BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ligorio C, Zhou M, Wychowaniec JK, Zhu X, Bartlam C, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater 2019;92:92-103. [PMID: 31091473 DOI: 10.1016/j.actbio.2019.05.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu W, Ma Z, Wang Y, Yang J. Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioactive Materials 2023;23:274-299. [DOI: 10.1016/j.bioactmat.2022.11.006] [Reference Citation Analysis]
2 Treacy NJ, Clerkin S, Davis JL, Kennedy C, Miller AF, Saiani A, Wychowaniec JK, Brougham DF, Crean J. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact Mater 2023;21:142-56. [PMID: 36093324 DOI: 10.1016/j.bioactmat.2022.08.003] [Reference Citation Analysis]
3 Conley BM, Yang L, Bhujel B, Luo J, Han I, Lee KB. Development of a Nanohybrid Peptide Hydrogel for Enhanced Intervertebral Disc Repair and Regeneration. ACS Nano 2023;17:3750-64. [PMID: 36780291 DOI: 10.1021/acsnano.2c11441] [Reference Citation Analysis]
4 Rozhin P, Kralj S, Soula B, Marchesan S, Flahaut E. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs. Nanomaterials (Basel) 2023;13. [PMID: 36903725 DOI: 10.3390/nano13050847] [Reference Citation Analysis]
5 Krishna DV, Sankar MR. Extrusion based bioprinting of alginate based multicomponent hydrogels for tissue regeneration applications: State of the art. Materials Today Communications 2023. [DOI: 10.1016/j.mtcomm.2023.105696] [Reference Citation Analysis]
6 Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023;11:1076179. [PMID: 36777246 DOI: 10.3389/fbioe.2023.1076179] [Reference Citation Analysis]
7 Wang Y, Di S, Yu J, Wang L, Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J Mater Chem B 2023;11:500-18. [PMID: 36541392 DOI: 10.1039/d2tb01962k] [Reference Citation Analysis]
8 Marin D, Bartkowski M, Kralj S, Rosetti B, D'Andrea P, Adorinni S, Marchesan S, Giordani S. Supramolecular Hydrogels from a Tripeptide and Carbon Nano-Onions for Biological Applications. Nanomaterials (Basel) 2022;13. [PMID: 36616081 DOI: 10.3390/nano13010172] [Reference Citation Analysis]
9 Gomes V, Veloso SRS, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022;24. [PMID: 36613630 DOI: 10.3390/ijms24010186] [Reference Citation Analysis]
10 Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022;10:9578-89. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Reference Citation Analysis]
11 No YH, Kim NH, Zafar MS, Park SH, Lee J, Chae H, Yun WS, Kim YD, Kim YH. Effect of Secondary Structures on the Adsorption of Peptides onto Hydrophobic Solid Surfaces Revealed by SALDI-TOF and MD Simulations. ACS Omega 2022;7:43492-8. [PMID: 36506148 DOI: 10.1021/acsomega.2c03934] [Reference Citation Analysis]
12 Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1058251] [Reference Citation Analysis]
13 Wu D, Li G, Zhou X, Zhang W, Liang H, Luo R, Wang K, Feng X, Song Y, Yang C. Repair Strategies and Bioactive Functional Materials for Intervertebral Disc. Adv Funct Materials. [DOI: 10.1002/adfm.202209471] [Reference Citation Analysis]
14 Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2023;123:834-73. [PMID: 35930422 DOI: 10.1021/acs.chemrev.2c00179] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
15 Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Reference Citation Analysis]
16 Kibble MJ, Domingos M, Hoyland JA, Richardson SM. Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. IJMS 2022;23:6915. [DOI: 10.3390/ijms23136915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Gu X, Carroll Turpin MA, Romero-Ortega MI. Biomaterials and Regenerative Medicine in Pain Management. Curr Pain Headache Rep 2022. [PMID: 35727489 DOI: 10.1007/s11916-022-01055-5] [Reference Citation Analysis]
18 Amarasekara Y, Perera IC, Katuwavila NP, Jayakody RS, Amaratunga GA, Weerasinghe L. Evaluation of novel nanocomposites for enhanced anticancer activity of XLAsp-P2 peptide. Journal of Molecular Structure 2022;1257:132618. [DOI: 10.1016/j.molstruc.2022.132618] [Reference Citation Analysis]
19 Vitale M, Ligorio C, Smith IP, Richardson SM, Hoyland JA, Bella J. Incorporation of Natural and Recombinant Collagen Proteins within Fmoc-Based Self-Assembling Peptide Hydrogels. Gels 2022;8:254. [PMID: 35621553 DOI: 10.3390/gels8050254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ligorio C, Vijayaraghavan A, Hoyland JA, Saiani A. Acidic and basic self-assembling peptide and peptide-graphene oxide hydrogels: characterisation and effect on encapsulated nucleus pulposus cells. Acta Biomater 2022;143:145-58. [PMID: 35196554 DOI: 10.1016/j.actbio.2022.02.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. Adv Sci (Weinh) 2022;9:e2103820. [PMID: 35128831 DOI: 10.1002/advs.202103820] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
22 Ligorio C, Hoyland JA, Saiani A. Self-Assembling Peptide Hydrogels as Functional Tools to Tackle Intervertebral Disc Degeneration. Gels 2022;8:211. [DOI: 10.3390/gels8040211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022;282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Kailasa SK, Joshi DJ, Kateshiya MR, Koduru JR, Malek NI. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry 2022;23:100746. [DOI: 10.1016/j.mtchem.2021.100746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
25 Kang MS, Jang HJ, Lee SH, Shin YC, Hong SW, Lee JH, Kim B, Han D. Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis. Multifaceted Biomedical Applications of Graphene 2022. [DOI: 10.1007/978-981-16-4923-3_4] [Reference Citation Analysis]
26 Qian Y, Di S, Wang L, Li Z. Recent advances in the synthesis and applications of graphene-polypeptide nanocomposites. J Mater Chem B 2021;9:6521-35. [PMID: 34318859 DOI: 10.1039/d1tb00779c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
27 Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021;19:253. [PMID: 34425823 DOI: 10.1186/s12951-021-00999-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
28 Chronopoulou L, Di Nitto A, Papi M, Parolini O, Falconi M, Teti G, Muttini A, Lattanzi W, Palmieri V, Ciasca G, Del Giudice A, Galantini L, Zanoni R, Palocci C. Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids Surf B Biointerfaces 2021;207:111989. [PMID: 34303114 DOI: 10.1016/j.colsurfb.2021.111989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Rozhin P, Charitidis C, Marchesan S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021;26:4084. [PMID: 34279424 DOI: 10.3390/molecules26134084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
30 Okesola BO, Mendoza-Martinez AK, Cidonio G, Derkus B, Boccorh DK, Osuna de la Peña D, Elsharkawy S, Wu Y, Dawson JI, Wark AW, Knani D, Adams DJ, Oreffo ROC, Mata A. De Novo Design of Functional Coassembling Organic-Inorganic Hydrogels for Hierarchical Mineralization and Neovascularization. ACS Nano 2021. [PMID: 34180656 DOI: 10.1021/acsnano.0c09814] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
31 Patarroyo JL, Fonseca E, Cifuentes J, Salcedo F, Cruz JC, Reyes LH. Gelatin-Graphene Oxide Nanocomposite Hydrogels for Kluyveromyces lactis Encapsulation: Potential Applications in Probiotics and Bioreactor Packings. Biomolecules 2021;11:922. [PMID: 34206397 DOI: 10.3390/biom11070922] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
32 Ligorio C, O'Brien M, Hodson NW, Mironov A, Iliut M, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A. TGF-β3-loaded graphene oxide - self-assembling peptide hybrid hydrogels as functional 3D scaffolds for the regeneration of the nucleus pulposus. Acta Biomater 2021;127:116-30. [PMID: 33831573 DOI: 10.1016/j.actbio.2021.03.077] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
33 Clough HC, O'Brien M, Zhu X, Miller AF, Saiani A, Tsigkou O. Neutrally charged self-assembling peptide hydrogel recapitulates in vitro mechanisms of breast cancer progression. Mater Sci Eng C Mater Biol Appl 2021;127:112200. [PMID: 34225853 DOI: 10.1016/j.msec.2021.112200] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Liu J, Wang D, Li Y, Zhou Z, Zhang D, Li J, Chu H. Overall Structure Construction of an Intervertebral Disk Based on Highly Anisotropic Wood Hydrogel Composite Materials with Mechanical Matching and Buckling Buffering. ACS Appl Mater Interfaces 2021;13:15709-19. [PMID: 33755430 DOI: 10.1021/acsami.1c02487] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zhao M, Shi J, Cai W, Liu K, Shen K, Li Z, Wang Y, Hu D. Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing. Int J Nanomedicine 2021;16:2647-65. [PMID: 33854313 DOI: 10.2147/IJN.S300326] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
36 Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials (Basel) 2021;11:404. [PMID: 33562559 DOI: 10.3390/nano11020404] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
37 Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021;22:E703. [PMID: 33445782 DOI: 10.3390/ijms22020703] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
38 Imere A, Ligorio C, O'Brien M, Wong JKF, Domingos M, Cartmell SH. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomater 2021;119:140-54. [PMID: 33189954 DOI: 10.1016/j.actbio.2020.11.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
39 Sandhya PK, Sreekala MS, Thomas S. Nanobased Biodegradable Hydrogel for Biomedical Application. Gels Horizons: From Science to Smart Materials 2021. [DOI: 10.1007/978-981-15-7138-1_4] [Reference Citation Analysis]
40 Li Y, Zhu C, Dong Y, Liu D. Supramolecular hydrogels: Mechanical strengthening with dynamics. Polymer 2020;210:122993. [DOI: 10.1016/j.polymer.2020.122993] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
41 Panebianco CJ, Meyers JH, Gansau J, Hom WW, Iatridis JC. Balancing biological and biomechanical performance in intervertebral disc repair: a systematic review of injectable cell delivery biomaterials. Eur Cell Mater 2020;40:239-58. [PMID: 33206993 DOI: 10.22203/eCM.v040a15] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
42 Modak P, Hammond W, Jaffe M, Nadig M, Russo R. Dynamic,3DSchiff base networks for medical applications. J Appl Polym Sci 2020;137:49756. [DOI: 10.1002/app.49756] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Eckhart KE, Schmidt SJ, Starvaggi FA, Wolf ME, Vickery WM, Sydlik SA. Peptide- and Protein-Graphene Oxide Conjugate Materials for Controlling Mesenchymal Stem Cell Fate. Regen Eng Transl Med 2021;7:460-84. [DOI: 10.1007/s40883-020-00182-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
44 Chiesa I, Ligorio C, Bonatti AF, De Acutis A, Smith AM, Saiani A, Vozzi G, De Maria C. Modeling the Three-Dimensional Bioprinting Process of β-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Front Med Technol 2020;2:571626. [DOI: 10.3389/fmedt.2020.571626] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
45 Kaur H, Sharma P, Patel N, Pal VK, Roy S. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger. Langmuir 2020;36:12107-20. [PMID: 32988205 DOI: 10.1021/acs.langmuir.0c01472] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
46 Wychowaniec JK, Litowczenko J, Tadyszak K, Natu V, Aparicio C, Peplińska B, Barsoum MW, Otyepka M, Scheibe B. Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta Biomater 2020;115:104-15. [PMID: 32795646 DOI: 10.1016/j.actbio.2020.08.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
47 Lu B, Zhu G, Yu C, Chen G, Zhang C, Zeng X, Chen Q, Peng Q. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res 2021;14:185-90. [DOI: 10.1007/s12274-020-3064-6] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
48 Tavakoli J, Diwan AD, Tipper JL. The ultrastructural organization of elastic fibers at the interface of the nucleus and annulus of the intervertebral disk. Acta Biomater 2020;114:323-32. [PMID: 32682056 DOI: 10.1016/j.actbio.2020.07.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
49 Ayoubi‐joshaghani MH, Seidi K, Azizi M, Jaymand M, Javaheri T, Jahanban‐esfahlan R, Hamblin MR. Potential Applications of Advanced Nano/Hydrogels in Biomedicine: Static, Dynamic, Multi‐Stage, and Bioinspired. Adv Funct Mater 2020;30:2004098. [DOI: 10.1002/adfm.202004098] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
50 Tavakoli J, Diwan AD, Tipper JL. Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc. Acta Biomater 2020;113:407-16. [PMID: 32531396 DOI: 10.1016/j.actbio.2020.06.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
51 Joshi S, Siddiqui R, Sharma P, Kumar R, Verma G, Saini A. Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci Rep 2020;10:9441. [PMID: 32523022 DOI: 10.1038/s41598-020-66230-3] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
52 Yang Z, Xu H, Zhao X. Designer Self-Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. Adv Sci (Weinh) 2020;7:1903718. [PMID: 32382486 DOI: 10.1002/advs.201903718] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 20.7] [Reference Citation Analysis]
53 Wychowaniec JK, Smith AM, Ligorio C, Mykhaylyk OO, Miller AF, Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules 2020;21:2285-97. [PMID: 32275138 DOI: 10.1021/acs.biomac.0c00229] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
54 Shi K, Huang Y, Huang L, Wang J, Wang Y, Feng G, Liu L, Song Y. [Research progress of hydrogel used for regeneration of nucleus pulposus in intervertebral disc degeneration]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2020;34:275-84. [PMID: 32174070 DOI: 10.7507/1002-1892.201907092] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Wychowaniec JK, Litowczenko J, Tadyszak K. Fabricating versatile cell supports from nano- and micro-sized graphene oxide flakes. J Mech Behav Biomed Mater 2020;103:103594. [PMID: 32090924 DOI: 10.1016/j.jmbbm.2019.103594] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
56 Joshi S, Sharma P, Siddiqui R, Kaushal K, Sharma S, Verma G, Saini A. A review on peptide functionalized graphene derivatives as nanotools for biosensing. Mikrochim Acta 2019;187:27. [PMID: 31811393 DOI: 10.1007/s00604-019-3989-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
57 De France KJ, Cranston ED, Hoare T. Mechanically Reinforced Injectable Hydrogels. ACS Appl Polym Mater 2020;2:1016-30. [DOI: 10.1021/acsapm.9b00981] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
58 Faroni A, Workman VL, Saiani A, Reid AJ. Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells. Adv Healthc Mater 2019;8:e1900410. [PMID: 31348622 DOI: 10.1002/adhm.201900410] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]