BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater 2020;115:235-49. [PMID: 32771587 DOI: 10.1016/j.actbio.2020.07.059] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang R, Wu X, Tian Z, Hu T, Cai C, Wu G, Jiang G, Liu B. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioactive Materials 2023;23:118-128. [DOI: 10.1016/j.bioactmat.2022.10.020] [Reference Citation Analysis]
2 Ao Q, Wen L, Yu T, Ma Y, Mao X, Ao T, Javed R, Ten H, Matsuno A. Sequential expression of miR-221-3p and miR-338-3p in Schwann cells as a therapeutic strategy to promote nerve regeneration and functional recovery. Neural Regen Res 2023;18:671. [DOI: 10.4103/1673-5374.350214] [Reference Citation Analysis]
3 Yan J, Zhang L, Li L, He W, Liu W. Developmentally engineered bio-assemblies releasing neurotrophic exosomes guide in situ neuroplasticity following spinal cord injury. Materials Today Bio 2022;16:100406. [DOI: 10.1016/j.mtbio.2022.100406] [Reference Citation Analysis]
4 Yu T, Ao Q, Ao T, Ahmad MA, Wang A, Xu Y, Zhang Z, Zhou Q. Preparation and assessment of an optimized multichannel acellular nerve allograft for peripheral nerve regeneration. Bioengineering & Transla Med 2022. [DOI: 10.1002/btm2.10435] [Reference Citation Analysis]
5 Kuna VK, Lundgren A, Anerillas LO, Kelk P, Brohlin M, Wiberg M, Kingham PJ, Novikova LN, Andersson G, Novikov LN. Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. Int J Mol Sci 2022;23:8746. [PMID: 35955880 DOI: 10.3390/ijms23158746] [Reference Citation Analysis]
6 Gull E. Fareen A, Mahmood T, Bodlah I, Rashid A, Khalid A, Mahmood S. Modeling potential distribution of newly recorded ant, Brachyponera nigrita using Maxent under climate change in Pothwar region, Pakistan. PLoS ONE 2022;17:e0262451. [DOI: 10.1371/journal.pone.0262451] [Reference Citation Analysis]
7 Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. Mater Sci Eng C Mater Biol Appl 2021;:112557. [PMID: 35527147 DOI: 10.1016/j.msec.2021.112557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mahara A, Kojima K, Yamamoto M, Hirano Y, Yamaoka T. Accelerated tissue regeneration in decellularized vascular grafts with a patterned pore structure. J Mater Chem B 2021. [PMID: 34787632 DOI: 10.1039/d1tb02271g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112557] [Reference Citation Analysis]
10 Zhu GC, Xiao DJ, Zhu BW, Xiao Y. Repairing whole facial nerve defects with xenogeneic acellular nerve grafts in rhesus monkeys. Neural Regen Res 2022;17:1131-7. [PMID: 34558542 DOI: 10.4103/1673-5374.324853] [Reference Citation Analysis]
11 Jiang Z, Zhang K, Du L, Cheng Z, Zhang T, Ding J, Li W, Xu B, Zhu M. Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. Mater Sci Eng C Mater Biol Appl 2021;126:112178. [PMID: 34082978 DOI: 10.1016/j.msec.2021.112178] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
12 Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021;6:4141-60. [PMID: 33997498 DOI: 10.1016/j.bioactmat.2021.04.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 28.0] [Reference Citation Analysis]
13 Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021;6:2927-45. [PMID: 33732964 DOI: 10.1016/j.bioactmat.2021.02.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 21.0] [Reference Citation Analysis]
14 García-García ÓD, El Soury M, González-Quevedo D, Sánchez-Porras D, Chato-Astrain J, Campos F, Carriel V. Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves. Int J Mol Sci 2021;22:E674. [PMID: 33445493 DOI: 10.3390/ijms22020674] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
15 Da L, Lei X, Song Y, Huang Y, Xie H. Different Forms of Decellularized Tissues and Their Characteristics, Applications in Tissue Repair as Well as Performance Optimization. Decellularized Materials 2021. [DOI: 10.1007/978-981-33-6962-7_3] [Reference Citation Analysis]