsunaga TO, Burns PN, Dayton PA. Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE Trans Ultrason Ferroelectr Freq Control 2017;64:252-63. [PMID: 27775902 DOI: 10.1109/TUFFC.2016.2619685] [Cited by in Crossref: 38] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
214 Zhou Y, Han X, Jing X, Chen Y. Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Adv Healthcare Mater 2017;6:1700646. [DOI: 10.1002/adhm.201700646] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
215 Haworth K, Salgaonkar VA, Corregan NM, Holland CK, Mast TD. Spatial specificity and sensitivity of passive cavitation imaging for monitoring high-intensity focused ultrasound thermal ablation in ex vivo bovine liver. Proc Meet Acoust 2013;19:075022. [PMID: 24817990 DOI: 10.1121/1.4800327] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
216 Zhang K, Chen H, Zheng Y, Chen Y, Ma M, Wang X, Wang L, Zeng D, Shi J. A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs. J Mater Chem 2012;22:12553. [DOI: 10.1039/c2jm31504a] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
217 Hunt D, Romero J. Contrast-Enhanced Ultrasound. Magn Reson Imaging Clin N Am 2017;25:725-36. [PMID: 28964462 DOI: 10.1016/j.mric.2017.06.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
218 Wang F, Shi Y, Lu L, Liu L, Cai Y, Zheng H, Liu X, Yan F, Zou C, Sun C, Shi J, Lu S, Chen Y. Targeted delivery of GDNF through the blood-brain barrier by MRI-guided focused ultrasound. PLoS One 2012;7:e52925. [PMID: 23300823 DOI: 10.1371/journal.pone.0052925] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 3.6] [Reference Citation Analysis]
219 Zlitni A, Janzen N, Foster FS, Valliant JF. Catching Bubbles: Targeting Ultrasound Microbubbles Using Bioorthogonal Inverse‐Electron‐Demand Diels–Alder Reactions. Angew Chem 2014;126:6577-81. [DOI: 10.1002/ange.201402473] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
220 Duskey JT, Belletti D, Pederzoli F, Vandelli MA, Forni F, Ruozi B, Tosi G. Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. Nanomedicine in Central Nervous System Injury and Repair. Elsevier; 2017. pp. 1-28. [DOI: 10.1016/bs.irn.2017.08.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
221 Adhikari U, Goliaei A, Berkowitz ML. Mechanism of Membrane Poration by Shock Wave Induced Nanobubble Collapse: A Molecular Dynamics Study. J Phys Chem B 2015;119:6225-34. [DOI: 10.1021/acs.jpcb.5b02218] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
222 Liu T, Huang H, Chen Y, Chen Y. Study of a novel ultrasonically triggered drug vehicle with magnetic resonance properties. Acta Biomaterialia 2011;7:578-84. [DOI: 10.1016/j.actbio.2010.09.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
223 Yoo K, Walker WR, Williams R, Tremblay-Darveau C, Burns PN, Sheeran PS. Impact of Encapsulation on in vitro and in vivo Performance of Volatile Nanoscale Phase-Shift Perfluorocarbon Droplets. Ultrasound Med Biol 2018;44:1836-52. [PMID: 29908752 DOI: 10.1016/j.ultrasmedbio.2018.04.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
224 Lee YN, Lin CF, Chang CY, Wu YJ, Tsai CH, Tseng SW, Lee HI, Yeh HI, Su CH. Enhanced Proliferation of Endothelial Progenitor Cells Post-Ultrasonic Microbubble Transfection Is Plasmid DNA Size Dependent and Contributed by Interleukin-6 Generation. Ultrasound Med Biol 2019;45:2434-43. [PMID: 31248639 DOI: 10.1016/j.ultrasmedbio.2019.05.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
225 Sheeran PS, Streeter JE, Mullin LB, Matsunaga TO, Dayton PA. Toward ultrasound molecular imaging with phase-change contrast agents: an in vitro proof of principle. Ultrasound Med Biol 2013;39:893-902. [PMID: 23453380 DOI: 10.1016/j.ultrasmedbio.2012.11.017] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
226 Shi D, Liu X, Counil C, Krafft MP. Fluorocarbon Exposure Mode Markedly Affects Phospholipid Monolayer Behavior at the Gas/Liquid Interface: Impact on Size and Stability of Microbubbles. Langmuir 2019;35:10025-33. [DOI: 10.1021/acs.langmuir.8b03546] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
227 Gong A, Ma X, Xiang L, Ren W, Shen Z, Wu A. Improved double emulsion technology for fabricating autofluorescent microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. Colloids and Surfaces B: Biointerfaces 2014;116:561-7. [DOI: 10.1016/j.colsurfb.2014.01.038] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
228 Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv Mater 2016;28:8097-129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Cited by in Crossref: 254] [Cited by in F6Publishing: 238] [Article Influence: 42.3] [Reference Citation Analysis]
229 Lin C, Huang Y, Li J, Chang F, Lin W. Effects of Focused Ultrasound and Microbubbles on the Vascular Permeability of Nanoparticles Delivered into Mouse Tumors. Ultrasound in Medicine & Biology 2010;36:1460-9. [DOI: 10.1016/j.ultrasmedbio.2010.06.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
230 Chen YC, Chiang CF, Wu SK, Chen LF, Hsieh WY, Lin WL. Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors. J Control Release 2015;211:53-62. [PMID: 26047759 DOI: 10.1016/j.jconrel.2015.05.288] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
231 Rossi S, Waton G, Krafft MP. Phospholipid-Coated Gas Bubble Engineering: Key Parameters for Size and Stability Control, as Determined by an Acoustical Method. Langmuir 2010;26:1649-55. [DOI: 10.1021/la9025987] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 3.0] [Reference Citation Analysis]
232 Un K, Kawakami S, Yoshida M, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. The elucidation of gene transferring mechanism by ultrasound-responsive unmodified and mannose-modified lipoplexes. Biomaterials 2011;32:4659-69. [PMID: 21481454 DOI: 10.1016/j.biomaterials.2011.03.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
233 Ignee A, Atkinson NS, Schuessler G, Dietrich CF. Ultrasound contrast agents. Endosc Ultrasound. 2016;5:355-362. [PMID: 27824024 DOI: 10.4103/2303-9027.193594] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
234 Rapoport N. Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4:492-510. [PMID: 22730185 DOI: 10.1002/wnan.1176] [Cited by in Crossref: 120] [Cited by in F6Publishing: 115] [Article Influence: 12.0] [Reference Citation Analysis]
235 Zhang Z, Jiao Y, Zhu M, Zhang S. Nuclear-Shell Biopolymers Initiated by Telomere Elongation for Individual Cancer Cell Imaging and Drug Delivery. Anal Chem 2017;89:4320-7. [DOI: 10.1021/acs.analchem.7b00591] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
236 Chen ZY, Sun XF, Liu JQ, Si-Tu B, Qiu RX, Liang K, Liu JH, Liang WX, Zhou XX, Zhang H, Yu JX. Augmentation of transgenic expression by ultrasound‑mediated liposome microbubble destruction. Mol Med Rep 2012;5:964-70. [PMID: 22294278 DOI: 10.3892/mmr.2012.766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
237 Huang W, Manjare M, Zhao Y. Catalytic Nanoshell Micromotors. J Phys Chem C 2013;117:21590-6. [DOI: 10.1021/jp4080288] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 5.7] [Reference Citation Analysis]
238 Zhao Y, Lu C, Li X, Cai J. Ultrasound-mediated strategies in opening brain barriers for drug brain delivery. Expert Opinion on Drug Delivery 2013;10:987-1001. [DOI: 10.1517/17425247.2013.787987] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
239 Wu H, Zhou Y, Xu L, Tong L, Wang Y, Liu B, Yan H, Sun Z. Mapping Knowledge Structure and Research Frontiers of Ultrasound-Induced Blood-Brain Barrier Opening: A Scientometric Study. Front Neurosci 2021;15:706105. [PMID: 34335175 DOI: 10.3389/fnins.2021.706105] [Reference Citation Analysis]
240 Ten Hagen TLM, Dreher MR, Zalba S, Seynhaeve ALB, Amin M, Li L, Haemmerich D. Drug transport kinetics of intravascular triggered drug delivery systems. Commun Biol 2021;4:920. [PMID: 34321602 DOI: 10.1038/s42003-021-02428-z] [Reference Citation Analysis]
241 Huang Y, Vezeridis AM, Wang J, Wang Z, Thompson M, Mattrey RF, Gianneschi NC. Polymer-Stabilized Perfluorobutane Nanodroplets for Ultrasound Imaging Agents. J Am Chem Soc 2017;139:15-8. [DOI: 10.1021/jacs.6b08800] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
242 Mohamed RM, Yan BM. Contrast enhanced endoscopic ultrasound: More than just a fancy Doppler. World J Gastrointest Endosc 2010; 2(7): 237-243 [PMID: 21160613 DOI: 10.4253/wjge.v2.i7.237] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
243 Dong J, Zink JI. Simultaneous spectroscopic measurements of the interior temperature and induced cargo release from pore-restricted mesoporous silica nanoparticles. Nanoscale 2016;8:10558-63. [DOI: 10.1039/c6nr00978f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
244 Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond). 2014;127:351-365. [PMID: 24895056 DOI: 10.1042/cs20140005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 5.1] [Reference Citation Analysis]
245 Jang KW, Seol D, Ding L, Heo DN, Lee SJ, Martin JA, Kwon IK. Ultrasound-triggered PLGA microparticle destruction and degradation for controlled delivery of local cytotoxicity and drug release. Int J Biol Macromol 2018;106:1211-7. [PMID: 28851638 DOI: 10.1016/j.ijbiomac.2017.08.125] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
246 Ma Y, Wang Z, Zhang M, Han Z, Chen D, Zhu Q, Gao W, Qian Z, Gu Y. A Telomerase-Specific Doxorubicin-Releasing Molecular Beacon for Cancer Theranostics. Angew Chem Int Ed 2016;55:3304-8. [DOI: 10.1002/anie.201509182] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 14.0] [Reference Citation Analysis]
247 Yudina A, Lepetit-Coiffé M, Moonen CT. Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement. Mol Imaging Biol 2011;13:239-49. [PMID: 20521134 DOI: 10.1007/s11307-010-0346-5] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 5.7] [Reference Citation Analysis]
248 Mo R, Jiang T, DiSanto R, Tai W, Gu Z. ATP-triggered anticancer drug delivery. Nat Commun. 2014;5:3364. [PMID: 24618921 DOI: 10.1038/ncomms4364] [Cited by in Crossref: 408] [Cited by in F6Publishing: 393] [Article Influence: 51.0] [Reference Citation Analysis]
249 Kumar R. Lipid-Based Nanoparticles for Drug-Delivery Systems. Nanocarriers for Drug Delivery. Elsevier; 2019. pp. 249-84. [DOI: 10.1016/b978-0-12-814033-8.00008-4] [Cited by in Crossref: 22] [Article Influence: 7.3] [Reference Citation Analysis]
250 Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Z) 2017;375. [DOI: 10.1007/s41061-017-0119-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
251 Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel JJ, Yamashiro DJ, Borden MA. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release. 2012;157:224-234. [PMID: 21945680 DOI: 10.1016/j.jconrel.2011.09.071] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 6.5] [Reference Citation Analysis]
252 Gao C, Bhattarai P, Chen M, Zhang N, Hameed S, Yue X, Dai Z. Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. Bioconjugate Chem 2018;29:3967-81. [DOI: 10.1021/acs.bioconjchem.8b00692] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
253 Lajunen T, Viitala L, Kontturi LS, Laaksonen T, Liang H, Vuorimaa-Laukkanen E, Viitala T, Le Guével X, Yliperttula M, Murtomäki L, Urtti A. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. J Control Release 2015;203:85-98. [PMID: 25701610 DOI: 10.1016/j.jconrel.2015.02.028] [Cited by in Crossref: 85] [Cited by in F6Publishing: 74] [Article Influence: 12.1] [Reference Citation Analysis]
254 Huang J, Sun L, Du M, Liang Z, Mo Z, Tang J, Xie G. An investigation on the performance of a micro-scale Venturi bubble generator. Chemical Engineering Journal 2020;386:120980. [DOI: 10.1016/j.cej.2019.02.068] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
255 Rodriguez-Devora JI, Ambure S, Shi ZD, Yuan Y, Sun W, Xui T. Physically facilitating drug-delivery systems. Ther Deliv 2012;3:125-39. [PMID: 22485192 DOI: 10.4155/tde.11.137] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
256 Lammertink BH, Bos C, van der Wurff-jacobs KM, Storm G, Moonen CT, Deckers R. Increase of intracellular cisplatin levels and radiosensitization by ultrasound in combination with microbubbles. Journal of Controlled Release 2016;238:157-65. [DOI: 10.1016/j.jconrel.2016.07.049] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
257 Hussein F, Antonescu C, Karshafian R. Ultrasound and microbubble induced release from intracellular compartments. BMC Biotechnol 2017;17:45. [PMID: 28521780 DOI: 10.1186/s12896-017-0364-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
258 Topcuoglu MA. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem 2012;123 Suppl 2:39-51. [PMID: 23050641 DOI: 10.1111/j.1471-4159.2012.07942.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
259 Hernot S, Cosyns B, Droogmans S, Garbar C, Couck P, Vanhove C, Caveliers V, Van Camp G, Bossuyt A, Lahoutte T. Effect of High-Intensity Ultrasound–Targeted Microbubble Destruction on Perfusion and Function of the Rat Heart Assessed by Pinhole-Gated SPECT. Ultrasound in Medicine & Biology 2010;36:158-65. [DOI: 10.1016/j.ultrasmedbio.2009.08.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
260 Hou R, Liang X, Li X, Zhang X, Ma X, Wang F. In situ conversion of rose bengal microbubbles into nanoparticles for ultrasound imaging guided sonodynamic therapy with enhanced antitumor efficacy. Biomater Sci 2020;8:2526-36. [DOI: 10.1039/c9bm02046b] [Cited by in Crossref: 11] [Article Influence: 5.5] [Reference Citation Analysis]
261 Lajoinie G, van Rooij T, Skachkov I, Blazejewski E, Veldhuis G, de Jong N, Kooiman K, Versluis M. Laser-Activated Polymeric Microcapsules for Ultrasound Imaging and Therapy: In Vitro Feasibility. Biophys J 2017;112:1894-907. [PMID: 28494960 DOI: 10.1016/j.bpj.2017.03.033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
262 Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed Engl 2012;51:7519-22. [PMID: 22692791 DOI: 10.1002/anie.201201902] [Cited by in Crossref: 187] [Cited by in F6Publishing: 170] [Article Influence: 18.7] [Reference Citation Analysis]
263 Badami JV, Desir P, Tu RS. Integration of surface-active, periodically sequenced peptides into lipid-based microbubbles. Langmuir 2014;30:8839-47. [PMID: 24987931 DOI: 10.1021/la501912w] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
264 Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z. Mechanical Force-Triggered Drug Delivery. Chem Rev 2016;116:12536-63. [DOI: 10.1021/acs.chemrev.6b00369] [Cited by in Crossref: 150] [Cited by in F6Publishing: 123] [Article Influence: 25.0] [Reference Citation Analysis]
265 Qin P, Xu L, Han T, Du L, Yu AC. Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles. Ultrason Sonochem 2016;31:107-15. [PMID: 26964929 DOI: 10.1016/j.ultsonch.2015.12.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 5.3] [Reference Citation Analysis]
266 Liu HL, Fan CH, Ting CY, Yeh CK. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014;4:432-44. [PMID: 24578726 DOI: 10.7150/thno.8074] [Cited by in Crossref: 153] [Cited by in F6Publishing: 152] [Article Influence: 19.1] [Reference Citation Analysis]
267 Ryu JY, Won EJ, Lee HAR, Kim JH, Hui E, Kim HP, Yoon TJ. Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy. Biomaterials 2020;232:119736. [PMID: 31901692 DOI: 10.1016/j.biomaterials.2019.119736] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
268 Helfield BL, Chen X, Qin B, Watkins SC, Villanueva FS. Mechanistic Insight into Sonoporation with Ultrasound-Stimulated Polymer Microbubbles. Ultrasound Med Biol 2017;43:2678-89. [PMID: 28847500 DOI: 10.1016/j.ultrasmedbio.2017.07.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
269 Gong Y, Wang Z, Dong G, Sun Y, Wang X, Rong Y, Li M, Wang D, Ran H. Low-intensity focused ultrasound mediated localized drug delivery for liver tumors in rabbits. Drug Deliv 2016;23:2280-9. [PMID: 25367869 DOI: 10.3109/10717544.2014.972528] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
270 Chen H, Brayman AA, Matula TJ. Characteristic microvessel relaxation timescales associated with ultrasound-activated microbubbles. Appl Phys Lett 2012;101:163704. [PMID: 23152641 DOI: 10.1063/1.4761937] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
271 Dewitte H, Roovers S, De Smedt SC, Lentacker I. Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles. Methods Mol Biol 2019;1943:241-51. [PMID: 30838621 DOI: 10.1007/978-1-4939-9092-4_16] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
272 Szíjjártó C, Rossi S, Waton G, Krafft MP. Effects of Perfluorocarbon Gases on the Size and Stability Characteristics of Phospholipid-Coated Microbubbles: Osmotic Effect versus Interfacial Film Stabilization. Langmuir 2012;28:1182-9. [DOI: 10.1021/la2043944] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
273 Li Y, Hong W, Zhang H, Zhang TT, Chen Z, Yuan S, Peng P, Xiao M, Xu L. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. Journal of Controlled Release 2020;317:232-45. [DOI: 10.1016/j.jconrel.2019.11.031] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
274 Yudina A, Lepetit-Coiffé M, De Smet M, Langereis S, Grüll H, Moonen C. In vivo temperature controlled ultrasound-mediated intracellular delivery of cell-impermeable compounds. J Control Release 2012;161:90-7. [PMID: 22543041 DOI: 10.1016/j.jconrel.2012.04.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
275 Kim H, Lee D, Kim J, Kim T, Kim WJ. Photothermally Triggered Cytosolic Drug Delivery via Endosome Disruption Using a Functionalized Reduced Graphene Oxide. ACS Nano 2013;7:6735-46. [DOI: 10.1021/nn403096s] [Cited by in Crossref: 304] [Cited by in F6Publishing: 278] [Article Influence: 33.8] [Reference Citation Analysis]
276 Myrset AH, Fjerdingstad HB, Bendiksen R, Arbo BE, Bjerke RM, Johansen JH, Kulseth MA, Skurtveit R. Design and Characterization of Targeted Ultrasound Microbubbles for Diagnostic Use. Ultrasound in Medicine & Biology 2011;37:136-50. [DOI: 10.1016/j.ultrasmedbio.2010.10.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
277 Kok MP, Segers T, Versluis M. Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment. Lab Chip 2015;15:3716-22. [DOI: 10.1039/c5lc00370a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
278 Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021;29:665-80. [PMID: 34754286 DOI: 10.1007/s13233-021-9093-5] [Reference Citation Analysis]
279 Bisazza A, Civra A, Donalisio M, Lembo D, Cavalli R. The in vitro characterization of dextran-based nanobubbles as possible DNA transfection agents. Soft Matter 2011;7:10590. [DOI: 10.1039/c1sm06070h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
280 Zhou W, Niu L, Cai F, Li F, Wang C, Huang X, Wang J, Wu J, Meng L, Zheng H. Spatial selective manipulation of microbubbles by tunable surface acoustic waves. Biomicrofluidics 2016;10:034121. [PMID: 27462381 DOI: 10.1063/1.4954934] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
281 Bezagu M, Clarhaut J, Renoux B, Monti F, Tanter M, Tabeling P, Cossy J, Couture O, Papot S, Arseniyadis S. In situ targeted activation of an anticancer agent using ultrasound-triggered release of composite droplets. European Journal of Medicinal Chemistry 2017;142:2-7. [DOI: 10.1016/j.ejmech.2017.03.057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
282 Thomson LM, Polizzotti BD, McGowan FX, Kheir JN. Manufacture of concentrated, lipid-based oxygen microbubble emulsions by high shear homogenization and serial concentration. J Vis Exp 2014. [PMID: 24894333 DOI: 10.3791/51467] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
283 Luo B, Liang H, Zhang S, Qin X, Liu X, Liu W, Zeng F, Wu Y, Yang X. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging. Int J Nanomedicine 2015;10:5805-17. [PMID: 26396514 DOI: 10.2147/IJN.S83582] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
284 Liu X, Gong P, Song P, Xie F, Miller Ii AL, Chen S, Lu L. Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polym Chem 2019;10:705-17. [DOI: 10.1039/c8py01721b] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
285 Hutcheson JD, Schlicher RK, Hicks HK, Prausnitz MR. Saving cells from ultrasound-induced apoptosis: quantification of cell death and uptake following sonication and effects of targeted calcium chelation. Ultrasound Med Biol 2010;36:1008-21. [PMID: 20447754 DOI: 10.1016/j.ultrasmedbio.2010.03.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
286 Yang P, Li D, Jin S, Ding J, Guo J, Shi W, Wang C. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 2014;35:2079-88. [PMID: 24331704 DOI: 10.1016/j.biomaterials.2013.11.057] [Cited by in Crossref: 92] [Cited by in F6Publishing: 85] [Article Influence: 10.2] [Reference Citation Analysis]
287 Garello F, Terreno E. Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update. Front Chem 2018;6:157. [PMID: 29868560 DOI: 10.3389/fchem.2018.00157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
288 Liu Z, Kiessling F, Gätjens J. Advanced Nanomaterials in Multimodal Imaging: Design, Functionalization, and Biomedical Applications. Journal of Nanomaterials 2010;2010:1-15. [DOI: 10.1155/2010/894303] [Cited by in Crossref: 41] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
289 Mannaris C, Averkiou MA. Investigation of Microbubble Response to Long Pulses Used in Ultrasound-Enhanced Drug Delivery. Ultrasound in Medicine & Biology 2012;38:681-91. [DOI: 10.1016/j.ultrasmedbio.2011.12.018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
290 Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 2012;53:345-8. [PMID: 22393225 DOI: 10.2967/jnumed.111.099754] [Cited by in Crossref: 197] [Cited by in F6Publishing: 171] [Article Influence: 19.7] [Reference Citation Analysis]
291 Zhou Y. Ultrasound-mediated drug/gene delivery in solid tumor treatment. J Healthc Eng 2013;4:223-54. [PMID: 23778013 DOI: 10.1260/2040-2295.4.2.223] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
292 Hua X, Liu P, Gao Y, Tan K, Zhou L, Liu Z, Li X, Zhou S, Gao Y. Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J Thromb Thrombolysis 2010;30:29-35. [DOI: 10.1007/s11239-010-0450-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 2.9] [Reference Citation Analysis]
293 Mitra AK, Agrahari V, Mandal A, Cholkar K, Natarajan C, Shah S, Joseph M, Trinh HM, Vaishya R, Yang X, Hao Y, Khurana V, Pal D. Novel delivery approaches for cancer therapeutics. J Control Release 2015;219:248-68. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 10.3] [Reference Citation Analysis]
294 Koudelka S, Mikulik R, Mašek J, Raška M, Turánek Knotigová P, Miller AD, Turánek J. Liposomal nanocarriers for plasminogen activators. J Control Release 2016;227:45-57. [PMID: 26876783 DOI: 10.1016/j.jconrel.2016.02.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
295 Furusawa Y, Zhao Q, Hassan MA, Tabuchi Y, Takasaki I, Wada S, Kondo T. Ultrasound-induced apoptosis in the presence of Sonazoid and associated alterations in gene expression levels: A possible therapeutic application. Cancer Letters 2010;288:107-15. [DOI: 10.1016/j.canlet.2009.06.029] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
296 Qian X, Han X, Chen Y. Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials 2017;142:13-30. [DOI: 10.1016/j.biomaterials.2017.07.016] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 14.8] [Reference Citation Analysis]
297 Husseini GA, Pitt WG, Martins AM. Ultrasonically triggered drug delivery: breaking the barrier. Colloids Surf B Biointerfaces 2014;123:364-86. [PMID: 25454759 DOI: 10.1016/j.colsurfb.2014.07.051] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 6.4] [Reference Citation Analysis]
298 Li X, He S, Zhang YS, Chen Y, He JC. Resting Myocardial Contrast Echocardiography for the Evaluation of Coronary Microcirculation Dysfunction in Patients With Early Coronary Artery Disease. Clin Cardiol 2016;39:453-8. [PMID: 27163691 DOI: 10.1002/clc.22548] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
299 Li L, Bai Z, Levkin PA. Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials 2013;34:8504-10. [PMID: 23932249 DOI: 10.1016/j.biomaterials.2013.07.053] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 5.9] [Reference Citation Analysis]
300 Shiraishi K, Endoh R, Furuhata H, Nishihara M, Suzuki R, Maruyama K, Oda Y, Jo J, Tabata Y, Yamamoto J, Yokoyama M. A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. International Journal of Pharmaceutics 2011;421:379-87. [DOI: 10.1016/j.ijpharm.2011.10.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
301 Frinking P, Segers T, Luan Y, Tranquart F. Three Decades of Ultrasound Contrast Agents: A Review of the Past, Present and Future Improvements. Ultrasound in Medicine & Biology 2020;46:892-908. [DOI: 10.1016/j.ultrasmedbio.2019.12.008] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 18.0] [Reference Citation Analysis]
302 Lee H, Kim H, Han H, Lee M, Lee S, Yoo H, Chang JH, Kim H. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed Eng Lett 2017;7:59-69. [PMID: 30603152 DOI: 10.1007/s13534-017-0016-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
303 Cai P, Hu B, Leow WR, Wang X, Loh XJ, Wu Y, Chen X. Biomechano-Interactive Materials and Interfaces. Adv Mater 2018;30:1800572. [DOI: 10.1002/adma.201800572] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
304 Liu M, Dasgupta A, Koczera P, Schipper S, Rommel D, Shi Y, Kiessling F, Lammers T. Drug Loading in Poly(butyl cyanoacrylate)-Based Polymeric Microbubbles. Mol Pharm 2020;17:2840-8. [PMID: 32589435 DOI: 10.1021/acs.molpharmaceut.0c00242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
305 Lai P, Tarapacki C, Tran WT, El Kaffas A, Lee J, Hupple C, Iradji S, Giles A, Al-Mahrouki A, Czarnota GJ. Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo. Oncoscience 2016;3:98-108. [PMID: 27226983 DOI: 10.18632/oncoscience.299] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
306 Meng Z, Zhang Y, Shen E, Li W, Wang Y, Sathiyamoorthy K, Gao W, C Kolios M, Bai W, Hu B, Wang W, Zheng Y. Marriage of Virus-Mimic Surface Topology and Microbubble-Assisted Ultrasound for Enhanced Intratumor Accumulation and Improved Cancer Theranostics. Adv Sci (Weinh) 2021;8:2004670. [PMID: 34258156 DOI: 10.1002/advs.202004670] [Reference Citation Analysis]
307 Liang X, Xu Y, Gao C, Zhou Y, Zhang N, Dai Z. Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy. NPG Asia Mater 2018;10:761-74. [DOI: 10.1038/s41427-018-0066-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
308 Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, Lam WA, Bao G. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat Commun 2017;8:15594. [PMID: 28593939 DOI: 10.1038/ncomms15594] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 14.6] [Reference Citation Analysis]
309 Chen Z, Liang K, Xie M, Wang X, Lü Q, Zhang J. Novel ultrasound-targeted microbubble destruction mediated short hairpin RNA plasmid transfection targeting survivin inhibits gene expression and induces apoptosis of HeLa cells. Mol Biol Rep 2009;36:2059-67. [PMID: 18991017 DOI: 10.1007/s11033-008-9417-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
310 Jang Y, Kim D, Lee H, Jang H, Park S, Kim GE, Lee HJ, Kim HJ, Kim H. Development of an ultrasound triggered nanomedicine-microbubble complex for chemo-photodynamic-gene therapy. Nanomedicine 2020;27:102194. [PMID: 32278102 DOI: 10.1016/j.nano.2020.102194] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
311 Zlitni A, Janzen N, Foster FS, Valliant JF. Catching bubbles: targeting ultrasound microbubbles using bioorthogonal inverse-electron-demand Diels-Alder reactions. Angew Chem Int Ed Engl 2014;53:6459-63. [PMID: 24829138 DOI: 10.1002/anie.201402473] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
312 Cosgrove D. Microbubbles: from cancer detection to theranostics. Cancer Imaging 2015;15:O17. [DOI: 10.1186/1470-7330-15-s1-o17] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
313 Zhu F, Jiang Y, Luo F, Li P. Effectiveness of localized ultrasound-targeted microbubble destruction with doxorubicin liposomes in H22 mouse hepatocellular carcinoma model. J Drug Target 2015;23:323-34. [PMID: 25609362 DOI: 10.3109/1061186X.2014.996759] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
314 Yamatomo N, Iwagami T, Kato I, Masunaga S, Sakurai Y, Iwai S, Nakazawa M, Ono K, Yura Y. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas. Radiat Oncol 2013;8:280. [PMID: 24295213 DOI: 10.1186/1748-717X-8-280] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
315 Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020;161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
316 Caffarini J, Kelleher N, Konopka CC, Mazurek M, Nandyala A, Patel D, Slania S, Wang S, Yada RC, Pan D. Multimodal Imaging and Theranostic Application of Disease-Directed Agents. In: Pan D, editor. Personalized Medicine with a Nanochemistry Twist. Cham: Springer International Publishing; 2016. pp. 75-103. [DOI: 10.1007/7355_2015_91] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
317 Li H, Zhang Y, Shu H, Lv W, Su C, Nie F. Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. Int J Pharm 2021;:121412. [PMID: 34942327 DOI: 10.1016/j.ijpharm.2021.121412] [Reference Citation Analysis]
318 Gerst S, Hann LE, Li D, Gonen M, Tickoo S, Sohn MJ, Russo P. Evaluation of renal masses with contrast-enhanced ultrasound: initial experience. AJR Am J Roentgenol 2011;197:897-906. [PMID: 21940577 DOI: 10.2214/AJR.10.6330] [Cited by in Crossref: 74] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
319 Granata A, Zanoli L, Insalaco M, Valentino M, Pavlica P, Di Nicolò PP, Scuderi M, Fiorini F, Fatuzzo P, Bertolotto M. Contrast-enhanced ultrasound (CEUS) in nephrology: Has the time come for its widespread use? Clin Exp Nephrol. 2015;19:606-615. [PMID: 25351822 DOI: 10.1007/s10157-014-1040-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
320 Kovalenko A, Polavarapu P, Pourroy G, Waton G, Krafft MP. pH-controlled microbubble shell formation and stabilization. Langmuir 2014;30:6339-47. [PMID: 24821482 DOI: 10.1021/la5007023] [Cited by in Crossref: 6] [Article Influence: 0.8] [Reference Citation Analysis]
321 Kooiman K, van Rooij T, Qin B, Mastik F, Vos HJ, Versluis M, Klibanov AL, de Jong N, Villanueva FS, Chen X. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification. PLoS One 2017;12:e0180747. [PMID: 28686673 DOI: 10.1371/journal.pone.0180747] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
322 Kato S, Shirai Y, Motozono C, Kanzaki H, Mori S, Kodama T. In vivo delivery of an exogenous molecule into murine T lymphocytes using a lymphatic drug delivery system combined with sonoporation. Biochem Biophys Res Commun 2020;525:1025-31. [PMID: 32178874 DOI: 10.1016/j.bbrc.2020.02.174] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
323 Hung SH, Yeh CK, Tsai TH, Chen T, Chen RC. A simple method for quantifying ultrasound-triggered microbubble destruction. Ultrasound Med Biol 2011;37:949-57. [PMID: 21546152 DOI: 10.1016/j.ultrasmedbio.2011.03.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
324 Yu YE, Khodaparast S, Stone HA. Armoring confined bubbles in the flow of colloidal suspensions. Soft Matter 2017;13:2857-65. [DOI: 10.1039/c6sm02585d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
325 Telichko AV, Lee T, Hyun D, Chowdhury SM, Bachawal S, Herickhoff CD, Paulmurugan R, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part II: Phantom and In Vivo Experiments. IEEE Trans Ultrason Ferroelectr Freq Control 2021;68:1198-212. [PMID: 33141666 DOI: 10.1109/TUFFC.2020.3035709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
326 Sameiyan E, Bagheri E, Dehghani S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater 2021;123:110-22. [PMID: 33453405 DOI: 10.1016/j.actbio.2020.12.057] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
327 Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014;72:28-48. [PMID: 24667643 DOI: 10.1016/j.addr.2014.03.003] [Cited by in Crossref: 168] [Cited by in F6Publishing: 158] [Article Influence: 21.0] [Reference Citation Analysis]
328 Guo C, Jin Y, Dai Z. Multifunctional Ultrasound Contrast Agents for Imaging Guided Photothermal Therapy. Bioconjugate Chem 2014;25:840-54. [DOI: 10.1021/bc500092h] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
329 Cao S, Zhou Q, Chen JL, Jiang N, Wang YJ, Deng Q, Hu B, Guo RQ. Enhanced effect of nuclear localization signal peptide during ultrasound‑targeted microbubble destruction‑mediated gene transfection. Mol Med Rep 2017;16:565-72. [PMID: 28586046 DOI: 10.3892/mmr.2017.6661] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
330 Shahbazi-gahrouei D, Moradi Khaniabadi P, Shahbazi-gahrouei S, Khorasani A, Mahmoudi F. A literature review on multimodality molecular imaging nanoprobes for cancer detection. Polish Journal of Medical Physics and Engineering 2019;25:57-68. [DOI: 10.2478/pjmpe-2019-0009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
331 Lammertink B, Deckers R, Storm G, Moonen C, Bos C. Duration of ultrasound-mediated enhanced plasma membrane permeability. Int J Pharm 2015;482:92-8. [PMID: 25497443 DOI: 10.1016/j.ijpharm.2014.12.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
332 Xu J, Cao Y, Xu C, Cheng X, You Y, Yao Y, Liu J, Wang Z, Li P, Lu M. Combination of microbubbles and diagnostic ultrasound at a high mechanical index for the synergistic microwave ablation of tumours. Int J Hyperthermia 2017;33:318-26. [PMID: 27764970 DOI: 10.1080/02656736.2016.1239843] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
333 Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G. Complex interfaces in "phase-change" contrast agents. Phys Chem Chem Phys 2016;18:8378-88. [PMID: 26931337 DOI: 10.1039/c5cp07538f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
334 Sheng Y, Beguin E, Nesbitt H, Kamila S, Owen J, Barnsley LC, Callan B, O'kane C, Nomikou N, Hamoudi R, Taylor MA, Love M, Kelly P, O'rourke D, Stride E, Mchale AP, Callan JF. Magnetically responsive microbubbles as delivery vehicles for targeted sonodynamic and antimetabolite therapy of pancreatic cancer. Journal of Controlled Release 2017;262:192-200. [DOI: 10.1016/j.jconrel.2017.07.040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
335 Hwang T, Lin Y, Chi C, Huang T, Fang J. Development and Evaluation of Perfluorocarbon Nanobubbles for Apomorphine Delivery. Journal of Pharmaceutical Sciences 2009;98:3735-47. [DOI: 10.1002/jps.21687] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
336 Zhang C, Liu C, He W, Jiao D, Liu Z. Cross-linking-enhanced and ultrasound-mediated drug delivery: From fabrication, mechanisms to translations. Applied Materials Today 2021;22:100897. [DOI: 10.1016/j.apmt.2020.100897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
337 Wang G, Zhuo Z, Xia H, Zhang Y, He Y, Tan W, Gao Y. Investigation Into the Impact of Diagnostic Ultrasound with Microbubbles on the Capillary Permeability of Rat Hepatomas. Ultrasound in Medicine & Biology 2013;39:628-37. [DOI: 10.1016/j.ultrasmedbio.2012.11.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
338 Bansal K, Jha CK, Bhatia D, Shekhar H. Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomater Sci Eng 2021;7:4371-87. [PMID: 34460238 DOI: 10.1021/acsbiomaterials.1c00276] [Reference Citation Analysis]
339 Jeong K, Kim D, Kim HJ, Lee YD, Yoo J, Jang D, Lee S, Park H, Kim Y, Singh A, Ahn DJ, Kim DH, Bang J, Kim J, Prasad PN, Kim S. Photoechogenic Inflatable Nanohybrids for Upconversion-Mediated Sonotheranostics. ACS Nano 2021. [PMID: 34605648 DOI: 10.1021/acsnano.1c07898] [Reference Citation Analysis]
340 Verkaik M, van Poelgeest EM, Kwekkeboom RFJ, Ter Wee PM, van den Brom CE, Vervloet MG, Eringa EC. Myocardial contrast echocardiography in mice: technical and physiological aspects. Am J Physiol Heart Circ Physiol 2018;314:H381-91. [PMID: 29101165 DOI: 10.1152/ajpheart.00242.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
341 Fu H, Comer J, Cai W, Chipot C. Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes. J Phys Chem Lett 2015;6:413-8. [PMID: 26261957 DOI: 10.1021/jz502513w] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
342 Vasiukhina A, Eshraghi J, Ahmadzadegan A, Goergen CJ, Vlachos PP, Solorio L. Stable Thermally-Modulated Nanodroplet Ultrasound Contrast Agents. Nanomaterials (Basel) 2021;11:2225. [PMID: 34578541 DOI: 10.3390/nano11092225] [Reference Citation Analysis]
343 Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. Chem Rev 2015;115:10907-37. [PMID: 26166537 DOI: 10.1021/cr500314d] [Cited by in Crossref: 259] [Cited by in F6Publishing: 234] [Article Influence: 37.0] [Reference Citation Analysis]
344 Ishikawa K, Tilemann L, Fish K, Hajjar RJ. Gene delivery methods in cardiac gene therapy: Cardiac gene delivery methods. J Gene Med 2011;13:566-72. [DOI: 10.1002/jgm.1609] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
345 Fan C, Chang E, Ting C, Lin Y, Liao E, Huang C, Chang Y, Chan H, Wei K, Yeh C. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials 2016;106:46-57. [DOI: 10.1016/j.biomaterials.2016.08.017] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
346 Dhanaliwala AH, Dixon AJ, Lin D, Chen JL, Klibanov AL, Hossack JA. In vivo imaging of microfluidic-produced microbubbles. Biomed Microdevices 2015;17:23. [PMID: 25663444 DOI: 10.1007/s10544-014-9914-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
347 Meng FS, Zhang ZH, Ji F. New endoscopic ultrasound techniques for digestive tract diseases: A comprehensive review. World J Gastroenterol 2015; 21(16): 4809-4816 [PMID: 25944994 DOI: 10.3748/wjg.v21.i16.4809] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
348 Sun W, Li Z, Zhou X, Yang G, Yuan L. Efficient exosome delivery in refractory tissues assisted by ultrasound-targeted microbubble destruction. Drug Deliv 2019;26:45-50. [PMID: 30744440 DOI: 10.1080/10717544.2018.1534898] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
349 Sheeran PS, Dayton PA. Phase-change contrast agents for imaging and therapy. Curr Pharm Des 2012;18:2152-65. [PMID: 22352770 DOI: 10.2174/138161212800099883] [Cited by in Crossref: 142] [Cited by in F6Publishing: 126] [Article Influence: 14.2] [Reference Citation Analysis]
350 Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 2009;138:268-76. [PMID: 19477208 DOI: 10.1016/j.jconrel.2009.05.026] [Cited by in Crossref: 381] [Cited by in F6Publishing: 339] [Article Influence: 29.3] [Reference Citation Analysis]
351 Lu X, Yuan B, Zhang X, Yang K, Ma Y. Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles. Appl Phys Lett 2017;110:023701. [DOI: 10.1063/1.4973592] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
352 Sun Q, Ojha T, Kiessling F, Lammers T, Shi Y. Enhancing Tumor Penetration of Nanomedicines. Biomacromolecules 2017;18:1449-59. [PMID: 28328191 DOI: 10.1021/acs.biomac.7b00068] [Cited by in Crossref: 109] [Cited by in F6Publishing: 106] [Article Influence: 21.8] [Reference Citation Analysis]
353 Wang L, Li L, Guo Y, Tong H, Fan X, Ding J, Huang H. Construction and in vitro/in vivo targeting of PSMA-targeted nanoscale microbubbles in prostate cancer. Prostate. 2013;73:1147-1158. [PMID: 23532872 DOI: 10.1002/pros.22663] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
354 Wu H, Tong L, Wang Y, Yan H, Sun Z. Bibliometric Analysis of Global Research Trends on Ultrasound Microbubble: A Quickly Developing Field. Front Pharmacol 2021;12:646626. [PMID: 33967783 DOI: 10.3389/fphar.2021.646626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
355 Mufamadi MS, Choonara YE, Kumar P, du Toit LC, Modi G, Naidoo D, Iyuke SE, Pillay V. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System. AAPS PharmSciTech 2017;18:671-85. [PMID: 27188761 DOI: 10.1208/s12249-016-0541-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
356 Helbert A, Gaud E, Segers T, Botteron C, Frinking P, Jeannot V. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig. Ultrasound Med Biol 2020;46:3339-52. [PMID: 33008649 DOI: 10.1016/j.ultrasmedbio.2020.07.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
357 Wang CH, Yeh CK. Controlling the size distribution of lipid-coated bubbles via fluidity regulation. Ultrasound Med Biol 2013;39:882-92. [PMID: 23453628 DOI: 10.1016/j.ultrasmedbio.2013.01.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
358 Sato T, Mori S, Arai Y, Kodama T. The combination of intralymphatic chemotherapy with ultrasound and nano-/microbubbles is efficient in the treatment of experimental tumors in mouse lymph nodes. Ultrasound Med Biol 2014;40:1237-49. [PMID: 24656719 DOI: 10.1016/j.ultrasmedbio.2013.12.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
359 Wu Q, Mannaris C, May JP, Bau L, Polydorou A, Ferri S, Carugo D, Evans ND, Stride E. Investigation of the Acoustic Vaporization Threshold of Lipid-Coated Perfluorobutane Nanodroplets Using Both High-Speed Optical Imaging and Acoustic Methods. Ultrasound Med Biol 2021;47:1826-43. [PMID: 33820668 DOI: 10.1016/j.ultrasmedbio.2021.02.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
360 Shih R, Bardin D, Martz TD, Sheeran PS, Dayton PA, Lee AP. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications. Lab Chip 2013;13:4816-26. [PMID: 24162868 DOI: 10.1039/c3lc51016f] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
361 Huang S, Mcpherson DD. Ultrasound for Drug/Gene Delivery. Cancer Theranostics. Elsevier; 2014. pp. 269-83. [DOI: 10.1016/b978-0-12-407722-5.00016-5] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
362 Wang F, Shen Y, Zhang W, Li M, Wang Y, Zhou D, Guo S. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. Journal of Controlled Release 2014;196:37-51. [DOI: 10.1016/j.jconrel.2014.09.026] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
363 Peng Y, Seekell RP, Cole AR, Lamothe JR, Lock AT, van den Bosch S, Tang X, Kheir JN, Polizzotti BD. Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid. Angew Chem Int Ed 2018;57:1271-6. [DOI: 10.1002/anie.201711839] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
364 Sloand JN, Nguyen TT, Zinck SA, Cook EC, Zimudzi TJ, Showalter SA, Glick AB, Simon JC, Medina SH. Ultrasound-Guided Cytosolic Protein Delivery via Transient Fluorous Masks. ACS Nano 2020;14:4061-73. [PMID: 32134630 DOI: 10.1021/acsnano.9b08745] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
365 Shih CP, Chen HC, Lin YC, Chen HK, Wang H, Kuo CY, Lin YY, Wang CH. Middle-ear dexamethasone delivery via ultrasound microbubbles attenuates noise-induced hearing loss. Laryngoscope 2019;129:1907-14. [PMID: 30588634 DOI: 10.1002/lary.27713] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
366 Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Adv Mater 2021;33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
367 Oddo L, Cerroni B, Domenici F, Bedini A, Bordi F, Chiessi E, Gerbes S, Paradossi G. Next generation ultrasound platforms for theranostics. J Colloid Interface Sci 2017;491:151-60. [PMID: 28024192 DOI: 10.1016/j.jcis.2016.12.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
368 Siracusano S, Bertolotto M, Ciciliato S, Valentino M, Liguori G, Visalli F. The current role of contrast-enhanced ultrasound (CEUS) imaging in the evaluation of renal pathology. World J Urol 2011;29:633-8. [PMID: 21604017 DOI: 10.1007/s00345-011-0699-7] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
369 Tzu-Yin W, Wilson KE, Machtaler S, Willmann JK. Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Curr Pharm Biotechnol 2013;14:743-52. [PMID: 24372231 DOI: 10.2174/1389201014666131226114611] [Cited by in Crossref: 43] [Cited by in F6Publishing: 54] [Article Influence: 5.4] [Reference Citation Analysis]
370 Papa AL, Korin N, Kanapathipillai M, Mammoto A, Mammoto T, Jiang A, Mannix R, Uzun O, Johnson C, Bhatta D, Cuneo G, Ingber DE. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. Biomaterials 2017;139:187-94. [PMID: 28618348 DOI: 10.1016/j.biomaterials.2017.06.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 7.6] [Reference Citation Analysis]
371 Bera M, Maji S, Paul A, Sahoo BK, Maiti TK, Singh NDP. Quinoline H 2 S donor decorated fluorescent carbon dots: visible light responsive H 2 S nanocarriers. J Mater Chem B 2020;8:1026-32. [DOI: 10.1039/c9tb02157d] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
372 Ding J, Chen J, Gao L, Jiang Z, Zhang Y, Li M, Xiao Q, Lee SS, Chen X. Engineered nanomedicines with enhanced tumor penetration. Nano Today 2019;29:100800. [DOI: 10.1016/j.nantod.2019.100800] [Cited by in Crossref: 129] [Cited by in F6Publishing: 79] [Article Influence: 43.0] [Reference Citation Analysis]
373 Gao F, Wu J, Niu S, Sun T, Li F, Bai Y, Jin L, Lin L, Shi Q, Zhu LM, Du L. Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics 2019;9:6002-18. [PMID: 31534533 DOI: 10.7150/thno.36135] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
374 Min KH, Min HS, Lee HJ, Park DJ, Yhee JY, Kim K, Kwon IC, Jeong SY, Silvestre OF, Chen X, Hwang YS, Kim EC, Lee SC. pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 2015;9:134-45. [PMID: 25559896 DOI: 10.1021/nn506210a] [Cited by in Crossref: 146] [Cited by in F6Publishing: 131] [Article Influence: 20.9] [Reference Citation Analysis]
375 Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo HJ, Hong JW, Choi J. Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules 2018;23:E2210. [PMID: 30200336 DOI: 10.3390/molecules23092210] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
376 De Cock I, Lajoinie G, Versluis M, De Smedt SC, Lentacker I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 2016;83:294-307. [DOI: 10.1016/j.biomaterials.2016.01.022] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 8.0] [Reference Citation Analysis]
377 Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 2011;153:4-15. [PMID: 21277919 DOI: 10.1016/j.jconrel.2011.01.022] [Cited by in Crossref: 265] [Cited by in F6Publishing: 246] [Article Influence: 24.1] [Reference Citation Analysis]
378 Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 2010;27:2753-65. [PMID: 20872050 DOI: 10.1007/s11095-010-0277-5] [Cited by in Crossref: 101] [Cited by in F6Publishing: 84] [Article Influence: 8.4] [Reference Citation Analysis]
379 Rooze J, Rebrov EV, Schouten JC, Keurentjes JT. Dissolved gas and ultrasonic cavitation – A review. Ultrasonics Sonochemistry 2013;20:1-11. [DOI: 10.1016/j.ultsonch.2012.04.013] [Cited by in Crossref: 167] [Cited by in F6Publishing: 93] [Article Influence: 18.6] [Reference Citation Analysis]
380 Husseini GA, Stevenson-Abouelnasr D, Pitt WG, Assaleh KT, Farahat LO, Fahadi J. Kinetics and Thermodynamics of Acoustic Release of Doxorubicin from Non-stabilized polymeric Micelles. Colloids Surf A Physicochem Eng Asp 2010;359:18-24. [PMID: 20495608 DOI: 10.1016/j.colsurfa.2010.01.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
381 Glynos E, Koutsos V, Mcdicken WN, Moran CM, Pye SD, Ross JA, Sboros V. Nanomechanics of Biocompatible Hollow Thin-Shell Polymer Microspheres. Langmuir 2009;25:7514-22. [DOI: 10.1021/la900317d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
382 Schäfer R. Labeling and Imaging of Stem Cells - Promises and Concerns. Transfus Med Hemother 2010;37:85-9. [PMID: 20737050 DOI: 10.1159/000287271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
383 Mahalingam S, Xu Z, Edirisinghe M. Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. Langmuir 2015;31:9771-80. [PMID: 26307462 DOI: 10.1021/acs.langmuir.5b02005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
384 Geers B, Lentacker I, Alonso A, Sanders NN, Demeester J, Meairs S, De Smedt SC. Elucidating the mechanisms behind sonoporation with adeno-associated virus-loaded microbubbles. Mol Pharm. 2011;8:2244-2251. [PMID: 22014166 DOI: 10.1021/mp200112y] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
385 Krafft MP. Fluorine in medical microbubbles – Methodologies implemented for engineering and investigating fluorocarbon-based microbubbles. Journal of Fluorine Chemistry 2015;177:19-28. [DOI: 10.1016/j.jfluchem.2015.02.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
386 Lentacker I, De Smedt SC, Sanders NN. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 2009;5:2161. [DOI: 10.1039/b823051j] [Cited by in Crossref: 166] [Cited by in F6Publishing: 107] [Article Influence: 12.8] [Reference Citation Analysis]
387 Wang S, Raju BI, Leyvi E, Weinstein DA, Seip R. Acoustic accessibility investigation for ultrasound mediated treatment of glycogen storage disease type Ia patients. Ultrasound Med Biol 2011;37:1469-77. [PMID: 21767906 DOI: 10.1016/j.ultrasmedbio.2011.06.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
388 Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev 2013;65:1784-802. [PMID: 23880506 DOI: 10.1016/j.addr.2013.07.012] [Cited by in Crossref: 195] [Cited by in F6Publishing: 181] [Article Influence: 21.7] [Reference Citation Analysis]
389 Kato R, Frusawa H. Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents. Materials (Basel) 2015;8:4176-90. [PMID: 28793432 DOI: 10.3390/ma8074176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
390 Das S, Lazenby RA, Yuan Z, White RJ, Park YC. Effect of Laser Irradiation on Reversibility and Drug Release of Light-Activatable Drug-Encapsulated Liposomes. Langmuir 2020;36:3573-82. [PMID: 32188250 DOI: 10.1021/acs.langmuir.0c00215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
391 Janis BR, Priddy MC, Otto MR, Kopechek JA, Menze MA. Sonoporation enables high-throughput loading of trehalose into red blood cells. Cryobiology 2021;98:73-9. [PMID: 33359645 DOI: 10.1016/j.cryobiol.2020.12.005] [Reference Citation Analysis]
392 Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 2011;63:1300-31. [PMID: 21893135 DOI: 10.1016/j.addr.2011.08.002] [Cited by in Crossref: 224] [Cited by in F6Publishing: 184] [Article Influence: 20.4] [Reference Citation Analysis]
393 Ando Y, Tabata H, Sanchez M, Cagna A, Koyama D, Krafft MP. Microbubbles with a Self-Assembled Poloxamer Shell and a Fluorocarbon Inner Gas. Langmuir 2016;32:12461-7. [DOI: 10.1021/acs.langmuir.6b01883] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
394 Yu MH, Lee JY, Kim HR, Kim BR, Park EJ, Kim HS, Han JK, Choi BI. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model. Korean J Radiol. 2016;17:779-788. [PMID: 27587968 DOI: 10.3348/kjr.2016.17.5.779] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
395 Min HS, Son S, You DG, Lee TW, Lee J, Lee S, Yhee JY, Lee J, Han MH, Park JH, Kim SH, Choi K, Park K, Kim K, Kwon IC. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials 2016;108:57-70. [DOI: 10.1016/j.biomaterials.2016.08.049] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 7.5] [Reference Citation Analysis]
396 Xing L, Shi Q, Zheng K, Shen M, Ma J, Li F, Liu Y, Lin L, Tu W, Duan Y, Du L. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Theranostics 2016;6:1573-87. [PMID: 27446491 DOI: 10.7150/thno.15164] [Cited by in Crossref: 45] [Cited by in F6Publishing: 54] [Article Influence: 7.5] [Reference Citation Analysis]
397 Lee L, Cavalieri F, Ashokkumar M. Exploring New Applications of Lysozyme-Shelled Microbubbles. Langmuir 2019;35:9997-10006. [DOI: 10.1021/acs.langmuir.9b00896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
398 Matsunaga TO, Sheeran PS, Luois S, Streeter JE, Mullin LB, Banerjee B, Dayton PA. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2012;2:1185-98. [PMID: 23382775 DOI: 10.7150/thno.4846] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 8.4] [Reference Citation Analysis]
399 Zhang L, Yin T, Li B, Zheng R, Qiu C, Lam KS, Zhang Q, Shuai X. Size-Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery against Cancer. ACS Nano 2018;12:3449-60. [DOI: 10.1021/acsnano.8b00076] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
400 Li Y, Wang J, Grebogi C, Foote M, Liu F. A syringe-focused ultrasound device for simultaneous injection of DNA and gene transfer: An ultrasound method for gene transfer in skeletal muscle. J Gene Med 2012;14:54-61. [DOI: 10.1002/jgm.1633] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
401 Krafft MP. Controlling phospholipid self-assembly and film properties using highly fluorinated components – Fluorinated monolayers, vesicles, emulsions and microbubbles. Biochimie 2012;94:11-25. [DOI: 10.1016/j.biochi.2011.07.027] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
402 Mullick Chowdhury S, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer. Ultrasonography 2017;36:171-84. [PMID: 28607323 DOI: 10.14366/usg.17021] [Cited by in Crossref: 82] [Cited by in F6Publishing: 67] [Article Influence: 16.4] [Reference Citation Analysis]
403 Tsirkin S, Goldbart R, Traitel T, Kost J. Tailor-Made Single-Core PLGA Microbubbles as Acoustic Cavitation Enhancers for Therapeutic Applications. ACS Appl Mater Interfaces 2021;13:25748-58. [PMID: 34048218 DOI: 10.1021/acsami.1c04770] [Reference Citation Analysis]
404 Pan TL, Wang PW, Al-Suwayeh SA, Huang YJ, Fang JY. Toxicological effects of cationic nanobubbles on the liver and kidneys: biomarkers for predicting the risk. Food Chem Toxicol 2012;50:3892-901. [PMID: 22809472 DOI: 10.1016/j.fct.2012.07.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
405 Perra E, Lampsijärvi E, Barreto G, Arif M, Puranen T, Hæggström E, Pritzker KPH, Nieminen HJ. Ultrasonic actuation of a fine-needle improves biopsy yield. Sci Rep 2021;11:8234. [PMID: 33859220 DOI: 10.1038/s41598-021-87303-x] [Reference Citation Analysis]
406 Lukáč R, Kauerová Z, Mašek J, Bartheldyová E, Kulich P, Koudelka Š, Korvasová Z, Plocková J, Papoušek F, Kolář F, Schmidt R, Turánek J. Preparation of Metallochelating Microbubbles and Study on Their Site-Specific Interaction with rGFP-HisTag as a Model Protein. Langmuir 2011;27:4829-37. [DOI: 10.1021/la104677b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
407 Kim E, Telford JJ. Endoscopic ultrasound advances, part 1: diagnosis. Can J Gastroenterol 2009;23:594-601. [PMID: 19816621 DOI: 10.1155/2009/876057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
408 Kagan D, Benchimol MJ, Claussen JC, Chuluun-erdene E, Esener S, Wang J. Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation. Angew Chem 2012;124:7637-40. [DOI: 10.1002/ange.201201902] [Cited by in Crossref: 62] [Cited by in F6Publishing: 41] [Article Influence: 6.2] [Reference Citation Analysis]
409 Nguyen PN, Trinh Dang TT, Waton G, Vandamme T, Krafft MP. A Nonpolar, Nonamphiphilic Molecule Can Accelerate Adsorption of Phospholipids and Lower Their Surface Tension at the Air/Water Interface. ChemPhysChem 2011;12:2646-52. [DOI: 10.1002/cphc.201100425] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
410 Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt SC, Lentacker I. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials 2019;217:119250. [DOI: 10.1016/j.biomaterials.2019.119250] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
411 Cui X, Zhao Q, Huang Z, Xiao Y, Wan Y, Li S, Lee CS. Water-Splitting Based and Related Therapeutic Effects: Evolving Concepts, Progress, and Perspectives. Small 2020;16:e2004551. [PMID: 33125185 DOI: 10.1002/smll.202004551] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
412 Xing Z, Wang J, Ke H, Zhao B, Yue X, Dai Z, Liu J. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 2010;21:145607. [PMID: 20220227 DOI: 10.1088/0957-4484/21/14/145607] [Cited by in Crossref: 105] [Cited by in F6Publishing: 91] [Article Influence: 8.8] [Reference Citation Analysis]
413 Lin Y, Lin L, Cheng M, Jin L, Du L, Han T, Xu L, Yu AC, Qin P. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound. Ultrasonics Sonochemistry 2017;35:176-84. [DOI: 10.1016/j.ultsonch.2016.09.016] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 9.6] [Reference Citation Analysis]
414 Kee ALY, Teo BM. Biomedical applications of acoustically responsive phase shift nanodroplets: Current status and future directions. Ultrasonics Sonochemistry 2019;56:37-45. [DOI: 10.1016/j.ultsonch.2019.03.024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
415 Kitano M, Kamata K. Contrast-enhanced harmonic endoscopic ultrasound: Future perspectives. Endosc Ultrasound 2016;5:351-4. [PMID: 28000625 DOI: 10.4103/2303-9027.195852] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
416 Li J, Tian Y, Shan D, Gong A, Zeng L, Ren W, Xiang L, Gerhard E, Zhao J, Yang J, Wu A. Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. Biomaterials 2017;116:106-17. [PMID: 27914983 DOI: 10.1016/j.biomaterials.2016.11.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
417 Li P, Gao Y, Zhang J, Liu Z, Tan K, Hua X, Gong J. Renal interstitial permeability changes induced by microbubble-enhanced diagnostic ultrasound. J Drug Target 2013;21:507-14. [PMID: 23627569 DOI: 10.3109/1061186X.2013.776053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
418 Khan MS, Kim JS, Hwang J, Choi Y, Lee K, Kwon Y, Jang J, Yoon S, Yang CS, Choi J. Effective delivery of mycophenolic acid by oxygen nanobubbles for modulating immunosuppression. Theranostics 2020;10:3892-904. [PMID: 32226527 DOI: 10.7150/thno.41850] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
419 Le Corre SS, Berchel M, Belmadi N, Denis C, Haelters J, Le Gall T, Lehn P, Montier T, Jaffrès P. Cationic lipophosphoramidates with two different lipid chains: synthesis and evaluation as gene carriers. Org Biomol Chem 2014;12:1463-74. [DOI: 10.1039/c3ob42270d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 2.9] [Reference Citation Analysis]
420 Wang L, Zhang M, Tan K, Guo Y, Tong H, Fan X, Fang K, Li R. Preparation of nanobubbles carrying androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation. PLoS One 2014;9:e96586. [PMID: 24798477 DOI: 10.1371/journal.pone.0096586] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
421 Wong Z, Bull J. Vascular bubbles and droplets for drug delivery. Journal of Drug Delivery Science and Technology 2011;21:355-67. [DOI: 10.1016/s1773-2247(11)50061-9] [Cited by in Crossref: 8] [Article Influence: 0.7] [Reference Citation Analysis]
422 Fokong S, Theek B, Wu Z, Koczera P, Appold L, Jorge S, Resch-Genger U, van Zandvoort M, Storm G, Kiessling F, Lammers T. Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Control Release 2012;163:75-81. [PMID: 22580225 DOI: 10.1016/j.jconrel.2012.05.007] [Cited by in Crossref: 93] [Cited by in F6Publishing: 84] [Article Influence: 9.3] [Reference Citation Analysis]
423 Lammertink BHA, Bos C, Deckers R, Storm G, Moonen CTW, Escoffre J. Sonochemotherapy: from bench to bedside. Front Pharmacol 2015;6. [DOI: 10.3389/fphar.2015.00138] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 7.6] [Reference Citation Analysis]
424 Lee M, Lee EY, Lee D, Park BJ. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. Soft Matter 2015;11:2067-79. [DOI: 10.1039/c5sm00113g] [Cited by in Crossref: 66] [Cited by in F6Publishing: 15] [Article Influence: 9.4] [Reference Citation Analysis]
425 Melino S, Zhou M, Tortora M, Paci M, Cavalieri F, Ashokkumar M. Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery. Amino Acids 2012;43:885-96. [PMID: 22094542 DOI: 10.1007/s00726-011-1148-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
426 Al-Mahrouki AA, Iradji S, Tran WT, Czarnota GJ. Cellular characterization of ultrasound-stimulated microbubble radiation enhancement in a prostate cancer xenograft model. Dis Model Mech 2014;7:363-72. [PMID: 24487407 DOI: 10.1242/dmm.012922] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
427 Nomikou N, Fowley C, Byrne NM, Mccaughan B, Mchale AP, Callan JF. Microbubble–sonosensitiser conjugates as therapeutics in sonodynamic therapy. Chem Commun 2012;48:8332. [DOI: 10.1039/c2cc33913g] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 4.7] [Reference Citation Analysis]
428 Entzian K, Aigner A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021;13:1135. [PMID: 34452096 DOI: 10.3390/pharmaceutics13081135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
429 Lv Y, Hao L, Hu W, Ran Y, Bai Y, Zhang L. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting. Sci Rep 2016;6:29321. [PMID: 27378018 DOI: 10.1038/srep29321] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
430 Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Milla P, Peira E, Rocco F, Sapino S, Stella B, Ugazio E, Ceruti M. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology 2016;32:298-312. [DOI: 10.1016/j.jddst.2015.09.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
431 Ho YJ, Chang YC, Yeh CK. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization. Theranostics 2016;6:392-403. [PMID: 26909113 DOI: 10.7150/thno.13727] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 11.0] [Reference Citation Analysis]
432 Yu L, Lin H, Lu X, Chen Y. Multifunctional Mesoporous Silica Nanoprobes: Material Chemistry–Based Fabrication and Bio‐Imaging Functionality. Adv Therap 2018;1:1800078. [DOI: 10.1002/adtp.201800078] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
433 Vaughan HJ, Green JJ, Tzeng SY. Cancer‐Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. Adv Mater 2020;32:1901081. [DOI: 10.1002/adma.201901081] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
434 Xing Z, Ke H, Wang J, Zhao B, Yue X, Dai Z, Liu J. Novel ultrasound contrast agent based on microbubbles generated from surfactant mixtures of Span 60 and polyoxyethylene 40 stearate. Acta Biomaterialia 2010;6:3542-9. [DOI: 10.1016/j.actbio.2010.03.007] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
435 Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2019;25:401-12. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
436 Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release 2020;322:64-80. [DOI: 10.1016/j.jconrel.2020.03.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
437 Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. Nanomaterials (Basel) 2020;10:E383. [PMID: 32098406 DOI: 10.3390/nano10020383] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
438 Browning RJ, Rajkumar V, Pedley RB, Eckersley RJ, Blower PJ. Prospects for enhancement of targeted radionuclide therapy of cancer using ultrasound: Ultrasound mediated delivery of radioimmunotherapy. J Label Compd Radiopharm 2014;57:279-84. [DOI: 10.1002/jlcr.3157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
439 Wang G, Song L, Hou X, Kala S, Wong KF, Tang L, Dai Y, Sun L. Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials 2020;236:119803. [PMID: 32028170 DOI: 10.1016/j.biomaterials.2020.119803] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
440 Shintani M, Takahashi G, Hamada M, Okunaga S, Iwai S, Yura Y. Effect of ultrasound on herpes simplex virus infection in cell culture. Virol J 2011;8:446. [PMID: 21939524 DOI: 10.1186/1743-422X-8-446] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
441 Rossi S, Szíjjártó C, Gerber F, Waton G, Krafft MP. Fluorous materials in microbubble engineering science and technology—Design and development of new bubble preparation and sizing technologies. Journal of Fluorine Chemistry 2011;132:1102-9. [DOI: 10.1016/j.jfluchem.2011.06.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
442 Du M, Chen Y, Tu J, Liufu C, Yu J, Yuan Z, Gong X, Chen Z. Ultrasound Responsive Magnetic Mesoporous Silica Nanoparticle-Loaded Microbubbles for Efficient Gene Delivery. ACS Biomater Sci Eng 2020;6:2904-12. [DOI: 10.1021/acsbiomaterials.0c00014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
443 Chen ZY, Lin Y, Yang F, Jiang L, Ge Sp. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound 2013;11:11. [PMID: 23594865 DOI: 10.1186/1476-7120-11-11] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
444 Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Advances in Colloid and Interface Science 2020;282:102208. [DOI: 10.1016/j.cis.2020.102208] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
445 Moon H, Kang J, Sim C, Kim J, Lee H, Chang JH, Kim H. Multifunctional theranostic contrast agent for photoacoustics- and ultrasound-based tumor diagnosis and ultrasound-stimulated local tumor therapy. Journal of Controlled Release 2015;218:63-71. [DOI: 10.1016/j.jconrel.2015.09.060] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
446 Choi V, Rajora MA, Zheng G. Activating Drugs with Sound: Mechanisms Behind Sonodynamic Therapy and the Role of Nanomedicine. Bioconjugate Chem 2020;31:967-89. [DOI: 10.1021/acs.bioconjchem.0c00029] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 12.5] [Reference Citation Analysis]
447 VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J, Ranjan A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release 2017;247:55-63. [PMID: 28042085 DOI: 10.1016/j.jconrel.2016.12.033] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
448 Kilic S, Bolukcu ES. Phase behavior of DSPC/PEG40St mixtures at higher emulsifier contents. Colloids and Surfaces B: Biointerfaces 2018;171:368-76. [DOI: 10.1016/j.colsurfb.2018.07.046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
449 Wheatley M, Cochran M. Ultrasound contrast agents. Journal of Drug Delivery Science and Technology 2013;23:57-72. [DOI: 10.1016/s1773-2247(13)50007-4] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
450 Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008;60:1137-52. [PMID: 18486269 DOI: 10.1016/j.addr.2008.03.008] [Cited by in Crossref: 310] [Cited by in F6Publishing: 268] [Article Influence: 22.1] [Reference Citation Analysis]
451 Baghbani F, Moztarzadeh F, Mohandesi JA, Yazdian F, Mokhtari-dizaji M, Hamedi S. Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. International Journal of Biological Macromolecules 2016;89:550-8. [DOI: 10.1016/j.ijbiomac.2016.05.033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
452 Yodsanit N, Wang B, Zhao Y, Guo LW, Kent KC, Gong S. Recent progress on nanoparticles for targeted aneurysm treatment and imaging. Biomaterials 2021;265:120406. [PMID: 32979792 DOI: 10.1016/j.biomaterials.2020.120406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
453 Tang H, Zheng Y, Chen Y. Materials Chemistry of Nanoultrasonic Biomedicine. Adv Mater 2017;29:1604105. [DOI: 10.1002/adma.201604105] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 7.5] [Reference Citation Analysis]
454 Vannozzi L, Ricotti L, Filippeschi C, Sartini S, Coviello V, Piazza V, Pingue P, La Motta C, Dario P, Menciassi A. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. Int J Nanomedicine 2016;11:69-91. [PMID: 26730191 DOI: 10.2147/IJN.S92031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
455 Zhao X, Luo W, Hu J, Zuo L, Wang J, Hu R, Wang B, Xu L, Li J, Wu M, Li P, Liu L. Cardiomyocyte-targeted and 17β-estradiol-loaded acoustic nanoprobes as a theranostic platform for cardiac hypertrophy. J Nanobiotechnology 2018;16:36. [PMID: 29602311 DOI: 10.1186/s12951-018-0360-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
456 Gourevich D, Hertzberg Y, Volovick A, Shafran Y, Navon G, Cochran S, Melzer A. Ultrasound-mediated targeted drug delivery generated by multifocal beam patterns: an in vitro study. Ultrasound Med Biol 2013;39:507-14. [PMID: 23332815 DOI: 10.1016/j.ultrasmedbio.2012.10.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
457 Sitta J, Howard CM. Applications of Ultrasound-Mediated Drug Delivery and Gene Therapy. Int J Mol Sci 2021;22:11491. [PMID: 34768922 DOI: 10.3390/ijms222111491] [Reference Citation Analysis]
458 Hosseinkhani H, Abedini F, Ou K, Domb AJ. Polymers in gene therapy technology: GENE THERAPY TECHNOLOGY. Polym Adv Technol 2015;26:198-211. [DOI: 10.1002/pat.3432] [Cited by in Crossref: 38] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
459 Jing B, Brown ME, Davis ME, Lindsey BD. Imaging the Activation of Low-Boiling-Point Phase-Change Contrast Agents in the Presence of Tissue Motion Using Ultrafast Inter-frame Activation Ultrasound Imaging. Ultrasound Med Biol 2020;46:1474-89. [PMID: 32143861 DOI: 10.1016/j.ultrasmedbio.2020.01.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
460 Zhang YN, Zhang YN, Li SC. Bubble dynamics under acoustic excitation with multiple frequencies. IOP Conf Ser : Mater Sci Eng 2015;72:012003. [DOI: 10.1088/1757-899x/72/1/012003] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
461 Shih CP, Chen HC, Chen HK, Chiang MC, Sytwu HK, Lin YC, Li SL, Shih YF, Liao AH, Wang CH. Ultrasound-aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. J Control Release 2013;167:167-74. [PMID: 23391441 DOI: 10.1016/j.jconrel.2013.01.028] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
462 Cui X, Han X, Yu L, Zhang B, Chen Y. Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine. Nano Today 2019;28:100773. [DOI: 10.1016/j.nantod.2019.100773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
463 Kawazu T, Hakamada K, Oda Y, Miyake J, Maruyama K, Nagasaki T. Ultrasound-mediated Transfection with Liposomal Bubbles Delivers Plasmid DNA Directly into Nucleus. Chem Lett 2011;40:298-9. [DOI: 10.1246/cl.2011.298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
464 Hou S, Choi JS, Chen KJ, Zhang Y, Peng J, Garcia MA, Yu JH, Thakore-Shah K, Ro T, Chen JF, Peyda P, Fan G, Pyle AD, Wang H, Tseng HR. Supramolecular nanosubstrate-mediated delivery for reprogramming and transdifferentiation of mammalian cells. Small 2015;11:2499-504. [PMID: 25613059 DOI: 10.1002/smll.201402602] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
465 Cool SK, Geers B, Lentacker I, De Smedt SC, Sanders NN. Enhancing nucleic acid delivery with ultrasound and microbubbles. Methods Mol Biol 2013;948:195-204. [PMID: 23070772 DOI: 10.1007/978-1-62703-140-0_14] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
466 Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016;13:1609-23. [PMID: 27216915 DOI: 10.1080/17425247.2016.1193149] [Cited by in Crossref: 112] [Cited by in F6Publishing: 104] [Article Influence: 18.7] [Reference Citation Analysis]
467 Lee H, Han J, Shin H, Han H, Na K, Kim H. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J Control Release 2018;283:190-9. [PMID: 29885415 DOI: 10.1016/j.jconrel.2018.06.008] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 11.0] [Reference Citation Analysis]
468 Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomedicine 2012;7:3309-18. [PMID: 22802689 DOI: 10.2147/IJN.S30912] [Cited by in Crossref: 66] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
469 Sirsi S, Borden M. Microbubble Compositions, Properties and Biomedical Applications. Bubble Sci Eng Technol 2009;1:3-17. [PMID: 20574549 DOI: 10.1179/175889709X446507] [Cited by in Crossref: 312] [Cited by in F6Publishing: 112] [Article Influence: 24.0] [Reference Citation Analysis]
470 Chakravarty P, Qian W, El-Sayed MA, Prausnitz MR. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat Nanotechnol 2010;5:607-11. [PMID: 20639882 DOI: 10.1038/nnano.2010.126] [Cited by in Crossref: 114] [Cited by in F6Publishing: 98] [Article Influence: 9.5] [Reference Citation Analysis]
471 Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. Adv Mater 2018;30:1801964. [DOI: 10.1002/adma.201801964] [Cited by in Crossref: 93] [Cited by in F6Publishing: 86] [Article Influence: 23.3] [Reference Citation Analysis]
472 Vaidya B, Agrawal G, Vyas SP. Functionalized carriers for the improved delivery of plasminogen activators. International Journal of Pharmaceutics 2012;424:1-11. [DOI: 10.1016/j.ijpharm.2011.12.032] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
473 Duncanson WJ, Abbaspourrad A, Shum HC, Kim SH, Adams LL, Weitz DA. Monodisperse gas-filled microparticles from reactions in double emulsions. Langmuir 2012;28:6742-5. [PMID: 22509783 DOI: 10.1021/la300915p] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
474 Bae YJ, Yoon YI, Yoon TJ, Lee HJ. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model. Korean J Radiol 2016;17:497-508. [PMID: 27390541 DOI: 10.3348/kjr.2016.17.4.497] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
475 Kogan P, Gessner RC, Dayton PA. Microbubbles in Imaging: Applications Beyond Ultrasound. Bubble Sci Eng Technol 2010;2:3-8. [PMID: 22328906 DOI: 10.1179/175889610X12730566149100] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
476 Rinaldi L, Folliero V, Palomba L, Zannella C, Isticato R, Di Francia R, Berretta M, de Sio I, Adinolfi LE, Morelli G, Lastoria S, Altucci L, Pedone C, Galdiero M, Franci G. Sonoporation by microbubbles as gene therapy approach against liver cancer. Oncotarget 2018;9:32182-90. [PMID: 30181808 DOI: 10.18632/oncotarget.25875] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
477 Bloch M, Jablonowski L, Yavin E, Moradov D, Djavsarov I, Nyska A, Wheatley M, Rubinstein A. Multi-modal detection of colon malignancy by NIR-tagged recognition polymers and ultrasound contrast agents. Int J Pharm 2015;478:504-16. [PMID: 25437110 DOI: 10.1016/j.ijpharm.2014.11.066] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
478 Topal T, Fan Z, Deng LY, Krebsbach PH, Deng CX. Integrin-Targeted Cyclic Forces Accelerate Neural Tube-Like Rosette Formation from Human Embryonic Stem Cells. Adv Biosyst 2019;3:e1900064. [PMID: 32648720 DOI: 10.1002/adbi.201900064] [Reference Citation Analysis]
479 Son S, Min HS, You DG, Kim BS, Kwon IC. Echogenic nanoparticles for ultrasound technologies: Evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today 2014;9:525-40. [DOI: 10.1016/j.nantod.2014.06.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
480 Park J, Park D, Shin U, Moon S, Kim C, Kim HS, Park H, Choi K, Jung B, Oh J, Seo J. Synthesis of laboratory Ultrasound Contrast Agents. Molecules 2013;18:13078-95. [PMID: 24152677 DOI: 10.3390/molecules181013078] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
481 Hameister R, Lim CT, Lohmann CH, Wang W, Singh G. What Is the Role of Diagnostic and Therapeutic Sonication in Periprosthetic Joint Infections? J Arthroplasty 2018;33:2575-81. [PMID: 29599035 DOI: 10.1016/j.arth.2018.02.077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
482 Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason Sonochem 2020;67:105096. [PMID: 32278246 DOI: 10.1016/j.ultsonch.2020.105096] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
483 van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia 2015;31:90-106. [PMID: 25707815 DOI: 10.3109/02656736.2014.997809] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 5.7] [Reference Citation Analysis]
484 Tlaxca JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, Lawrence MB, Rychak JJ. Analysis of in vitro transfection by sonoporation using cationic and neutral microbubbles. Ultrasound Med Biol 2010;36:1907-18. [PMID: 20800945 DOI: 10.1016/j.ultrasmedbio.2010.05.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 4.1] [Reference Citation Analysis]
485 Rapoport NY, Efros AL, Christensen DA, Kennedy AM, Nam KH. Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers. Bubble Sci Eng Technol 2009;1:31-9. [PMID: 20046899 DOI: 10.1179/175889709X446516] [Cited by in Crossref: 74] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
486 Gouarderes S, Mingotaud AF, Vicendo P, Gibot L. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opin Drug Deliv 2020;17:1703-26. [PMID: 32838565 DOI: 10.1080/17425247.2020.1814735] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
487 Hu J, Zong Y, Li J, Zhou X, Zhang J, Zhu T, Jiao M, Su H, Bo B. In Vitro and In Vivo Evaluation of Targeted Sunitinib-Loaded Polymer Microbubbles Against Proliferation of Renal Cell Carcinoma. J Ultrasound Med 2016;35:589-97. [PMID: 26921089 DOI: 10.7863/ultra.14.10038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
488 Erkol H, Aytac-Kipergil E, Unlu MB. Photoacoustic radiation force on a microbubble. Phys Rev E Stat Nonlin Soft Matter Phys 2014;90:023001. [PMID: 25215814 DOI: 10.1103/PhysRevE.90.023001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
489 Muramoto T, Shimoya R, Yoshida K, Watanabe Y. Evaluation of the specific adsorption of biotinylated microbubbles using a quartz crystal microbalance. Ultrasound Med Biol 2014;40:1027-33. [PMID: 24412171 DOI: 10.1016/j.ultrasmedbio.2013.11.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
490 Choi Y, Lim S, Yoon HY, Kim B, Kwon IC, Kim K. Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opinion on Drug Delivery 2019;16:835-46. [DOI: 10.1080/17425247.2019.1648426] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
491 Xing W, Gang WZ, Yong Z, Yi ZY, Shan XC, Tao RH. Treatment of Xenografted Ovarian Carcinoma Using Paclitaxel-loaded Ultrasound Microbubbles. Academic Radiology 2008;15:1574-9. [DOI: 10.1016/j.acra.2008.06.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
492 Gourevich D, Dogadkin O, Volovick A, Wang L, Gnaim J, Cochran S, Melzer A. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. Journal of Controlled Release 2013;170:316-24. [DOI: 10.1016/j.jconrel.2013.05.038] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
493 Hosseinkhani H, He W, Chiang C, Hong P, Yu D, Domb AJ, Ou K. Biodegradable nanoparticles for gene therapy technology. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1794-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
494 You Y, Liang X, Yin T, Chen M, Qiu C, Gao C, Wang X, Mao Y, Qu E, Dai Z, Zheng R. Porphyrin-grafted Lipid Microbubbles for the Enhanced Efficacy of Photodynamic Therapy in Prostate Cancer through Ultrasound-controlled In Situ Accumulation. Theranostics 2018;8:1665-77. [PMID: 29556348 DOI: 10.7150/thno.22469] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
495 Chen W, Yang Y, Shangguan D, Wu Y, Liu Z. Multifunctional hard-shelled microbubbles for differentiating imaging, cavitation and drug release by ultrasound. RSC Adv 2017;7:25892-6. [DOI: 10.1039/c7ra03395h] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
496 Feng C, Mu JX, Ren CL. Regulation of oligonucleotide adsorption by a thermo and pH dual-responsive copolymer layer. Phys Chem Chem Phys 2021;23:14296-307. [PMID: 34160496 DOI: 10.1039/d1cp01644j] [Reference Citation Analysis]
497 Parhizkar M, Stride E, Edirisinghe M. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Lab Chip 2014;14:2437-46. [PMID: 24837066 DOI: 10.1039/c4lc00328d] [Cited by in Crossref: 39] [Cited by in F6Publishing: 13] [Article Influence: 5.6] [Reference Citation Analysis]
498 Coban S, Basar O, Brugge WR. Future Directions for Endoscopic Ultrasound. Gastrointestinal Endoscopy Clinics of North America 2017;27:759-72. [DOI: 10.1016/j.giec.2017.06.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
499 Paproski RJ, Yao SY, Favis N, Evans D, Young JD, Cass CE, Zemp RJ. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake. PLoS One 2013;8:e56423. [PMID: 23441192 DOI: 10.1371/journal.pone.0056423] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
500 Lee HJ, Yoon YI, Bae YJ. Theragnostic ultrasound using microbubbles in the treatment of prostate cancer. Ultrasonography 2016;35:309-17. [PMID: 27197842 DOI: 10.14366/usg.16006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
501 Yemane PT, Åslund AKO, Snipstad S, Bjørkøy A, Grendstad K, Berg S, Mørch Y, Torp SH, Hansen R, Davies CL. Effect of Ultrasound on the Vasculature and Extravasation of Nanoscale Particles Imaged in Real Time. Ultrasound Med Biol 2019;45:3028-41. [PMID: 31474384 DOI: 10.1016/j.ultrasmedbio.2019.07.683] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
502 Li Y, Zhang X, Luo W, Wang D, Yang L, Wang J, Zhang L, Zhang S, Luo S, Wang Y. Dual-functionalized nanoparticles loaded microbubbles for enhancement of drug uptake. Ultrasonics 2018;87:82-90. [DOI: 10.1016/j.ultras.2018.02.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
503 Marshalek JP, Sheeran PS, Ingram P, Dayton PA, Witte RS, Matsunaga TO. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J Control Release 2016;243:69-77. [PMID: 27686582 DOI: 10.1016/j.jconrel.2016.09.010] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
504 Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021;197:730-43. [PMID: 33885910 DOI: 10.1007/s00066-021-01774-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
505 Segers T, Gaud E, Casqueiro G, Lassus A, Versluis M, Frinking P. Foam-free monodisperse lipid-coated ultrasound contrast agent synthesis by flow-focusing through multi-gas-component microbubble stabilization. Appl Phys Lett 2020;116:173701. [DOI: 10.1063/5.0003722] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
506 Nittayacharn P, Abenojar E, De Leon A, Wegierak D, Exner AA. Increasing Doxorubicin Loading in Lipid-Shelled Perfluoropropane Nanobubbles via a Simple Deprotonation Strategy. Front Pharmacol 2020;11:644. [PMID: 32477125 DOI: 10.3389/fphar.2020.00644] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
507 Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, Zhang K. Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1733. [PMID: 34137183 DOI: 10.1002/wnan.1733] [Reference Citation Analysis]
508 Sridharan A, Hwang M, Kutty S, McCarville MB, Paltiel HJ, Piskunowicz M, Shellikeri S, Silvestro E, Taylor GA, Didier RA. Translational research in pediatric contrast-enhanced ultrasound. Pediatr Radiol 2021. [PMID: 33991196 DOI: 10.1007/s00247-021-05095-8] [Reference Citation Analysis]
509 Hu Q, Zhang L, Joshi RP. Numerical evaluations of membrane poration by shockwave induced multiple nanobubble collapse in presence of electric fields for transport through cells. AIP Advances 2019;9:045006. [DOI: 10.1063/1.5085677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
510 Chen J, Ratnayaka S, Alford A, Kozlovskaya V, Liu F, Xue B, Hoyt K, Kharlampieva E. Theranostic Multilayer Capsules for Ultrasound Imaging and Guided Drug Delivery. ACS Nano 2017;11:3135-46. [PMID: 28263564 DOI: 10.1021/acsnano.7b00151] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 11.2] [Reference Citation Analysis]
511 Al-Mahrouki A, Giles A, Hashim A, Kim HC, El-Falou A, Rowe-Magnus D, Farhat G, Czarnota GJ. Microbubble-based enhancement of radiation effect: Role of cell membrane ceramide metabolism. PLoS One 2017;12:e0181951. [PMID: 28746357 DOI: 10.1371/journal.pone.0181951] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
512 Wang S, Hossack JA, Klibanov AL, Mauldin FW Jr. Binding dynamics of targeted microbubbles in response to modulated acoustic radiation force. Phys Med Biol 2014;59:465-84. [PMID: 24374866 DOI: 10.1088/0031-9155/59/2/465] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
513 Ke H, Xing Z, Zhao B, Wang J, Liu J, Guo C, Yue X, Liu S, Tang Z, Dai Z. Quantum-dot-modified microbubbles with bi-mode imaging capabilities. Nanotechnology 2009;20:425105. [PMID: 19779227 DOI: 10.1088/0957-4484/20/42/425105] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
514 Liao A, Li Y, Lee W, Wu M, Liu H, Kuo M. Estimating the Delivery Efficiency of Drug-Loaded Microbubbles in Cancer Cells with Ultrasound and Bioluminescence Imaging. Ultrasound in Medicine & Biology 2012;38:1938-48. [DOI: 10.1016/j.ultrasmedbio.2012.07.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
515 Liu D, Liu J, Li C, Li W, Wang W, Liu J. Ultrasound-Aided Targeting Nanoparticles Loaded with miR-181b for Anti-Inflammatory Treatment of TNF-α-Stimulated Endothelial Cells. ACS Omega 2020;5:17102-10. [PMID: 32715195 DOI: 10.1021/acsomega.0c00823] [Reference Citation Analysis]
516 Sirsi SR, Fung C, Garg S, Tianning MY, Mountford PA, Borden MA. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery. Theranostics 2013;3:409-19. [PMID: 23781287 DOI: 10.7150/thno.5616] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
517 Min SH, Wijesinghe S, Berkowitz ML. Enhanced Cavitation and Hydration Crossover of Stretched Water in the Presence of C60. J Phys Chem Lett 2019;10:6621-5. [PMID: 31609628 DOI: 10.1021/acs.jpclett.9b02511] [Reference Citation Analysis]
518 Zullino S, Argenziano M, Stura I, Guiot C, Cavalli R. From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Mol Imaging 2018;17:1536012118778216. [PMID: 30213222 DOI: 10.1177/1536012118778216] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
519 Doinikov AA, Sheeran PS, Bouakaz A, Dayton PA. Vaporization dynamics of volatile perfluorocarbon droplets: a theoretical model and in vitro validation. Med Phys 2014;41:102901. [PMID: 25281982 DOI: 10.1118/1.4894804] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
520 Gong Y, Li S, Zeng W, Yu J, Chen Y, Yu B. Controlled in vivo Bone Formation and Vascularization Using Ultrasound-Triggered Release of Recombinant Vascular Endothelial Growth Factor From Poly(D,L-lactic-co-glycolicacid) Microbubbles. Front Pharmacol 2019;10:413. [PMID: 31068814 DOI: 10.3389/fphar.2019.00413] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
521 Kilroy JP, Dhanaliwala AH, Klibanov AL, Bowles DK, Wamhoff BR, Hossack JA. Reducing Neointima Formation in a Swine Model with IVUS and Sirolimus Microbubbles. Ann Biomed Eng 2015;43:2642-51. [PMID: 25893508 DOI: 10.1007/s10439-015-1315-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
522 Izadifar Z, Babyn P, Chapman D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J Med Biol Eng 2019;39:259-76. [DOI: 10.1007/s40846-018-0391-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 4.8] [Reference Citation Analysis]
523 Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, Hermanns-Sachweh B, Pechar M, Ulbrich K, Hennink WE, Storm G, Lederle W, Kiessling F, Lammers T. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 2014;14:972-81. [PMID: 24422585 DOI: 10.1021/nl404391r] [Cited by in Crossref: 214] [Cited by in F6Publishing: 215] [Article Influence: 26.8] [Reference Citation Analysis]
524 Sarti S, Bordi F. Polymeric hollow micro and nanospheres for biotechnological applications: A focused review. Materials Letters 2013;109:134-9. [DOI: 10.1016/j.matlet.2013.07.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
525 Vlaskou D, Mykhaylyk O, Plank C. Magnetic and Acoustically Active Microbubbles Loaded with Nucleic Acids for Gene Delivery. Methods Mol Biol 2019;1943:253-90. [PMID: 30838622 DOI: 10.1007/978-1-4939-9092-4_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
526 Tong HP, Wang LF, Guo YL, Li L, Fan XZ, Ding J, Huang HY. Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement. Ultrasound Med Biol 2013;39:2147-57. [PMID: 23932278 DOI: 10.1016/j.ultrasmedbio.2013.05.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
527 Disharoon D, Marr DWM, Neeves KB. Engineered microparticles and nanoparticles for fibrinolysis. J Thromb Haemost 2019;17:2004-15. [PMID: 31529593 DOI: 10.1111/jth.14637] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
528 Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2021. [PMID: 34767350 DOI: 10.1021/acs.chemrev.1c00622] [Reference Citation Analysis]
529 Tlaxca JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT, Rivera-Nieves J, Klibanov AL, Lawrence MB. Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease. J Control Release 2013;165:216-25. [PMID: 23142578 DOI: 10.1016/j.jconrel.2012.10.021] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
530 Khan MS, Hwang J, Lee K, Choi Y, Jang J, Kwon Y, Hong JW, Choi J. Surface Composition and Preparation Method for Oxygen Nanobubbles for Drug Delivery and Ultrasound Imaging Applications. Nanomaterials (Basel) 2019;9:E48. [PMID: 30609703 DOI: 10.3390/nano9010048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
531 Mo R, Jiang T, Gu Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed Engl 2014;53:5815-20. [PMID: 24764317 DOI: 10.1002/anie.201400268] [Cited by in Crossref: 133] [Cited by in F6Publishing: 126] [Article Influence: 16.6] [Reference Citation Analysis]
532 du Toit LC, Govender T, Pillay V, Choonara YE, Kodama T. Investigating the effect of polymeric approaches on circulation time and physical properties of nanobubbles. Pharm Res 2011;28:494-504. [PMID: 21181551 DOI: 10.1007/s11095-010-0247-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
533 Yip HC, Teoh AYB, Chong CCN, Lau JYW. Current status and future applications of contrast-enhanced endoscopic ultrasonography. World J Gastrointest Endosc 2014; 6(4): 121-127 [PMID: 24748919 DOI: 10.4253/wjge.v6.i4.121] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
534 Deng Z, Sheng Z, Yan F. Ultrasound-Induced Blood-Brain-Barrier Opening Enhances Anticancer Efficacy in the Treatment of Glioblastoma: Current Status and Future Prospects. J Oncol 2019;2019:2345203. [PMID: 31781213 DOI: 10.1155/2019/2345203] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
535 Peske JD, Woods AB, Engelhard VH. Control of CD8 T-Cell Infiltration into Tumors by Vasculature and Microenvironment. Adv Cancer Res 2015;128:263-307. [PMID: 26216636 DOI: 10.1016/bs.acr.2015.05.001] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 9.9] [Reference Citation Analysis]
536 Endo-Takahashi Y, Negishi Y. Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020;12:E964. [PMID: 33066531 DOI: 10.3390/pharmaceutics12100964] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
537 Kilic S. Quantification of PEG40St squeeze out from DSPC/PEG40St monolayers at higher molar ratios. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;551:58-64. [DOI: 10.1016/j.colsurfa.2018.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
538 Zhang HB, Li J. Stirring and electric field assisted microbubble preparation. Bubble Science, Engineering & Technology 2010;2:9-15. [DOI: 10.1179/175889709x12615681946485] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
539 Liu Z, Wang Y, Liang C, Li X, Wang G, Liu H, Li Y. In Vitro Labeling of Mesenchymal Stem Cells with Superparamagnetic Iron Oxide by Means of Microbubble-enhanced US Exposure: Initial Experience. Radiology 2009;253:153-9. [DOI: 10.1148/radiol.2531081974] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
540 Roovers S, Deprez J, Priwitaningrum D, Lajoinie G, Rivron N, Declercq H, De Wever O, Stride E, Le Gac S, Versluis M, Prakash J, De Smedt SC, Lentacker I. Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. J Control Release 2019;316:79-92. [PMID: 31676384 DOI: 10.1016/j.jconrel.2019.10.051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
541 Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano 2017;11:8560-78. [DOI: 10.1021/acsnano.7b04092] [Cited by in Crossref: 94] [Cited by in F6Publishing: 81] [Article Influence: 18.8] [Reference Citation Analysis]
542 Peyman SA, Abou-saleh RH, Mclaughlan JR, Ingram N, Johnson BRG, Critchley K, Freear S, Evans JA, Markham AF, Coletta PL, Evans SD. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles. Lab Chip 2012;12:4544. [DOI: 10.1039/c2lc40634a] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
543 Geers B, Lentacker I, Sanders NN, Demeester J, Meairs S, De Smedt SC. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J Control Release 2011;152:249-56. [PMID: 21362448 DOI: 10.1016/j.jconrel.2011.02.024] [Cited by in Crossref: 108] [Cited by in F6Publishing: 104] [Article Influence: 9.8] [Reference Citation Analysis]
544 Lin CA, Chuang WK, Huang ZY, Kang ST, Chang CY, Chen CT, Li JL, Li JK, Wang HH, Kung FC, Shen JL, Chan WH, Yeh CK, Yeh HI, Lai WF, Chang WH. Rapid transformation of protein-caged nanomaterials into microbubbles as bimodal imaging agents. ACS Nano 2012;6:5111-21. [PMID: 22607131 DOI: 10.1021/nn300768d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
545 He Z, Liu K, Byrne HJ, Cullen PJ, Tian F, Curtin JF. Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019. pp. 191-219. [DOI: 10.1016/b978-0-12-814029-1.00008-9] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
546 Wang D, Luo W, Wen G, Yang L, Hong S, Zhang S, Diao J, Wang J, Wei H, Li Y, Wang Y. Synergistic effects of negative-charged nanoparticles assisted by ultrasound on the reversal multidrug resistance phenotype in breast cancer cells. Ultrason Sonochem 2017;34:448-57. [PMID: 27773267 DOI: 10.1016/j.ultsonch.2016.06.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
547 Hu Y, Wan JM, Yu AC. Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med Biol 2013;39:2393-405. [PMID: 24063956 DOI: 10.1016/j.ultrasmedbio.2013.08.003] [Cited by in Crossref: 105] [Cited by in F6Publishing: 92] [Article Influence: 11.7] [Reference Citation Analysis]
548 Stewart F, Verbeni A, Qiu Y, Cox BF, Vorstius J, Newton IP, Huang Z, Menciassi A, Näthke I, Cochran S. A Prototype Therapeutic Capsule Endoscope for Ultrasound-Mediated Targeted Drug Delivery. J Med Robot Res 2018;03:1840001. [DOI: 10.1142/s2424905x18400019] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
549 Gessner R, Dayton PA. Advances in molecular imaging with ultrasound. Mol Imaging. 2010;9:117-127. [PMID: 20487678 DOI: 10.2310/7290.2010.00022] [Cited by in Crossref: 83] [Cited by in F6Publishing: 31] [Article Influence: 6.9] [Reference Citation Analysis]
550 Rapoport N, Christensen DA, Kennedy AM, Nam KH. Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol 2010;36:419-29. [PMID: 20133040 DOI: 10.1016/j.ultrasmedbio.2009.11.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 5.0] [Reference Citation Analysis]
551 Jegal U, Lee JH, Lee J, Jeong H, Kim MJ, Kim KH. Ultrasound-assisted gatifloxacin delivery in mouse cornea, in vivo. Sci Rep 2019;9:15532. [PMID: 31664145 DOI: 10.1038/s41598-019-52069-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
552 Wu Y, Sun T, Tang J, Liu Y, Li F. Ultrasound-Targeted Microbubble Destruction Enhances the Antitumor Efficacy of Doxorubicin in a Mouse Hepatocellular Carcinoma Model. Ultrasound Med Biol 2020;46:679-89. [PMID: 31882167 DOI: 10.1016/j.ultrasmedbio.2019.09.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
553 Dove JD, Murray TW, Borden MA. Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles. Soft Matter 2013;9:7743. [DOI: 10.1039/c3sm51690c] [Cited by in Crossref: 38] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
554 Chung IJ, Moon H, Jeon SI, Lee HJ, Ahn CH. Ultrasound-triggered imaging and drug delivery using microbubble-self-aggregate complexes. J Biomater Sci Polym Ed 2021;:1-20. [PMID: 34503403 DOI: 10.1080/09205063.2021.1976362] [Reference Citation Analysis]
555 Borrelli MJ, O'Brien WD Jr, Bernock LJ, Williams HR, Hamilton E, Wu J, Oelze ML, Culp WC. Production of uniformly sized serum albumin and dextrose microbubbles. Ultrason Sonochem 2012;19:198-208. [PMID: 21689961 DOI: 10.1016/j.ultsonch.2011.05.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
556 Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016;61:R206-48. [PMID: 27494561 DOI: 10.1088/0031-9155/61/17/R206] [Cited by in Crossref: 55] [Cited by in F6Publishing: 19] [Article Influence: 9.2] [Reference Citation Analysis]
557 Polavarapu P, Krafft MP. Perfluoroalkylated poly(oxyethylene) thiols: Synthesis, adsorption dynamics and surface activity at the air/water interface, and bubble stabilization behaviour. Journal of Fluorine Chemistry 2015;171:12-7. [DOI: 10.1016/j.jfluchem.2014.10.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
558 Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, Deng L, Jiang W, Shen W, Wang Z, Mei Z, Li P, Ran H, Zhou Z, Ren J. Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma. Theranostics 2018;8:1892-910. [PMID: 29556363 DOI: 10.7150/thno.22386] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
559 Jang KW, Seol D, Ding L, Lim TH, Frank JA, Martin JA. Ultrasound-Mediated Microbubble Destruction Suppresses Melanoma Tumor Growth. Ultrasound Med Biol 2018;44:831-9. [PMID: 29361373 DOI: 10.1016/j.ultrasmedbio.2017.12.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
560 Di Ianni T, Bose RJC, Sukumar UK, Bachawal S, Wang H, Telichko A, Herickhoff C, Robinson E, Baker S, Vilches-Moure JG, Felt SA, Gambhir SS, Paulmurugan R, Dahl JD. Ultrasound/microbubble-mediated targeted delivery of anticancer microRNA-loaded nanoparticles to deep tissues in pigs. J Control Release 2019;309:1-10. [PMID: 31326463 DOI: 10.1016/j.jconrel.2019.07.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
561 Mulvana H, Browning RJ, Tang M, Hajnal JV, Eckersley RJ. Albumin Coated Microbubble Optimization: Custom Fabrication and Comprehensive Characterization. Ultrasound in Medicine & Biology 2012;38:1599-607. [DOI: 10.1016/j.ultrasmedbio.2012.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
562 Browning R, Stride E. Microbubble-Mediated Delivery for Cancer Therapy. Fluids 2018;3:74. [DOI: 10.3390/fluids3040074] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
563 Geers B, Dewitte H, De Smedt SC, Lentacker I. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release 2012;164:248-55. [PMID: 23320295 DOI: 10.1016/j.jconrel.2012.08.014] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 9.4] [Reference Citation Analysis]
564 Cavalieri F, Zhou M, Caruso F, Ashokkumar M. One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chem Commun 2011;47:4096. [DOI: 10.1039/c0cc05095d] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]