BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Janse van Rensburg A, Davies NH, Oosthuysen A, Chokoza C, Zilla P, Bezuidenhout D. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomater 2017;49:89-100. [PMID: 27865963 DOI: 10.1016/j.actbio.2016.11.036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Vijayan A, A S, Kumar GSV. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing. Sci Rep 2019;9:19165. [PMID: 31844069 DOI: 10.1038/s41598-019-55214-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
2 Browne S, Pandit A. Engineered systems for therapeutic angiogenesis. Current Opinion in Pharmacology 2017;36:34-43. [DOI: 10.1016/j.coph.2017.07.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
3 Nasehi F, Karshenas M, Nadri S, Barati G, Salim A. Core-shell fibrous scaffold as a vehicle for sustained release of retinal pigmented epithelium-derived factor (PEDF) for photoreceptor differentiation of conjunctiva mesenchymal stem cells. J Biomed Mater Res A 2017;105:3514-9. [PMID: 28795779 DOI: 10.1002/jbm.a.36182] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
4 Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS, Khunjush B, Akbari M. Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery. Gels 2020;6:E14. [PMID: 32397180 DOI: 10.3390/gels6020014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
5 Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother 2020;129:110382. [PMID: 32590191 DOI: 10.1016/j.biopha.2020.110382] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yao D, Qian Z, Zhou J, Peng G, Zhou G, Liu H, Fan Y. Facile incorporation of REDV into porous silk fibroin scaffolds for enhancing vascularization of thick tissues. Materials Science and Engineering: C 2018;93:96-105. [DOI: 10.1016/j.msec.2018.07.062] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Eckrich J, Hoormann N, Kersten E, Piradashvili K, Wurm FR, Heller M, Becker S, Anusic T, Brieger J, Strieth S. Surface Modification of Porous Polyethylene Implants with an Albumin-Based Nanocarrier-Release System. Biomedicines 2021;9:1485. [PMID: 34680602 DOI: 10.3390/biomedicines9101485] [Reference Citation Analysis]
8 Satish A, Aswathi R, Caroline Maria J, Sai Korrapati P. Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy. European Polymer Journal 2019;110:252-64. [DOI: 10.1016/j.eurpolymj.2018.11.032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
9 Fu J, Wang DA. In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018;36:834-49. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
10 Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL, Wang A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Front Bioeng Biotechnol. 2020;8:633. [PMID: 32671037 DOI: 10.3389/fbioe.2020.00633] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
11 Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front Cardiovasc Med 2020;7:159. [PMID: 33033720 DOI: 10.3389/fcvm.2020.00159] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi S, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020;8:4073-94. [DOI: 10.1039/d0bm00266f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
13 Chokoza C, Gustafsson CA, Goetsch KP, Zilla P, Thierfelder N, Pisano F, Mura M, Gnecchi M, Bezuidenhout D, Davies NH. Tuning Tissue Ingrowth into Proangiogenic Hydrogels via Dual Modality Degradation. ACS Biomater Sci Eng 2019;5:5430-8. [PMID: 33464063 DOI: 10.1021/acsbiomaterials.9b01220] [Reference Citation Analysis]
14 Liu W, Zhang G, Wu J, Zhang Y, Liu J, Luo H, Shao L. Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications. J Nanobiotechnology 2020;18:9. [PMID: 31918719 DOI: 10.1186/s12951-019-0570-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
15 Levey RE, Coulter FB, Scheiner KC, Deotti S, Robinson ST, McDonough L, Nguyen TT, Steendam R, Canney M, Wylie R, Burke LP, Dolan EB, Dockery P, Kelly HM, Ghersi G, Hennink WE, Kok RJ, O'Cearbhaill E, Duffy GP. Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device. Pharmaceutics 2021;13:2077. [PMID: 34959358 DOI: 10.3390/pharmaceutics13122077] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cibotaru S, Sandu AI, Belei D, Marin L. Water soluble PEGylated phenothiazines as valuable building blocks for bio-materials. Mater Sci Eng C Mater Biol Appl 2020;116:111216. [PMID: 32806288 DOI: 10.1016/j.msec.2020.111216] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Yang H, Li Q, Li L, Chen S, Zhao Y, Hu Y, Wang L, Lan X, Zhong L, Lu D. Gastrodin modified polyurethane conduit promotes nerve repair via optimizing Schwann cells function. Bioact Mater 2022;8:355-67. [PMID: 34541406 DOI: 10.1016/j.bioactmat.2021.06.020] [Reference Citation Analysis]
18 Guan N, Liu Z, Zhao Y, Li Q, Wang Y. Engineered biomaterial strategies for controlling growth factors in tissue engineering. Drug Deliv 2020;27:1438-51. [PMID: 33100031 DOI: 10.1080/10717544.2020.1831104] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Liu C, Wang Z, Wei X, Chen B, Luo Y. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater 2021;131:314-25. [PMID: 34256189 DOI: 10.1016/j.actbio.2021.07.011] [Reference Citation Analysis]
20 Wu XY, Zhu YM, Qi Y, Xu WW, Jing-Zhai. Erythropoietin, as a biological macromolecule in modification of tissue engineered constructs: A review. Int J Biol Macromol 2021:S0141-8130(21)02463-6. [PMID: 34793816 DOI: 10.1016/j.ijbiomac.2021.11.065] [Reference Citation Analysis]
21 Li G, Han Q, Lu P, Zhang L, Zhang Y, Chen S, Zhang P, Zhang L, Cui W, Wang H, Zhang H. Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research (Wash D C) 2020;2020:2603048. [PMID: 32851386 DOI: 10.34133/2020/2603048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
22 Nezhad-mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. European Polymer Journal 2019;117:64-76. [DOI: 10.1016/j.eurpolymj.2019.05.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 25] [Article Influence: 15.3] [Reference Citation Analysis]