BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev 2007;59:325-38. [PMID: 17482308 DOI: 10.1016/j.addr.2007.03.014] [Cited by in Crossref: 255] [Cited by in F6Publishing: 208] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Verma S, Garkhal K, Mittal A, Kumar N. Biodegradable Polymers for Emerging Clinical Use in Tissue Engineering. In: Domb AJ, Kumar N, Ezra A, editors. Biodegradable Polymers in Clinical Use and Clinical Development. Hoboken: John Wiley & Sons, Inc.; 2011. pp. 565-629. [DOI: 10.1002/9781118015810.ch16] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
2 Islam S, Bhuiyan MAR, Islam MN. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J Polym Environ 2017;25:854-66. [DOI: 10.1007/s10924-016-0865-5] [Cited by in Crossref: 229] [Cited by in F6Publishing: 92] [Article Influence: 38.2] [Reference Citation Analysis]
3 Su H, Xu F, Sun H, Fu X, Zhao Y. Preparation and Evaluation of BDNF Composite Conduits for Regeneration of Sciatic Nerve Defect in Rats. Journal of Pharmaceutical Sciences 2020;109:2189-95. [DOI: 10.1016/j.xphs.2020.03.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Lin Y, Ramadan M, Hronik-tupaj M, Kaplan DL, Philips BJ, Sivak W, Rubin JP, Marra KG. Spatially Controlled Delivery of Neurotrophic Factors in Silk Fibroin–Based Nerve Conduits for Peripheral Nerve Repair. Annals of Plastic Surgery 2011;67:147-55. [DOI: 10.1097/sap.0b013e3182240346] [Cited by in Crossref: 43] [Cited by in F6Publishing: 16] [Article Influence: 3.9] [Reference Citation Analysis]
5 Sangsanoh P, Israsena N, Suwantong O, Supaphol P. Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line. Polym Bull 2017;74:4101-18. [DOI: 10.1007/s00289-017-1947-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
6 Zaszczynska A, Sajkiewicz P, Gradys A. Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers (Basel) 2020;12:E161. [PMID: 31936240 DOI: 10.3390/polym12010161] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
7 Wu D, Zhang J, Zhang M, Zhou W, Lin D. The co-continuous morphology of biocompatible ethylene-vinyl acetate copolymers/poly(ε-caprolactone) blend: effect of viscosity ratio and vinyl acetate content. Colloid Polym Sci 2011;289:1683-94. [DOI: 10.1007/s00396-011-2488-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
8 Lee SJ, Heo M, Lee D, Heo DN, Lim H, Kwon IK. Fabrication and design of bioactive agent coated, highly-aligned electrospun matrices for nerve tissue engineering: Preparation, characterization and application. Applied Surface Science 2017;424:359-67. [DOI: 10.1016/j.apsusc.2017.02.179] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
9 Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012;16:2564-82. [PMID: 22805417 DOI: 10.1111/j.1582-4934.2012.01603.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 6.5] [Reference Citation Analysis]
10 Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater 2015;2:31-45. [PMID: 26813399 DOI: 10.1093/rb/rbu017] [Cited by in Crossref: 95] [Cited by in F6Publishing: 83] [Article Influence: 13.6] [Reference Citation Analysis]
11 Liu T, Houle JD, Xu J, Chan BP, Chew SY. Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 2012;18:1057-66. [PMID: 22220714 DOI: 10.1089/ten.TEA.2011.0430] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 9.5] [Reference Citation Analysis]
12 Cho Y, Borgens RB. Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2012;233:126-44. [PMID: 21985867 DOI: 10.1016/j.expneurol.2011.09.028] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 4.5] [Reference Citation Analysis]
13 De Laporte L, Yang Y, Zelivyanskaya ML, Cummings BJ, Anderson AJ, Shea LD. Plasmid releasing multiple channel bridges for transgene expression after spinal cord injury. Mol Ther 2009;17:318-26. [PMID: 19050701 DOI: 10.1038/mt.2008.252] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 3.3] [Reference Citation Analysis]
14 Abbaszadeh-goudarzi G, Haghi-daredeh S, Ehterami A, Rahmati M, Nazarnezhad S, Hashemi SF, Niyakan M, Vaez A, Salehi M. Evaluating effect of alginate/chitosan hydrogel containing 4-Methylcatechol on peripheral nerve regeneration in rat model. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:1248-57. [DOI: 10.1080/00914037.2020.1785462] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
15 Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater 2013;8:022001. [DOI: 10.1088/1748-6041/8/2/022001] [Cited by in Crossref: 72] [Cited by in F6Publishing: 60] [Article Influence: 8.0] [Reference Citation Analysis]
16 Regalado-Santiago C, Juárez-Aguilar E, Olivares-Hernández JD, Tamariz E. Mimicking Neural Stem Cell Niche by Biocompatible Substrates. Stem Cells Int 2016;2016:1513285. [PMID: 26880934 DOI: 10.1155/2016/1513285] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
17 Xue H, Zhang X, Liu J, Song Y, Li Y, Chen D. Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J Biomed Mater Res 2013;101A:145-56. [DOI: 10.1002/jbm.a.34311] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
18 Li JJ, Liu H, Zhu Y, Yan L, Liu R, Wang G, Wang B, Zhao B. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies. Tissue Engineering Part B: Reviews. [DOI: 10.1089/ten.teb.2020.0267] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kim JJ, Evans GR. Applications of Biomaterials in Plastic Surgery. Clinics in Plastic Surgery 2012;39:359-76. [DOI: 10.1016/j.cps.2012.07.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
20 Xu W, Yang Y. Drug sorption onto and release from soy protein fibers. J Mater Sci: Mater Med 2009;20:2477-86. [DOI: 10.1007/s10856-009-3821-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
21 Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: Current choices. Mater Sci Eng C Mater Biol Appl 2017;77:1302-15. [PMID: 28532008 DOI: 10.1016/j.msec.2017.03.264] [Cited by in Crossref: 98] [Cited by in F6Publishing: 83] [Article Influence: 19.6] [Reference Citation Analysis]
22 Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 2009;61:1055-64. [PMID: 19643156 DOI: 10.1016/j.addr.2009.07.009] [Cited by in Crossref: 242] [Cited by in F6Publishing: 212] [Article Influence: 18.6] [Reference Citation Analysis]
23 Schendel AA, Eliceiri KW, Williams JC. Advanced Materials for Neural Surface Electrodes. Curr Opin Solid State Mater Sci 2014;18:301-7. [PMID: 26392802 DOI: 10.1016/j.cossms.2014.09.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
24 Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B 2018;8:756-66. [PMID: 30258764 DOI: 10.1016/j.apsb.2018.03.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
25 Ma W, Zhan Y, Zhang Y, Mao C, Xie X, Lin Y. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021;6:351. [PMID: 34620843 DOI: 10.1038/s41392-021-00727-9] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 2012;40:578-97. [PMID: 22218702 DOI: 10.1007/s10439-011-0505-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
27 Truong TA, Nguyen TK, Zhao H, Nguyen NK, Dinh T, Park Y, Nguyen T, Yamauchi Y, Nguyen NT, Phan HP. Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. Small 2021;:e2105748. [PMID: 34874620 DOI: 10.1002/smll.202105748] [Reference Citation Analysis]
28 Willerth SM. Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2011;2:17. [PMID: 21539726 DOI: 10.1186/scrt58] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
29 Guo J, Leung KKG, Su H, Yuan Q, Wang L, Chu T, Zhang W, Pu JKS, Ng GKP, Wong WM, Dai X, Wu W. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine: Nanotechnology, Biology and Medicine 2009;5:345-51. [DOI: 10.1016/j.nano.2008.12.001] [Cited by in Crossref: 116] [Cited by in F6Publishing: 95] [Article Influence: 8.9] [Reference Citation Analysis]
30 Tavangarian F, Li Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceramics International 2012;38:6075-90. [DOI: 10.1016/j.ceramint.2012.05.038] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
31 Perale G, Arosio P, Moscatelli D, Barri V, Müller M, Maccagnan S, Masi M. A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional model. Journal of Controlled Release 2009;136:196-205. [DOI: 10.1016/j.jconrel.2009.02.014] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
32 Shin S, Tuinstra HM, Salvay DM, Shea LD. Phosphatidylserine immobilization of lentivirus for localized gene transfer. Biomaterials 2010;31:4353-9. [PMID: 20206382 DOI: 10.1016/j.biomaterials.2010.02.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
33 Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. Biomed Res Int 2014;2014:132350. [PMID: 25143934 DOI: 10.1155/2014/132350] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
34 Rouleau N, Murugan NJ, Kaplan DL. Toward Studying Cognition in a Dish. Trends Cogn Sci 2021;25:294-304. [PMID: 33546973 DOI: 10.1016/j.tics.2021.01.005] [Reference Citation Analysis]
35 Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo SS. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 2010;223:645-52. [PMID: 20211178 DOI: 10.1016/j.expneurol.2010.02.014] [Cited by in Crossref: 244] [Cited by in F6Publishing: 200] [Article Influence: 20.3] [Reference Citation Analysis]
36 Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SO, Mottaghy K. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 2009;54:73-83. [PMID: 19084565 DOI: 10.1016/j.neuint.2008.11.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 67] [Article Influence: 5.9] [Reference Citation Analysis]
37 Wu D, Zhang J, Zhou W, Yao Z, Zhang M, Lin D, Wang J. Morphological control of porous ethylene-vinyl acetate copolymer membrane obtained from a co-continuous ethylene-vinyl acetate copolymer/poly(ϵ-caprolactone) blend: Microporous ethylene-vinyl acetate membranes. Polym Int 2014;63:470-8. [DOI: 10.1002/pi.4530] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
38 Abedi A, Hasanzadeh M, Tayebi L. Conductive nanofibrous Chitosan/PEDOT:PSS tissue engineering scaffolds. Materials Chemistry and Physics 2019;237:121882. [DOI: 10.1016/j.matchemphys.2019.121882] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
39 Mackinnon N, Guérin G, Liu B, Gradinaru CC, Macdonald PM. Liposome−Hydrogel Bead Complexes Prepared via Biotin−Avidin Conjugation. Langmuir 2009;25:9413-23. [DOI: 10.1021/la900163r] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
40 Irvine DJ, Stachowiak AN, Hori Y. Lymphoid tissue engineering: Invoking lymphoid tissue neogenesis in immunotherapy and models of immunity. Seminars in Immunology 2008;20:137-46. [DOI: 10.1016/j.smim.2007.10.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 2.4] [Reference Citation Analysis]
41 Koroleva A, Gill AA, Ortega I, Haycock JW, Schlie S, Gittard SD, Chichkov BN, Claeyssens F. Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 2012;4:025005. [DOI: 10.1088/1758-5082/4/2/025005] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 7.3] [Reference Citation Analysis]
42 Vardar E, Vert M, Coudane J, Hasirci V, Hasirci N. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies. Journal of Biomaterials Science, Polymer Edition 2012;23:2273-86. [DOI: 10.1163/156856211x614770] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
43 Patel BB, Sharma AD, Mammadova N, Sandquist EJ, Uz M, Mallapragada SK, Sakaguchi DS. Nanoengineered biomaterials for retinal repair. Nanoengineered Biomaterials for Regenerative Medicine. Elsevier; 2019. pp. 215-64. [DOI: 10.1016/b978-0-12-813355-2.00010-7] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Mckeon KD, Lewis A, Freeman JW. Electrospun poly(D,L-lactide) and polyaniline scaffold characterization. J Appl Polym Sci 2010;115:1566-72. [DOI: 10.1002/app.31296] [Cited by in Crossref: 54] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
45 Marrazzo P, Angeloni C, Hrelia S. Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model. Antioxidants (Basel) 2019;8:E420. [PMID: 31547034 DOI: 10.3390/antiox8100420] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
46 Johnson T, Koria P. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration. BioDrugs 2016;30:117-27. [PMID: 26820997 DOI: 10.1007/s40259-016-0159-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
47 Broguiere N, Husch A, Palazzolo G, Bradke F, Madduri S, Zenobi-Wong M. Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials 2019;200:56-65. [PMID: 30772759 DOI: 10.1016/j.biomaterials.2019.01.047] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
48 Sangsanoh P, Ekapakul N, Israsena N, Suwantong O, Supaphol P. Enhancement of biocompatibility on aligned electrospun poly(3-hydroxybutyrate) scaffold immobilized with laminin towards murine neuroblastoma Neuro2a cell line and rat brain-derived neural stem cells (mNSCs). Polym Adv Technol 2018;29:2050-63. [DOI: 10.1002/pat.4313] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
49 Leipzig ND, Wylie RG, Kim H, Shoichet MS. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 2011;32:57-64. [PMID: 20934216 DOI: 10.1016/j.biomaterials.2010.09.031] [Cited by in Crossref: 150] [Cited by in F6Publishing: 136] [Article Influence: 12.5] [Reference Citation Analysis]
50 Kemp SW, Syed S, Walsh W, Zochodne DW, Midha R. Collagen nerve conduits promote enhanced axonal regeneration, schwann cell association, and neovascularization compared to silicone conduits. Tissue Eng Part A 2009;15:1975-88. [PMID: 19196132 DOI: 10.1089/ten.tea.2008.0338] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 4.8] [Reference Citation Analysis]
51 Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB. The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: Protein distribution and the glial response. J Biomed Mater Res A 2011;96:595-607. [PMID: 21254391 DOI: 10.1002/jbm.a.33011] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 5.4] [Reference Citation Analysis]
52 Zeugolis D, Raghunath M. Collagen: Materials Analysis and Implant Uses. Comprehensive Biomaterials. Elsevier; 2011. pp. 261-78. [DOI: 10.1016/b978-0-08-055294-1.00074-x] [Cited by in Crossref: 15] [Article Influence: 1.4] [Reference Citation Analysis]
53 Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int J Mol Sci 2015;16:12925-42. [PMID: 26062130 DOI: 10.3390/ijms160612925] [Cited by in Crossref: 71] [Cited by in F6Publishing: 58] [Article Influence: 10.1] [Reference Citation Analysis]
54 Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. Adv Mater 2019;31:e1804041. [PMID: 30565732 DOI: 10.1002/adma.201804041] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
55 Matsumine H, Sasaki R, Tabata Y, Matsui M, Yamato M, Okano T, Sakurai H. Facial nerve regeneration using basic fibroblast growth factor-impregnated gelatin microspheres in a rat model. J Tissue Eng Regen Med 2016;10:E559-67. [PMID: 24737684 DOI: 10.1002/term.1884] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
56 Rathore HS, Sarubala M, Ramanathan G, Singaravelu S, Raja M, Gupta S, Sivagnanam UT. Fabrication of biomimetic porous novel sponge from gum kondagogu for wound dressing. Materials Letters 2016;177:108-11. [DOI: 10.1016/j.matlet.2016.04.185] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
57 Cho Y, Borgens RB. Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release. Langmuir 2011;27:6316-22. [PMID: 21500819 DOI: 10.1021/la200160q] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
58 Han HW, Hsu SH. Using 3D bioprinting to produce mini-brain. Neural Regen Res 2017;12:1595-6. [PMID: 29171415 DOI: 10.4103/1673-5374.217325] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
59 Ziv-Polat O, Shahar A, Levy I, Skaat H, Neuman S, Fregnan F, Geuna S, Grothe C, Haastert-Talini K, Margel S. The role of neurotrophic factors conjugated to iron oxide nanoparticles in peripheral nerve regeneration: in vitro studies. Biomed Res Int 2014;2014:267808. [PMID: 25133160 DOI: 10.1155/2014/267808] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
60 Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation. Biotechnol Bioeng 2017;114:245-59. [PMID: 27531038 DOI: 10.1002/bit.26074] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
61 Chapman CAR, Goshi N, Seker E. Multifunctional Neural Interfaces for Closed‐Loop Control of Neural Activity. Adv Funct Mater 2018;28:1703523. [DOI: 10.1002/adfm.201703523] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
62 Robinson M, Valente KP, Willerth SM. A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues. Biosensors (Basel) 2019;9:E51. [PMID: 30939804 DOI: 10.3390/bios9020051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
63 Jin N, Morin EA, Henn DM, Cao Y, Woodcock JW, Tang S, He W, Zhao B. Agarose hydrogels embedded with pH-responsive diblock copolymer micelles for triggered release of substances. Biomacromolecules 2013;14:2713-23. [PMID: 23815070 DOI: 10.1021/bm4005639] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
64 Wang T, Forsythe J, Parish C, Nisbet D. Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl 2012;27:369-90. [DOI: 10.1177/0885328212443297] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
65 Sivolella S, Brunello G, Ferrarese N, Della Puppa A, D’Avella D, Bressan E, Zavan B. Nanostructured guidance for peripheral nerve injuries: a review with a perspective in the oral and maxillofacial area. Int J Mol Sci. 2014;15:3088-3117. [PMID: 24562333 DOI: 10.3390/ijms15023088] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
66 Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021;182:1091-111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Reference Citation Analysis]
67 Chen L, Kaji H. Modeling angiogenesis with micro- and nanotechnology. Lab Chip 2017;17:4186-219. [DOI: 10.1039/c7lc00774d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 4.4] [Reference Citation Analysis]
68 Ellis-Behnke RG, Schneider GE. Peptide amphiphiles and porous biodegradable scaffolds for tissue regeneration in the brain and spinal cord. Methods Mol Biol 2011;726:259-81. [PMID: 21424455 DOI: 10.1007/978-1-61779-052-2_17] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
69 Chooi WH, Chew SY. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019;197:327-44. [DOI: 10.1016/j.biomaterials.2019.01.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
70 Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019;83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
71 Norman LL, Stroka K, Aranda-espinoza H. Guiding Axons in the Central Nervous System: A Tissue Engineering Approach. Tissue Engineering Part B: Reviews 2009;15:291-305. [DOI: 10.1089/ten.teb.2009.0114] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
72 Gnavi S, Barwig C, Freier T, Haastert-Talini K, Grothe C, Geuna S. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int Rev Neurobiol 2013;109:1-62. [PMID: 24093605 DOI: 10.1016/B978-0-12-420045-6.00001-8] [Cited by in Crossref: 49] [Cited by in F6Publishing: 12] [Article Influence: 6.1] [Reference Citation Analysis]
73 Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, Chen S, Ramakrishna S, He L. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. Acta Biomater 2018;72:266-77. [PMID: 29578088 DOI: 10.1016/j.actbio.2018.03.030] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
74 Zhang X, Qu W, Li D, Shi K, Li R, Han Y, Jin E, Ding J, Chen X. Functional Polymer‐Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Adv Mater Interfaces 2020;7:2000225. [DOI: 10.1002/admi.202000225] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
75 Uzunalli G. Nanomaterials for Wound Healing. In: Tekinay AB, editor. Nanomaterials for Regenerative Medicine. Cham: Springer International Publishing; 2019. pp. 81-117. [DOI: 10.1007/978-3-030-31202-2_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Mckeon-fischer KD, Freeman JW. ADDITION OF CONDUCTIVE ELEMENTS TO POLYMERIC SCAFFOLDS FOR MUSCLE TISSUE ENGINEERING. Nano LIFE 2012;02:1230011. [DOI: 10.1142/s1793984412300117] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
77 Khandelwal G, Maria Joseph Raj NP, Kim S. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020;33:100882. [DOI: 10.1016/j.nantod.2020.100882] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
78 Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F, Qu J, Zuo B, Zhang H. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A 2012;100:632-45. [PMID: 22213384 DOI: 10.1002/jbm.a.33291] [Cited by in Crossref: 80] [Cited by in F6Publishing: 75] [Article Influence: 7.3] [Reference Citation Analysis]
79 Yu LM, Leipzig ND, Shoichet MS. Promoting neuron adhesion and growth. Materials Today 2008;11:36-43. [DOI: 10.1016/s1369-7021(08)70088-9] [Cited by in Crossref: 118] [Article Influence: 8.4] [Reference Citation Analysis]
80 Pértile R, Moreira S, Andrade F, Domingues L, Gama M. Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 2012;28:526-32. [PMID: 22271600 DOI: 10.1002/btpr.1501] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
81 Åberg J, Eriksson O, Spens E, Nordblom J, Mattsson P, Sjödahl J, Svensson M, Engqvist H. Calcium sulfate spinal cord scaffold: a study on degradation and fibroblast growth factor 1 loading and release. J Biomater Appl 2012;26:667-85. [PMID: 20624845 DOI: 10.1177/0885328210373670] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
82 Pereira AG, Gouveia RF, de Carvalho GM, Rubira AF, Muniz EC. Polymer blends based on PEO and starch: Miscibility and spherulite growth rate evaluated through DSC and optical microscopy. Materials Science and Engineering: C 2009;29:499-504. [DOI: 10.1016/j.msec.2008.09.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
83 Mathew AA, Chandrasekhar A, Vivekanandan S. A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 2021;80:105566. [DOI: 10.1016/j.nanoen.2020.105566] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 16.0] [Reference Citation Analysis]
84 Macaya D, Spector M. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 2012;7:012001. [PMID: 22241481 DOI: 10.1088/1748-6041/7/1/012001] [Cited by in Crossref: 174] [Cited by in F6Publishing: 151] [Article Influence: 17.4] [Reference Citation Analysis]
85 Rajangam T, An SS. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 2013;8:3641-62. [PMID: 24106425 DOI: 10.2147/IJN.S43945] [Cited by in Crossref: 18] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
86 Ding F, Deng H, Du Y, Shi X, Wang Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 2014;6:9477-93. [DOI: 10.1039/c4nr02814g] [Cited by in Crossref: 218] [Cited by in F6Publishing: 29] [Article Influence: 27.3] [Reference Citation Analysis]
87 Hsieh SC, Tang CM, Huang WT, Hsieh LL, Lu CM, Chang CJ, Hsu SH. Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. J Biomed Mater Res A 2011;99:576-85. [PMID: 21953828 DOI: 10.1002/jbm.a.33157] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
88 Naderi H, Matin MM, Bahrami AR. Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. J Biomater Appl 2011;26:383-417. [DOI: 10.1177/0885328211408946] [Cited by in Crossref: 187] [Cited by in F6Publishing: 151] [Article Influence: 17.0] [Reference Citation Analysis]
89 Davis B, Hilgart D, Erickson S, Labroo P, Burton J, Sant H, Shea J, Gale B, Agarwal J. Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 2019;60:613-20. [PMID: 31397908 DOI: 10.1002/mus.26656] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
90 Divakar P, Moodie KL, Demidenko E, Jack Hoopes P, Wegst UGK. Quantitative evaluation of the in vivo biocompatibility and performance of freeze-cast tissue scaffolds. Biomed Mater 2020;15:055003. [PMID: 31295733 DOI: 10.1088/1748-605X/ab316a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Gu X, Ding F, Yang Y, Liu J. Tissue Engineering in Peripheral Nerve Regeneration. Neural Regeneration. Elsevier; 2015. pp. 73-99. [DOI: 10.1016/b978-0-12-801732-6.00005-7] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
92 Chen W, Tong YW. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon–dendrite polarization. Acta Biomaterialia 2012;8:540-8. [DOI: 10.1016/j.actbio.2011.09.026] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 5.8] [Reference Citation Analysis]
93 Kemp SW, Walsh SK, Midha R. Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol Res. 2008;30:1030-1038. [PMID: 19079977 DOI: 10.1179/174313208x362505] [Cited by in Crossref: 60] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
94 Mauro N, Manfredi A, Ranucci E, Procacci P, Laus M, Antonioli D, Mantovani C, Magnaghi V, Ferruti P. Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells: Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing …. Macromol Biosci 2013;13:332-47. [DOI: 10.1002/mabi.201200354] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
95 Munir A, Hussain S, Dilshad E. Silver nanoparticles conjugated with Neurotrophin 3 upregulate myelin gene transcription pathway. J Theor Biol 2018;459:111-8. [PMID: 30268839 DOI: 10.1016/j.jtbi.2018.09.033] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
96 Lotti F, Ranieri F, Vadalà G, Zollo L, Di Pino G. Invasive Intraneural Interfaces: Foreign Body Reaction Issues. Front Neurosci 2017;11:497. [PMID: 28932181 DOI: 10.3389/fnins.2017.00497] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
97 Tan HX, Borgo MPD, Aguilar M, Forsythe JS, Taylor JM, Crack PJ. The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomaterialia 2020;102:1-12. [DOI: 10.1016/j.actbio.2019.11.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
98 Bhise NS, Shmueli RB, Sunshine JC, Tzeng SY, Green JJ. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin Drug Deliv 2011;8:485-504. [PMID: 21338327 DOI: 10.1517/17425247.2011.558082] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
99 Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med 2017;11:197-208. [PMID: 24737714 DOI: 10.1002/term.1902] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
100 Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine 2011;6:157-81. [DOI: 10.2217/nnm.10.146] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
101 Shen H, Shen ZL, Zhang PH, Chen NL, Wang YC, Zhang ZF, Jin YQ. Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes peripheral nerve regeneration in canine tibial nerve defect repair. J Biomed Mater Res B Appl Biomater 2010;95:161-70. [PMID: 20737557 DOI: 10.1002/jbm.b.31696] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
102 Mu Y, Wu F, Lu Y, Wei L, Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine (Lond) 2014;9:1869-83. [PMID: 25325242 DOI: 10.2217/nnm.14.70] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
103 Wu HF, Cen JS, Zhong Q, Chen L, Wang J, Deng DY, Wan Y. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127. Biomaterials 2013;34:1686-700. [PMID: 23211450 DOI: 10.1016/j.biomaterials.2012.11.013] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
104 Ghorbani F, Zamanian A, Aidun A. Conductive electrospun polyurethane-polyaniline scaffolds coated with poly(vinyl alcohol)-GPTMS under oxygen plasma surface modification. Materials Today Communications 2020;22:100752. [DOI: 10.1016/j.mtcomm.2019.100752] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
105 Sharma A, Bhat S, Nayak V, Kumar A. Efficacy of supermacroporous poly(ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications. Materials Science and Engineering: C 2015;47:298-312. [DOI: 10.1016/j.msec.2014.11.031] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
106 Meng F, Modo M, Badylak SF. Biologic scaffold for CNS repair. Regenerative Medicine 2014;9:367-83. [DOI: 10.2217/rme.14.9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
107 Agbay A, Mohtaram NK, Willerth SM. Controlled release of glial cell line-derived neurotrophic factor from poly(ε-caprolactone) microspheres. Drug Deliv and Transl Res 2014;4:159-70. [DOI: 10.1007/s13346-013-0189-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
108 Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F, Shokrgozar MA, Sadeghizadeh M. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 2013;8:e74417. [PMID: 24098649 DOI: 10.1371/journal.pone.0074417] [Cited by in Crossref: 71] [Cited by in F6Publishing: 51] [Article Influence: 7.9] [Reference Citation Analysis]
109 Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, Ndesendo VM. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011;2011:939851. [PMID: 21490759 DOI: 10.1155/2011/939851] [Cited by in Crossref: 107] [Cited by in F6Publishing: 94] [Article Influence: 9.7] [Reference Citation Analysis]
110 Xu W, Yang Y. Drug release and its relationship with kinetic and thermodynamic parameters of drug sorption onto starch acetate fibers. Biotechnol Bioeng 2009. [DOI: 10.1002/bit.22594] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
111 Zhu N, Li MG, Cooper D, Chen XB. Development of novel hybrid poly(l-lactide)/chitosan scaffolds using the rapid freeze prototyping technique. Biofabrication 2011;3:034105. [DOI: 10.1088/1758-5082/3/3/034105] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
112 Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2012;9:401-19. [PMID: 22158843 DOI: 10.1098/rsif.2011.0611] [Cited by in Crossref: 233] [Cited by in F6Publishing: 199] [Article Influence: 21.2] [Reference Citation Analysis]
113 Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P. Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2011;2:336-45. [PMID: 22816020 DOI: 10.1021/cn200030w] [Cited by in Crossref: 100] [Cited by in F6Publishing: 90] [Article Influence: 9.1] [Reference Citation Analysis]
114 Kuo Y, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. Journal of the Taiwan Institute of Chemical Engineers 2017;77:41-53. [DOI: 10.1016/j.jtice.2017.04.043] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
115 Bjugstad KB, Lampe K, Kern DS, Mahoney M. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: An analysis of the glial response across space and time. J Biomed Mater Res 2010;95A:79-91. [DOI: 10.1002/jbm.a.32809] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 5.9] [Reference Citation Analysis]
116 Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Improvements in biomaterial matrices for neural precursor cell transplantation. Mol Cell Ther 2014;2:19. [PMID: 26056586 DOI: 10.1186/2052-8426-2-19] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
117 Lohmeyer JA, Essmann E, Richerson SJ, Hagel C, Egana JT, Condurache A, Ganske P, Schulz K, Mailänder P, Machens HG. Use of Erythropoietin as adjuvant therapy in nerve reconstruction. Langenbecks Arch Surg 2008;393:317-23. [PMID: 18299885 DOI: 10.1007/s00423-008-0289-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
118 Ai J, Kiasat-dolatabadi A, Ebrahimi-barough S, Ai A, Lotfibakhshaiesh N, Norouzi-javidan A, Saberi H, Arjmand B, Aghayan HR. Polymeric Scaffolds in Neural Tissue Engineering: A Review. Arch Neurosci 2013;1:15-20. [DOI: 10.5812/archneurosci.9144] [Cited by in Crossref: 50] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
119 Llames S, García E, Otero Hernández J, Meana Á. Tissue Bioengineering and Artificial Organs. In: López-larrea C, López-vázquez A, Suárez-álvarez B, editors. Stem Cell Transplantation. New York: Springer US; 2012. pp. 314-36. [DOI: 10.1007/978-1-4614-2098-9_20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
120 Leung GKK, Wang YC, Wu W. Peptide Nanofiber Scaffold for Brain Tissue Reconstruction. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases. Elsevier; 2012. pp. 177-90. [DOI: 10.1016/b978-0-12-391860-4.00009-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
121 Liu X, Pi B, Wang H, Wang X. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration. Front Mater Sci 2015;9:1-13. [DOI: 10.1007/s11706-015-0274-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
122 Leipzig ND, Xu C, Zahir T, Shoichet MS. Functional immobilization of interferon-gamma induces neuronal differentiation of neural stem cells. J Biomed Mater Res A 2010;93:625-33. [PMID: 19591237 DOI: 10.1002/jbm.a.32573] [Cited by in Crossref: 10] [Cited by in F6Publishing: 28] [Article Influence: 0.8] [Reference Citation Analysis]
123 De Laporte L, des Rieux A, Tuinstra HM, Zelivyanskaya ML, De Clerck NM, Postnov AA, Préat V, Shea LD. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. J Biomed Mater Res A 2011;98:372-82. [PMID: 21630429 DOI: 10.1002/jbm.a.33112] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
124 [DOI: 10.1063/1.4960223] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
125 Raucci MG, D'Amora U, Ronca A, Ambrosio L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv Healthc Mater 2020;9:e2000349. [PMID: 32484311 DOI: 10.1002/adhm.202000349] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
126 Moxon K, Hallman S, Sundarakrishnan A, Wheatley M, Nissanov J, Barbee K. Long-Term Recordings of Multiple, Single-Neurons for Clinical Applications: The Emerging Role of the Bioactive Microelectrode. Materials 2009;2:1762-94. [DOI: 10.3390/ma2041762] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
127 Zhang L, Chen Y, Xu H, Bao Y, Yan X, Li Y, Li Y, Yin Y, Wang X, Qiu T, Huang Z, Xu P, Wang X. Preparation and evaluation of an injectable chitosan-hyaluronic acid hydrogel for peripheral nerve regeneration. J Wuhan Univ Technol -Mat Sci Edit 2016;31:1401-7. [DOI: 10.1007/s11595-016-1545-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
128 Wei L, Lin J, Cai C, Fang Z, Fu W. Drug-carrier/hydrogel scaffold for controlled growth of cells. European Journal of Pharmaceutics and Biopharmaceutics 2011;78:346-54. [DOI: 10.1016/j.ejpb.2011.01.015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
129 Straley KS, Foo CW, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010;27:1-19. [PMID: 19698073 DOI: 10.1089/neu.2009.0948] [Cited by in Crossref: 225] [Cited by in F6Publishing: 195] [Article Influence: 18.8] [Reference Citation Analysis]
130 Knowlton S, Anand S, Shah T, Tasoglu S. Bioprinting for Neural Tissue Engineering. Trends in Neurosciences 2018;41:31-46. [DOI: 10.1016/j.tins.2017.11.001] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 19.3] [Reference Citation Analysis]
131 Zhang X, Xue H, Liu J, Chen D. Chemically extracted acellular muscle: A new potential scaffold for spinal cord injury repair. J Biomed Mater Res 2012;100A:578-87. [DOI: 10.1002/jbm.a.33237] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
132 Kilic A, Ojo B, Rajfer RA, Konopka G, Hagg D, Jang E, Akelina Y, Mao JJ, Rosenwasser MP, Tang P. Effect of white adipose tissue flap and insulin-like growth factor-1 on nerve regeneration in rats: Nerve Regeneration with White Adipose Tissue Flap and IGF-1. Microsurgery 2013;33:367-75. [DOI: 10.1002/micr.22101] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
133 Iovene A, Zhao Y, Wang S, Amoako K. Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. J Funct Biomater 2021;12:14. [PMID: 33672492 DOI: 10.3390/jfb12010014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
134 Casalini T, Masi M, Perale G. Drug eluting sutures: A model for in vivo estimations. International Journal of Pharmaceutics 2012;429:148-57. [DOI: 10.1016/j.ijpharm.2012.03.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
135 Zammit V, Brincat MR, Cassar V, Muscat-Baron Y, Ayers D, Baron B. MiRNA influences in mesenchymal stem cell commitment to neuroblast lineage development. Noncoding RNA Res. 2018;3:232-242. [PMID: 30533571 DOI: 10.1016/j.ncrna.2018.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
136 Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, Thakur A, Mohtaram NK, Bayati A, Dolatshahi-Pirouz A, Nikkhah M, Willerth SM, Akbari M. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs. Adv Mater 2017;29. [PMID: 28370405 DOI: 10.1002/adma.201606061] [Cited by in Crossref: 179] [Cited by in F6Publishing: 146] [Article Influence: 35.8] [Reference Citation Analysis]
137 Walker PA, Aroom KR, Jimenez F, Shah SK, Harting MT, Gill BS, Cox CS Jr. Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Rev Rep 2009;5:283-300. [PMID: 19644777 DOI: 10.1007/s12015-009-9081-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
138 Muzzi L, Di Lisa D, Arnaldi P, Aprile D, Pastorino L, Martinoia S, Frega M. Rapid generation of functional engineered 3D human neuronal assemblies: network dynamics evaluated by micro-electrodes arrays. J Neural Eng 2021;18. [PMID: 34844234 DOI: 10.1088/1741-2552/ac3e02] [Reference Citation Analysis]
139 Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Advanced Drug Delivery Reviews 2019;149-150:19-48. [DOI: 10.1016/j.addr.2019.03.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
140 Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
141 Wei Y, He Y, Xu C, Wang Y, Liu B, Wang X, Sun X, Cui F, Xu Q. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res 2010;95B:110-7. [DOI: 10.1002/jbm.b.31689] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 5.3] [Reference Citation Analysis]
142 Downing TL, Wang A, Yan ZQ, Nout Y, Lee AL, Beattie MS, Bresnahan JC, Farmer DL, Li S. Drug-eluting microfibrous patches for the local delivery of rolipram in spinal cord repair. J Control Release 2012;161:910-7. [PMID: 22634093 DOI: 10.1016/j.jconrel.2012.05.034] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
143 Liao C, Huang J, Sun S, Xiao B, Zhou N, Yin D, Wan Y. Multi-channel chitosan–polycaprolactone conduits embedded with microspheres for controlled release of nerve growth factor. Reactive and Functional Polymers 2013;73:149-59. [DOI: 10.1016/j.reactfunctpolym.2012.09.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
144 Naseri-nosar M, Salehi M, Hojjati-emami S. Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. International Journal of Biological Macromolecules 2017;103:701-8. [DOI: 10.1016/j.ijbiomac.2017.05.054] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 8.2] [Reference Citation Analysis]
145 Mottaghitalab F, Farokhi M, Mottaghitalab V, Ziabari M, Divsalar A, Shokrgozar MA. Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydrate Polymers 2011;86:526-35. [DOI: 10.1016/j.carbpol.2011.04.066] [Cited by in Crossref: 47] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
146 Venkatesh S, Wower J, Byrne ME. Nucleic acid therapeutic carriers with on-demand triggered release. Bioconjug Chem 2009;20:1773-82. [PMID: 19670897 DOI: 10.1021/bc900187b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
147 Upadhyaya L, Singh J, Agarwal V, Tewari RP. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. Journal of Controlled Release 2014;186:54-87. [DOI: 10.1016/j.jconrel.2014.04.043] [Cited by in Crossref: 144] [Cited by in F6Publishing: 119] [Article Influence: 18.0] [Reference Citation Analysis]
148 Salgado A, Sousa N, Silva N, Neves N, Reis R. Hydrogels for spinal cord injury regeneration. Natural-Based Polymers for Biomedical Applications. Elsevier; 2008. pp. 570-94. [DOI: 10.1533/9781845694814.4.570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
149 Cirillo V, Clements BA, Guarino V, Bushman J, Kohn J, Ambrosio L. A comparison of the performance of mono- and bi-component electrospun conduits in a rat sciatic model. Biomaterials 2014;35:8970-82. [PMID: 25085857 DOI: 10.1016/j.biomaterials.2014.07.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
150 Wang Q, Zhang C, Zhang L, Guo W, Feng G, Zhou S, Zhang Y, Tian T, Li Z, Huang F. The preparation and comparison of decellularized nerve scaffold of tissue engineering. J Biomed Mater Res A 2014;102:4301-8. [PMID: 24497414 DOI: 10.1002/jbm.a.35103] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
151 Sommakia S, Lee HC, Gaire J, Otto KJ. Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. Curr Opin Solid State Mater Sci 2014;18:319-28. [PMID: 25530703 DOI: 10.1016/j.cossms.2014.07.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
152 Wan Z, Yin Y, Yuan L, Yan Q, Yan Y, Li S. A novel nerve guidance conduit with sustained release of NGF enhances sciatic nerve regeneration. J Wuhan Univ Technol -Mat Sci Edit 2010;25:944-7. [DOI: 10.1007/s11595-010-0125-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
153 Cho Y, Shi R, Ivanisevic A, Ben Borgens R. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology 2009;20:275102. [DOI: 10.1088/0957-4484/20/27/275102] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
154 Soman SS, Vijayavenkataraman S. Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020;21:E5792. [PMID: 32806758 DOI: 10.3390/ijms21165792] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
155 Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012;43:553-72. [PMID: 21269624 DOI: 10.1016/j.injury.2010.12.030] [Cited by in Crossref: 415] [Cited by in F6Publishing: 358] [Article Influence: 37.7] [Reference Citation Analysis]
156 Jallah Z, Liang R, Feola A, Barone W, Palcsey S, Abramowitch SD, Yoshimura N, Moalli P. The impact of prolapse mesh on vaginal smooth muscle structure and function. BJOG 2016;123:1076-85. [PMID: 26301457 DOI: 10.1111/1471-0528.13514] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
157 Ellis-behnke R, Jonas JB. Redefining tissue engineering for nanomedicine in ophthalmology. Acta Ophthalmologica 2011;89:e108-14. [DOI: 10.1111/j.1755-3768.2010.01982.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
158 Chen WH, Tang BL, Tong YW. PHBV Microspheres as Tissue Engineering Scaffold for Neurons. In: Lim CT, Goh JCH, editors. 13th International Conference on Biomedical Engineering. Berlin: Springer Berlin Heidelberg; 2009. pp. 1208-12. [DOI: 10.1007/978-3-540-92841-6_296] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
159 Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 2018;46:691-705. [PMID: 28697631 DOI: 10.1080/21691401.2017.1349778] [Cited by in Crossref: 85] [Cited by in F6Publishing: 69] [Article Influence: 17.0] [Reference Citation Analysis]
160 Kim H, Tator CH, Shoichet MS. Chitosan implants in the rat spinal cord: Biocompatibility and biodegradation. J Biomed Mater Res 2011;97A:395-404. [DOI: 10.1002/jbm.a.33070] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 5.1] [Reference Citation Analysis]
161 Nune M, Subramanian A, Krishnan UM, Kaimal SS, Sethuraman S. Self-assembling peptide nanostructures on aligned poly(lactide-co-glycolide) nanofibers for the functional regeneration of sciatic nerve. Nanomedicine 2017;12:219-35. [DOI: 10.2217/nnm-2016-0323] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
162 Jadhav AD, Yan B, Luo RC, Wei L, Zhen X, Chen CH, Shi P. Photoresponsive microvalve for remote actuation and flow control in microfluidic devices. Biomicrofluidics 2015;9:034114. [PMID: 26180571 DOI: 10.1063/1.4923257] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
163 Zhang X, Cui X, Wang D, Wang S, Liu Z, Zhao G, Zhang Y, Li Z, Wang ZL, Li L. Piezoelectric Nanotopography Induced Neuron‐Like Differentiation of Stem Cells. Adv Funct Mater 2019;29:1900372. [DOI: 10.1002/adfm.201900372] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
164 Breen BA, Kraskiewicz H, Ronan R, Kshiragar A, Patar A, Sargeant T, Pandit A, Mcmahon SS. Therapeutic Effect of Neurotrophin-3 Treatment in an Injectable Collagen Scaffold Following Rat Spinal Cord Hemisection Injury. ACS Biomater Sci Eng 2017;3:1287-95. [DOI: 10.1021/acsbiomaterials.6b00167] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
165 Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020;6:100043. [PMID: 32190832 DOI: 10.1016/j.mtbio.2020.100043] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
166 Rocha DN, Brites P, Fonseca C, Pêgo AP. Poly(trimethylene carbonate-co-ε-caprolactone) promotes axonal growth. PLoS One 2014;9:e88593. [PMID: 24586346 DOI: 10.1371/journal.pone.0088593] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
167 Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011;5:e17-e35. [PMID: 21413155 DOI: 10.1002/term.383] [Cited by in Crossref: 436] [Cited by in F6Publishing: 321] [Article Influence: 39.6] [Reference Citation Analysis]
168 Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X. Graphene-Based Nanocomposites for Neural Tissue Engineering. Molecules 2019;24:E658. [PMID: 30781759 DOI: 10.3390/molecules24040658] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 15.7] [Reference Citation Analysis]
169 Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25:90. [PMID: 30572957 DOI: 10.1186/s12929-018-0491-8] [Cited by in Crossref: 92] [Cited by in F6Publishing: 73] [Article Influence: 23.0] [Reference Citation Analysis]
170 Kubinová S, Syková E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med 2012;7:207-24. [PMID: 22397610 DOI: 10.2217/rme.11.121] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
171 Chen W, Tong YW. Mechanisms and promotion of 3D neurite bridging between PHBV microspheres in a microsphere–hydrogel hybrid scaffold. Soft Matter 2011;7:11372. [DOI: 10.1039/c1sm06473h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
172 Koss K, Unsworth L. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomaterialia 2016;44:2-15. [DOI: 10.1016/j.actbio.2016.08.026] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
173 Madigan NN, McMahon S, O'Brien T, Yaszemski MJ, Windebank AJ. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir Physiol Neurobiol 2009;169:183-99. [PMID: 19737633 DOI: 10.1016/j.resp.2009.08.015] [Cited by in Crossref: 133] [Cited by in F6Publishing: 116] [Article Influence: 10.2] [Reference Citation Analysis]
174 Takeda YS, Xu Q. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLoS One 2015;10:e0135111. [PMID: 26248331 DOI: 10.1371/journal.pone.0135111] [Cited by in Crossref: 85] [Cited by in F6Publishing: 88] [Article Influence: 12.1] [Reference Citation Analysis]
175 Agrawal NK, Allen P, Song YH, Wachs RA, Du Y, Ellington AD, Schmidt CE. Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomater 2020;102:315-25. [PMID: 31760222 DOI: 10.1016/j.actbio.2019.11.037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
176 Chen Z, Lu XM, Shear DA, Dave JR, Davis AR, Evangelista CA, Duffy D, Tortella FC. Synergism of human amnion-derived multipotent progenitor (AMP) cells and a collagen scaffold in promoting brain wound recovery: Pre-clinical studies in an experimental model of penetrating ballistic-like brain injury. Brain Research 2011;1368:71-81. [DOI: 10.1016/j.brainres.2010.10.028] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
177 Macaya D, Ng KK, Spector M. Injectable Collagen-Genipin Gel for the Treatment of Spinal Cord Injury: In Vitro Studies. Adv Funct Mater 2011;21:4788-97. [DOI: 10.1002/adfm.201101720] [Cited by in Crossref: 57] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
178 Feng S, Yan Z, Guo C, Chen Z, Zhang K, Mo X, Gu Y. Effects of an avidin-biotin binding system on Schwann cells attachment, proliferation, and gene expressions onto electrospun scaffolds. J Biomed Mater Res 2011;97A:321-9. [DOI: 10.1002/jbm.a.33063] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
179 Chen S, Allen MG. Extracellular matrix-based materials for neural interfacing. MRS Bull 2012;37:606-13. [DOI: 10.1557/mrs.2012.120] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
180 Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA. Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 2014;7:15. [PMID: 24904405 DOI: 10.3389/fneng.2014.00015] [Cited by in Crossref: 154] [Cited by in F6Publishing: 120] [Article Influence: 19.3] [Reference Citation Analysis]
181 Zhu W, Masood F, O'brien J, Zhang LG. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:693-704. [DOI: 10.1016/j.nano.2014.12.001] [Cited by in Crossref: 78] [Cited by in F6Publishing: 65] [Article Influence: 11.1] [Reference Citation Analysis]
182 Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater Sci Eng 2020;6:6490-509. [PMID: 33320628 DOI: 10.1021/acsbiomaterials.0c01074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
183 Kothapalli CR, Honarmandi P. Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within three-dimensional collagen scaffolds. Acta Biomater 2014;10:3664-74. [PMID: 24830550 DOI: 10.1016/j.actbio.2014.05.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
184 Chu W, Jeong S, Kim S, Ha W, Chi S, Ahn S. Fabrication of a biodegradable drug delivery system with controlled release made of PLGA/5‐FU/hydroxyapatite. Rapid Prototyping Journal 2008;14:293-9. [DOI: 10.1108/13552540810907965] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
185 Hajimiri M, Shahverdi S, Kamalinia G, Dinarvand R. Growth factor conjugation: strategies and applications. J Biomed Mater Res A 2015;103:819-38. [PMID: 24733811 DOI: 10.1002/jbm.a.35193] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
186 Cidade MT, Ramos DJ, Santos J, Carrelo H, Calero N, Borges JP. Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials (Basel) 2019;12:E1083. [PMID: 30986948 DOI: 10.3390/ma12071083] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
187 Huang X, Wu L, Li X, Lowe TL. Thermoresponsive and Biodegradable Hydrogels for Sustained Release of Nerve Growth Factor to Stimulate Neurite Outgrowth. Macromol Symp 2012;317-318:301-9. [DOI: 10.1002/masy.201200022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
188 Ellis-behnke RG, Liang YX, Guo J, Tay DKC, Schneider GE, Teather LA, Wu W, So KF. Forever Young: How to Control the Elongation, Differentiation, and Proliferation of Cells Using Nanotechnology. Cell Transplant 2009;18:1047-58. [DOI: 10.3727/096368909x471242] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
189 Zavan B, Abatangelo G, Mazzoleni F, Bassetto F, Cortivo R, Vindigni V. New 3D hyaluronan-based scaffold for in vitro reconstruction of the rat sciatic nerve. Neurological Research 2013;30:190-6. [DOI: 10.1179/174313208x281082] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
190 Ivantsova EL, Iordanskii AL, Kosenko RY, Rogovina SZ, Grachev AV, Prut ÉV. Poly(3-hydroxybutyrate)-chitosan: a new biodegradable composition for prolonged delivery of biologically active substances. Pharm Chem J 2011;45. [DOI: 10.1007/s11094-011-0559-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
191 Rao SS, Winter JO. Adhesion molecule-modified biomaterials for neural tissue engineering. Front Neuroeng 2009;2:6. [PMID: 19668707 DOI: 10.3389/neuro.16.006.2009] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 4.2] [Reference Citation Analysis]
192 Sajadi E, Aliaghaei A, Farahni RM, Rashidiani-Rashidabadi A, Raoofi A, Sadeghi Y, Bagheri M, Ilkhani S, Abdollahifar MA. Tissue Plasminogen Activator Loaded PCL Nanofibrous Scaffold Promoted Nerve Regeneration After Sciatic Nerve Transection in Male Rats. Neurotox Res 2021;39:413-28. [PMID: 32852719 DOI: 10.1007/s12640-020-00276-z] [Reference Citation Analysis]
193 Vega L JCM, Lee MK, Qin EC, Rich M, Lee KY, Kim DH, Chung HJ, Leckband DE, Kong H. Three Dimensional Conjugation of Recombinant N-Cadherin to a Hydrogel for In Vitro Anisotropic Neural Growth. J Mater Chem B 2016;4:6803-11. [PMID: 28503305 DOI: 10.1039/C6TB01814A] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
194 Assunção-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015;2015:948040. [PMID: 26124844 DOI: 10.1155/2015/948040] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 11.7] [Reference Citation Analysis]
195 Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2011;93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Cited by in Crossref: 353] [Cited by in F6Publishing: 333] [Article Influence: 29.4] [Reference Citation Analysis]
196 Nishat T, De la Vega L, Anil Kumar S, Abelseth L, Alonzo M, Amereh M, Joddar B, Willerth SM. 3D Bioprinting Stem Cell Derived Tissues. Cell Mol Bioeng. 2018;11:219-240. [PMID: 31719887 DOI: 10.1007/s12195-018-0530-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
197 Zuidema JM, Gilbert RJ, Gottipati MK. Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs 2018;205:372-95. [PMID: 30517922 DOI: 10.1159/000494667] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
198 Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A. 2010;93:164-174. [PMID: 19536828 DOI: 10.1002/jbm.a.32511] [Cited by in Crossref: 19] [Cited by in F6Publishing: 39] [Article Influence: 1.6] [Reference Citation Analysis]
199 Wong FS, Chan BP, Lo AC. Carriers in cell-based therapies for neurological disorders. Int J Mol Sci. 2014;15:10669-10723. [PMID: 24933636 DOI: 10.3390/ijms150610669] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
200 Zhang N, Luo Y, He L, Zhou L, Wu W. A self-assembly peptide nanofibrous scaffold reduces inflammatory response and promotes functional recovery in a mouse model of intracerebral hemorrhage. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12:1205-17. [DOI: 10.1016/j.nano.2015.12.387] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
201 Prabhakaran MP, Venugopal J, Ghasemi-mobarakeh L, Kai D, Jin G, Ramakrishna S. Stem Cells and Nanostructures for Advanced Tissue Regeneration. In: Jayakumar R, Nair S, editors. Biomedical Applications of Polymeric Nanofibers. Berlin: Springer Berlin Heidelberg; 2012. pp. 21-62. [DOI: 10.1007/12_2011_113] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
202 McGlynn E, Nabaei V, Ren E, Galeote-Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. Adv Sci (Weinh) 2021;8:2002693. [PMID: 34026431 DOI: 10.1002/advs.202002693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
203 Mobini S, Spearman BS, Lacko CS, Schmidt CE. Recent advances in strategies for peripheral nerve tissue engineering. Current Opinion in Biomedical Engineering 2017;4:134-42. [DOI: 10.1016/j.cobme.2017.10.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 13] [Article Influence: 6.2] [Reference Citation Analysis]
204 McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett 2012;519:115-21. [PMID: 22343313 DOI: 10.1016/j.neulet.2012.02.025] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 5.8] [Reference Citation Analysis]
205 Hall ME, Mohtaram NK, Willerth SM, Edwards R. Modeling the behavior of human induced pluripotent stem cells seeded on melt electrospun scaffolds. J Biol Eng 2017;11:38. [PMID: 29075321 DOI: 10.1186/s13036-017-0080-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
206 Adhikari AS, Mekhdjian AH, Dunn AR. Strain tunes proteolytic degradation and diffusive transport in fibrin networks. Biomacromolecules 2012;13:499-506. [PMID: 22185486 DOI: 10.1021/bm2015619] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
207 Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020:/j/revneuro. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
208 Mahumane GD, Kumar P, du Toit LC, Choonara YE, Pillay V. 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater Sci 2018;6:2812-37. [DOI: 10.1039/c8bm00422f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 7.8] [Reference Citation Analysis]
209 Zhang W, Xu Y, Wang P, Hong J, Liu J, Ji J, Chu PK. Copolymer P(BS-co-LA) Enhanced Compatibility of PBS/PLA Composite. J Polym Environ 2018;26:3060-8. [DOI: 10.1007/s10924-018-1180-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
210 Bennet D, Kim S. Implantable microdevice for peripheral nerve regeneration: materials and fabrications. J Mater Sci 2011;46:4723-40. [DOI: 10.1007/s10853-011-5510-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
211 Lohmeyer JA, Machens H. Basics and Current Approaches to Tissue Engineering in Peripheral Nerve Reconstruction: . Neurosurgery Quarterly 2009;19:101-9. [DOI: 10.1097/wnq.0b013e3181a361c6] [Cited by in Crossref: 4] [Article Influence: 0.3] [Reference Citation Analysis]
212 Farzamfar S, Naseri-nosar M, Vaez A, Esmaeilpour F, Ehterami A, Sahrapeyma H, Samadian H, Hamidieh A, Ghorbani S, Goodarzi A, Azimi A, Salehi M. Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose 2018;25:1229-38. [DOI: 10.1007/s10570-017-1632-z] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
213 Reis KP, Sperling LE, Teixeira C, Paim Á, Alcântara B, Vizcay-barrena G, Fleck RA, Pranke P. Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regenerative Medicine 2018;13:785-801. [DOI: 10.2217/rme-2018-0060] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
214 Guo W, Zhang X, Yu X, Wang S, Qiu J, Tang W, Li L, Liu H, Wang ZL. Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene–Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano 2016;10:5086-95. [DOI: 10.1021/acsnano.6b00200] [Cited by in Crossref: 148] [Cited by in F6Publishing: 131] [Article Influence: 24.7] [Reference Citation Analysis]
215 Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009;30:354-62. [PMID: 18930315 DOI: 10.1016/j.biomaterials.2008.09.046] [Cited by in Crossref: 341] [Cited by in F6Publishing: 308] [Article Influence: 24.4] [Reference Citation Analysis]