BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater 2011;7:2544-57. [PMID: 21371575 DOI: 10.1016/j.actbio.2011.02.036] [Cited by in Crossref: 192] [Cited by in F6Publishing: 171] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 In Kim J, Kim CS. Harnessing nanotopography of PCL/collagen nanocomposite membrane and changes in cell morphology coordinated with wound healing activity. Materials Science and Engineering: C 2018;91:824-37. [DOI: 10.1016/j.msec.2018.06.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
2 Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications: Challenges regarding electrospun scaffolds: a review. J Tissue Eng Regen Med 2016;10:715-38. [DOI: 10.1002/term.1978] [Cited by in Crossref: 257] [Cited by in F6Publishing: 213] [Article Influence: 36.7] [Reference Citation Analysis]
3 Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020;25:E4802. [PMID: 33086674 DOI: 10.3390/molecules25204802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sun B, Jiang X, Zhang S, Zhang J, Li Y, You Q, Long Y. Electrospun anisotropic architectures and porous structures for tissue engineering. J Mater Chem B 2015;3:5389-410. [DOI: 10.1039/c5tb00472a] [Cited by in Crossref: 59] [Cited by in F6Publishing: 3] [Article Influence: 8.4] [Reference Citation Analysis]
5 Kim JI, Lee JC, Kim MJ, Park CH, Kim CS. The impact of humidity on the generation and morphology of the 3D cotton-like nanofibrous piezoelectric scaffold via an electrospinning method. Materials Letters 2019;236:510-3. [DOI: 10.1016/j.matlet.2018.10.124] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
6 Rogers CM, Morris GE, Gould TWA, Bail R, Toumpaniari S, Harrington H, Dixon JE, Shakesheff KM, Segal J, Rose FRAJ. A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing. Biofabrication 2014;6:035003. [DOI: 10.1088/1758-5082/6/3/035003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
7 Ghassemi Z, Slaughter G. Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS. Biopolymers 2018;109:e23232. [PMID: 30191551 DOI: 10.1002/bip.23232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
8 Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022;11:e2102087. [PMID: 35137550 DOI: 10.1002/adhm.202102087] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wunner FM, Bas O, Saidy NT, Dalton PD, Pardo EMD, Hutmacher DW. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. J Vis Exp 2017. [PMID: 29364204 DOI: 10.3791/56289] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
10 Choi JS, Kim HS, Yoo HS. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 2015;5:137-45. [PMID: 25787739 DOI: 10.1007/s13346-013-0148-9] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 8.8] [Reference Citation Analysis]
11 Buzgo M, Rampichova M, Vocetkova K, Sovkova V, Lukasova V, Doupnik M, Mickova A, Rustichelli F, Amler E. Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Adv 2017;7:1215-28. [DOI: 10.1039/c6ra26606a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 4.2] [Reference Citation Analysis]
12 Milleret V, Hefti T, Hall H, Vogel V, Eberli D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater 2012;8:4349-56. [PMID: 22842036 DOI: 10.1016/j.actbio.2012.07.032] [Cited by in Crossref: 147] [Cited by in F6Publishing: 130] [Article Influence: 14.7] [Reference Citation Analysis]
13 Han H, Hong H, Park SM, Kim DS. Metal–Electrolyte Solution Dual‐Mode Electrospinning Process for In Situ Fabrication of Electrospun Bilayer Membrane. Adv Mater Interfaces 2020;7:2000571. [DOI: 10.1002/admi.202000571] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Titov K, Tan J. Facile patterning of electrospun polymer fibers enabled by electrostatic lensing interactions. APL Materials 2016;4:086107. [DOI: 10.1063/1.4960982] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Stachewicz U, Qiao T, Rawlinson SCF, Almeida FV, Li WQ, Cattell M, Barber AH. 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomater 2015;27:88-100. [PMID: 26348143 DOI: 10.1016/j.actbio.2015.09.003] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 10.4] [Reference Citation Analysis]
16 Gwiazda M, Kumar S, Świeszkowski W, Ivanovski S, Vaquette C. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering. J Mech Behav Biomed Mater 2020;104:103631. [PMID: 32174392 DOI: 10.1016/j.jmbbm.2020.103631] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
17 Cork J, Whittaker AK, Cooper-white JJ, Grøndahl L. Electrospinning and mechanical properties of P(TMC-co-LLA) elastomers. J Mater Chem B 2017;5:2263-72. [DOI: 10.1039/c7tb00137a] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
18 Mondésert H, Bossard F, Favier D. Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties. J Mech Behav Biomed Mater 2021;113:104124. [PMID: 33091720 DOI: 10.1016/j.jmbbm.2020.104124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 2012;33:524-34. [PMID: 22014462 DOI: 10.1016/j.biomaterials.2011.09.080] [Cited by in Crossref: 200] [Cited by in F6Publishing: 166] [Article Influence: 18.2] [Reference Citation Analysis]
20 Choi HW, Hong J, Kim J, Jeong W, Jo T, Lee HW, Park SW, Choi J. Promotion of dermal tissue engineering in a rat model using a composite 3D-printed scaffold with electrospun nanofibers and recipient-site preconditioning with an external volume expansion device. J Biomater Appl 2022;:8853282221080532. [PMID: 35319292 DOI: 10.1177/08853282221080532] [Reference Citation Analysis]
21 Dargaville BL, Vaquette C, Rasoul F, Cooper-White JJ, Campbell JH, Whittaker AK. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Acta Biomater 2013;9:6885-97. [PMID: 23416575 DOI: 10.1016/j.actbio.2013.02.009] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 6.6] [Reference Citation Analysis]
22 Berton F, Porrelli D, Di Lenarda R, Turco G. A Critical Review on the Production of Electrospun Nanofibres for Guided Bone Regeneration in Oral Surgery. Nanomaterials (Basel) 2019;10:E16. [PMID: 31861582 DOI: 10.3390/nano10010016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
23 Criscenti G, Vasilevich A, Longoni A, De Maria C, van Blitterswijk CA, Truckenmuller R, Vozzi G, De Boer J, Moroni L. 3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomater 2017;55:310-22. [PMID: 28373083 DOI: 10.1016/j.actbio.2017.03.049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
24 Han S, Nie K, Li J, Sun Q, Wang X, Li X, Li Q. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells Int 2021;2021:8790143. [PMID: 34221024 DOI: 10.1155/2021/8790143] [Reference Citation Analysis]
25 Ryan CN, Fuller KP, Larrañaga A, Biggs M, Bayon Y, Sarasua JR, Pandit A, Zeugolis DI. An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Review of Medical Devices 2015;12:601-12. [DOI: 10.1586/17434440.2015.1062364] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
26 Hou S, Niu X, Li L, Zhou J, Qian Z, Yao D, Yang F, Ma PX, Fan Y. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Biomaterials 2019;223:119458. [DOI: 10.1016/j.biomaterials.2019.119458] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
27 Shah Hosseini N, Bölgen N, Khenoussi N, Yılmaz ŞN, Yetkin D, Hekmati AH, Schacher L, Adolphe D. Novel 3D electrospun polyamide scaffolds prepared by 3D printed collectors and their interaction with chondrocytes. International Journal of Polymeric Materials and Polymeric Biomaterials 2018;67:143-50. [DOI: 10.1080/00914037.2017.1309541] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
28 Brown TD, Dalton PD, Hutmacher DW. Melt electrospinning today: An opportune time for an emerging polymer process. Progress in Polymer Science 2016;56:116-66. [DOI: 10.1016/j.progpolymsci.2016.01.001] [Cited by in Crossref: 244] [Cited by in F6Publishing: 125] [Article Influence: 40.7] [Reference Citation Analysis]
29 Liu S, Wang YN, Ma B, Shao J, Liu H, Ge S. Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates In Situ Periodontal Tissue Regeneration. ACS Appl Mater Interfaces 2021;13:36880-93. [PMID: 34324286 DOI: 10.1021/acsami.1c08855] [Reference Citation Analysis]
30 Sun J, Wu M, Jiang H, Fan X, Zhao T. Advances in the design and fabrication of high-performance flow battery electrodes for renewable energy storage. Advances in Applied Energy 2021;2:100016. [DOI: 10.1016/j.adapen.2021.100016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Ortega I, Ryan AJ, Deshpande P, MacNeil S, Claeyssens F. Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater 2013;9:5511-20. [PMID: 23131386 DOI: 10.1016/j.actbio.2012.10.039] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 7.6] [Reference Citation Analysis]
32 Knight T, Basu J, Rivera EA, Spencer T, Jain D, Payne R. Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering. Cell Adh Migr 2013;7:267-74. [PMID: 23563499 DOI: 10.4161/cam.24351] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
33 Khadka DB, Haynie DT. Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine: Nanotechnology, Biology and Medicine 2012;8:1242-62. [DOI: 10.1016/j.nano.2012.02.013] [Cited by in Crossref: 145] [Cited by in F6Publishing: 128] [Article Influence: 14.5] [Reference Citation Analysis]
34 Xu H, Li H, Ke Q, Chang J. An Anisotropically and Heterogeneously Aligned Patterned Electrospun Scaffold with Tailored Mechanical Property and Improved Bioactivity for Vascular Tissue Engineering. ACS Appl Mater Interfaces 2015;7:8706-18. [DOI: 10.1021/acsami.5b00996] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 7.9] [Reference Citation Analysis]
35 Dalton PD, Vaquette C, Farrugia BL, Dargaville TR, Brown TD, Hutmacher DW. Electrospinning and additive manufacturing: converging technologies. Biomater Sci 2013;1:171-85. [DOI: 10.1039/c2bm00039c] [Cited by in Crossref: 160] [Cited by in F6Publishing: 15] [Article Influence: 17.8] [Reference Citation Analysis]
36 Rampichová M, Buzgo M, Chvojka J, Prosecká E, Kofroňová O, Amler E. Cell penetration to nanofibrous scaffolds: Forcespinning®, an alternative approach for fabricating 3D nanofibers. Cell Adh Migr 2014;8:36-41. [PMID: 24429388 DOI: 10.4161/cam.27477] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
37 Zamani F, Amani Tehran M, Abbasi A. Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture. Prog Biomater 2021;10:151-60. [PMID: 34213756 DOI: 10.1007/s40204-021-00159-2] [Reference Citation Analysis]
38 Liu Y, Shao H, Wang H, Ji Z, Bai R, Chen F, Li B, Chang C, Lin T. Improvement of Air Filtration Performance Using Nanofibrous Membranes with a Periodic Variation in Packing Density. Adv Materials Inter 2022;9:2101848. [DOI: 10.1002/admi.202101848] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wen Y, Kok MD, Tafoya JPV, Sobrido ABJ, Bell E, Gostick JT, Herou S, Schlee P, Titirici M, Brett DJ, Shearing PR, Jervis R. Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry 2021;59:492-529. [DOI: 10.1016/j.jechem.2020.11.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
40 Wang P, Gong P, Lin Y, Qu Y, Li J, Kong X, Chen Z, Man Y. Nanofibrous electrospun barrier membrane promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Bioactive and Compatible Polymers 2011;26:607-18. [DOI: 10.1177/0883911511425297] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
41 Kaiser NJ, Bellows JA, Kant RJ, Coulombe KLK. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds. Tissue Eng Part C Methods 2019;25:687-700. [PMID: 31017039 DOI: 10.1089/ten.TEC.2018.0379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
42 Staples RJ, Ivanovski S, Vaquette C. Fibre guiding scaffolds for periodontal tissue engineering. J Periodontal Res 2020;55:331-41. [PMID: 32134120 DOI: 10.1111/jre.12729] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
43 Qiao Y, Liu X, Fu G, He Z, Hou C, Li Y, Zhang Q, Yan H, Wang H. An ordered electrospun polycaprolactone–collagen–silk fibroin scaffold for hepatocyte culture. J Mater Sci 2018;53:1623-33. [DOI: 10.1007/s10853-017-1670-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Owston HE, Moisley KM, Tronci G, Russell SJ, Giannoudis PV, Jones E. Induced Periosteum-Mimicking Membrane with Cell Barrier and Multipotential Stromal Cell (MSC) Homing Functionalities. Int J Mol Sci 2020;21:E5233. [PMID: 32718036 DOI: 10.3390/ijms21155233] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Lee S, Jin G, Jang JH. Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 2014;8:30. [PMID: 25926887 DOI: 10.1186/1754-1611-8-30] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
46 Lui H, Vaquette C, Bindra R. Tissue Engineering in Hand Surgery: A Technology Update. The Journal of Hand Surgery 2017;42:727-35. [DOI: 10.1016/j.jhsa.2017.06.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
47 Bowers DT, Olingy CE, Chhabra P, Langman L, Merrill PH, Linhart RS, Tanes ML, Lin D, Brayman KL, Botchwey EA. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J Biomed Mater Res B Appl Biomater 2018;106:555-68. [PMID: 28240814 DOI: 10.1002/jbm.b.33862] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
48 Temofeew NA, Hixon KR, McBride-Gagyi SH, Sell SA. The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus. J Mater Sci Mater Med 2017;28:36. [PMID: 28144848 DOI: 10.1007/s10856-016-5824-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
49 Amirsadeghi A, Khorram M, Hashemi SS. Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute. J Biomed Mater Res A 2021;109:1812-27. [PMID: 33763964 DOI: 10.1002/jbm.a.37174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Patel M, Hong HJ, Koh W. Micropatterned fibrous scaffolds for biomedical application. Journal of Industrial and Engineering Chemistry 2019;80:729-38. [DOI: 10.1016/j.jiec.2019.02.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
51 Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev 2019;119:5298-415. [PMID: 30916938 DOI: 10.1021/acs.chemrev.8b00593] [Cited by in Crossref: 868] [Cited by in F6Publishing: 473] [Article Influence: 289.3] [Reference Citation Analysis]
52 Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N, Khojasteh A. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater. 2017;105:431-459. [PMID: 26496456 DOI: 10.1002/jbm.b.33547] [Cited by in Crossref: 120] [Cited by in F6Publishing: 99] [Article Influence: 17.1] [Reference Citation Analysis]
53 Abd Razak SI, Wahab IF, Fadil F, Dahli FN, Md Khudzari AZ, Adeli H. A Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications, and Future Directions. Advances in Materials Science and Engineering 2015;2015:1-19. [DOI: 10.1155/2015/356286] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
54 Yuan H, Zhou Q, Li B, Bao M, Lou X, Zhang Y. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth. Biofabrication 2015;7:045004. [DOI: 10.1088/1758-5090/7/4/045004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
55 Ding Y, Xu X, Sharma S, Floren M, Stenmark K, Bryant SJ, Neu CP, Tan W. Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater 2018;74:121-30. [PMID: 29753912 DOI: 10.1016/j.actbio.2018.05.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
56 Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 2007;13:2249-57. [PMID: 17536926 DOI: 10.1089/ten.2006.0306] [Cited by in Crossref: 301] [Cited by in F6Publishing: 265] [Article Influence: 20.1] [Reference Citation Analysis]
57 Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 2014;114:213-21. [PMID: 25263884 DOI: 10.1016/j.carbpol.2014.08.008] [Cited by in Crossref: 95] [Cited by in F6Publishing: 76] [Article Influence: 11.9] [Reference Citation Analysis]
58 Liu Y, Li H, Yan S, Wei J, Li X. Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 2014;15:1044-54. [PMID: 24547870 DOI: 10.1021/bm401926k] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 8.6] [Reference Citation Analysis]
59 Lavielle N, Hébraud A, Mendoza-palomares C, Ferrand A, Benkirane-jessel N, Schlatter G. Structuring and Molding of Electrospun Nanofibers: Effect of Electrical and Topographical Local Properties of Micro-Patterned Collectors: Structuring and Molding of Electrospun Nanofibers: Effect of Electrical. Macromol Mater Eng 2012;297:958-68. [DOI: 10.1002/mame.201100327] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
60 Wade MB, Rodenberg E, Patel U, Shah B, Becker ML. Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules 2016;17:3363-74. [DOI: 10.1021/acs.biomac.6b01158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
61 Fu JJ, Zhou Y, Shi XX, Kang YJ, Lu ZS, Li Y, Li CM, Yu L. Spontaneous formation of tumor spheroid on a hydrophilic filter paper for cancer stem cell enrichment. Colloids Surf B Biointerfaces 2019;174:426-34. [PMID: 30481703 DOI: 10.1016/j.colsurfb.2018.11.038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
62 Hsu SH, Huang S, Wang YC, Kuo YC. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration. Acta Biomater 2013;9:6915-27. [PMID: 23416581 DOI: 10.1016/j.actbio.2013.02.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
63 Lee S, Yun S, Park KI, Jang JH. Sliding Fibers: Slidable, Injectable, and Gel-like Electrospun Nanofibers as Versatile Cell Carriers. ACS Nano 2016;10:3282-94. [PMID: 26885937 DOI: 10.1021/acsnano.5b06605] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
64 Zhang C, Dong P, Bai Y, Quan D. Nanofibrous polyester-polypeptide block copolymer scaffolds with high porosity and controlled degradation promote cell adhesion, proliferation and differentiation. European Polymer Journal 2020;130:109647. [DOI: 10.1016/j.eurpolymj.2020.109647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Amler E, Filová E, Buzgo M, Prosecká E, Rampichová M, Nečas A, Nooeaid P, Boccaccini AR. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine 2014;9:1083-94. [DOI: 10.2217/nnm.14.57] [Cited by in Crossref: 60] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
66 Prince E, Kumacheva E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat Rev Mater 2019;4:99-115. [DOI: 10.1038/s41578-018-0077-9] [Cited by in Crossref: 117] [Cited by in F6Publishing: 66] [Article Influence: 39.0] [Reference Citation Analysis]
67 Li H, Xu Y, Xu H, Chang J. Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery. J Mater Chem B 2014;2:5492-510. [DOI: 10.1039/c4tb00913d] [Cited by in Crossref: 79] [Cited by in F6Publishing: 4] [Article Influence: 9.9] [Reference Citation Analysis]
68 Jin G, Lee S, Kim S, Kim M, Jang J. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Biomed Microdevices 2014;16:793-804. [DOI: 10.1007/s10544-014-9883-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
69 Full SM, Delman C, Gluck JM, Abdmaulen R, Shemin RJ, Heydarkhan-Hagvall S. Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. J Biomed Mater Res B Appl Biomater 2015;103:39-46. [PMID: 24757041 DOI: 10.1002/jbm.b.33153] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
70 Biggs M, Pandit A, Zeugolis DI. 2D imprinted substrates and 3D electrospun scaffolds revolutionize biomedicine. Nanomedicine 2016;11:989-92. [DOI: 10.2217/nnm.16.40] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
71 Cheng Q, Lee BL, Komvopoulos K, Li S. Engineering the microstructure of electrospun fibrous scaffolds by microtopography. Biomacromolecules 2013;14:1349-60. [PMID: 23534553 DOI: 10.1021/bm302000n] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
72 Mota C, Danti S, D'Alessandro D, Trombi L, Ricci C, Puppi D, Dinucci D, Milazzo M, Stefanini C, Chiellini F, Moroni L, Berrettini S. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering. Biofabrication 2015;7:025005. [PMID: 25947357 DOI: 10.1088/1758-5090/7/2/025005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 6.4] [Reference Citation Analysis]
73 Bongiovanni Abel S, Montini Ballarin F, Abraham GA. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. Nanotechnology 2020;31:172002. [PMID: 31931493 DOI: 10.1088/1361-6528/ab6ab4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
74 Obregon F, Vaquette C, Ivanovski S, Hutmacher D, Bertassoni L. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering. J Dent Res 2015;94:143S-52S. [DOI: 10.1177/0022034515588885] [Cited by in Crossref: 114] [Cited by in F6Publishing: 87] [Article Influence: 16.3] [Reference Citation Analysis]
75 Raveau S, Jordana F. Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. J Clin Med 2020;9:E4008. [PMID: 33322447 DOI: 10.3390/jcm9124008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
76 Amokrane G, Humblot V, Jubeli E, Yagoubi N, Ramtani S, Migonney V, Falentin-Daudré C. Electrospun Poly(ε-caprolactone) Fiber Scaffolds Functionalized by the Covalent Grafting of a Bioactive Polymer: Surface Characterization and Influence on in Vitro Biological Response. ACS Omega 2019;4:17194-208. [PMID: 31656893 DOI: 10.1021/acsomega.9b01647] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
77 Lee BN, Kim DY, Kang HJ, Kwon JS, Park YH, Chun HJ, Kim JH, Lee HB, Min BH, Kim MS. In vivo biofunctionality comparison of different topographic PLLA scaffolds. J Biomed Mater Res A 2012;100:1751-60. [PMID: 22467280 DOI: 10.1002/jbm.a.34135] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
78 Zhao S, Zhou Q, Long Y, Sun G, Zhang Y. Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates. Nanoscale 2013;5:4993. [DOI: 10.1039/c3nr00676j] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
79 Martine LC, Holzapfel BM, McGovern JA, Wagner F, Quent VM, Hesami P, Wunner FM, Vaquette C, De-Juan-Pardo EM, Brown TD, Nowlan B, Wu DJ, Hutmacher CO, Moi D, Oussenko T, Piccinini E, Zandstra PW, Mazzieri R, Lévesque JP, Dalton PD, Taubenberger AV, Hutmacher DW. Engineering a humanized bone organ model in mice to study bone metastases. Nat Protoc 2017;12:639-63. [PMID: 28253234 DOI: 10.1038/nprot.2017.002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 12.8] [Reference Citation Analysis]
80 Tan Z, Gao X, Liu T, Yang Y, Zhong J, Tong C, Tan Y. Electrospun vein grafts with high cell infiltration for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 2017;81:407-15. [PMID: 28887992 DOI: 10.1016/j.msec.2017.08.034] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
81 Bogdanova AS, Sokolova AI, Pavlova ER, Klinov DV, Bagrov DV. Investigation of cellular morphology and proliferation on patterned electrospun PLA-gelatin mats. J Biol Phys 2021;47:205-14. [PMID: 34032971 DOI: 10.1007/s10867-021-09574-9] [Reference Citation Analysis]
82 McHugh KJ, Tao SL, Saint-Geniez M. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. J Mater Sci Mater Med 2013;24:1659-70. [PMID: 23625319 DOI: 10.1007/s10856-013-4934-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
83 Zou S, Wang X, Fan S, Yao X, Zhang Y, Shao H. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B 2021;9:5514-27. [PMID: 34152355 DOI: 10.1039/d1tb00944c] [Reference Citation Analysis]
84 Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021;13:983. [PMID: 34209671 DOI: 10.3390/pharmaceutics13070983] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Han J, Liang C, Cui Y, Xiong L, Guo X, Yuan X, Yang D. Encapsulating Microorganisms inside Electrospun Microfibers as a Living Material Enables Room-Temperature Storage of Microorganisms. ACS Appl Mater Interfaces 2018;10:38799-806. [DOI: 10.1021/acsami.8b14978] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
86 Shologu N, Szegezdi E, Lowery A, Kerin M, Pandit A, Zeugolis DI. Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discovery Today 2016;21:1521-31. [DOI: 10.1016/j.drudis.2016.06.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
87 Dan H, Vaquette C, Fisher AG, Hamlet SM, Xiao Y, Hutmacher DW, Ivanovski S. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 2014;35:113-22. [DOI: 10.1016/j.biomaterials.2013.09.074] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 9.8] [Reference Citation Analysis]
88 Thayer PS, Dimling AF, Plessl DS, Hahn MR, Guelcher SA, Dahlgren LA, Goldstein AS. Cellularized Cylindrical Fiber/Hydrogel Composites for Ligament Tissue Engineering. Biomacromolecules 2014;15:75-83. [DOI: 10.1021/bm4013056] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
89 Li H, Liu Y, Lu J, Wei J, Li X. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering. J Biomed Mater Res A 2015;103:1949-60. [PMID: 25204306 DOI: 10.1002/jbm.a.35332] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
90 Choi WJ, Hwang KS, Kwon HJ, Lee C, Kim CH, Kim TH, Heo SW, Kim JH, Lee JY. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater Sci Eng C Mater Biol Appl 2020;110:110693. [PMID: 32204007 DOI: 10.1016/j.msec.2020.110693] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
91 Bonvallet PP, Schultz MJ, Mitchell EH, Bain JL, Culpepper BK, Thomas SJ, Bellis SL. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 2015;10:e0122359. [PMID: 25793720 DOI: 10.1371/journal.pone.0122359] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
92 Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, van Blitterswijk C, Rousseau B, Chassande O, Amédée J, Fricain JC. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 2012;18:62-70. [PMID: 21895563 DOI: 10.1089/ten.TEC.2011.0382] [Cited by in Crossref: 82] [Cited by in F6Publishing: 62] [Article Influence: 7.5] [Reference Citation Analysis]
93 Zhang T, Xu Z, Zhao J, Huang L. Design the SBS Elastomer Electrospun Fibermat/Polyester Composite Textiles: Morphology Effect on Waterproof‐Breathable Performance. Macromol Mater Eng 2020;305:2000370. [DOI: 10.1002/mame.202000370] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
94 Ozcelik B, Blencowe A, Palmer J, Ladewig K, Stevens GW, Abberton KM, Morrison WA, Qiao GG. Highly porous and mechanically robust polyester poly(ethylene glycol) sponges as implantable scaffolds. Acta Biomater 2014;10:2769-80. [PMID: 24561711 DOI: 10.1016/j.actbio.2014.02.019] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
95 Brückner T, Fuchs A, Wistlich L, Hoess A, Nies B, Gbureck U. Prefabricated and Self-Setting Cement Laminates. Materials (Basel) 2019;12:E834. [PMID: 30871007 DOI: 10.3390/ma12050834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
96 Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 2013;5:025001. [DOI: 10.1088/1758-5082/5/2/025001] [Cited by in Crossref: 131] [Cited by in F6Publishing: 104] [Article Influence: 14.6] [Reference Citation Analysis]
97 Gu J, Gu H, Cao J, Chen S, Li N, Xiong J. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application. Applied Surface Science 2018;439:589-97. [DOI: 10.1016/j.apsusc.2017.12.267] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
98 Huang L, Huang J, Shao H, Hu X, Cao C, Fan S, Song L, Zhang Y. Silk scaffolds with gradient pore structure and improved cell infiltration performance. Materials Science and Engineering: C 2019;94:179-89. [DOI: 10.1016/j.msec.2018.09.034] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
99 Azeem A, Marani L, Fuller K, Spanoudes K, Pandit A, Zeugolis D. Influence of Nonsulfated Polysaccharides on the Properties of Electrospun Poly(lactic- co -glycolic acid) Fibers. ACS Biomater Sci Eng 2017;3:1304-12. [DOI: 10.1021/acsbiomaterials.6b00206] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
100 Yang G, Su J, Guo Y, Xu H, Ke Q. Fabrication of TiO2/PI composite nanofibrous membrane with enhanced photocatalytic activity and mechanical property via simultaneous electrospinning. J Mater Sci 2017;52:5404-16. [DOI: 10.1007/s10853-017-0785-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
101 Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets. J Dent Res 2019;98:673-81. [PMID: 30971166 DOI: 10.1177/0022034519837967] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
102 Pajoumshariati S, Yavari SK, Shokrgozar MA. Physical and Biological Modification of Polycaprolactone Electrospun Nanofiber by Panax Ginseng Extract for Bone Tissue Engineering Application. Ann Biomed Eng 2016;44:1808-20. [PMID: 26429789 DOI: 10.1007/s10439-015-1478-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
103 Pourbaghi R, Zarrebini M, Semnani D, Pourazar A, Akbari N, Shamsfar R. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media. J Biomed Mater Res 2018;106:1759-69. [DOI: 10.1002/jbm.b.33980] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
104 Ajalloueian F, Zeiai S, Fossum M, Hilborn JG. Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion. Biomaterials 2014;35:5741-8. [DOI: 10.1016/j.biomaterials.2014.04.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
105 Pu J, Yuan F, Li S, Komvopoulos K. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Acta Biomater 2015;13:131-41. [PMID: 25463495 DOI: 10.1016/j.actbio.2014.11.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 6.4] [Reference Citation Analysis]
106 Voorneveld J, Oosthuysen A, Franz T, Zilla P, Bezuidenhout D. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth: Dual Electrospinning with Sacrificial Fibers. J Biomed Mater Res 2017;105:1559-72. [DOI: 10.1002/jbm.b.33695] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
107 Preis E, Anders T, Širc J, Hobzova R, Cocarta A, Bakowsky U, Jedelská J. Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy. Materials Science and Engineering: C 2020;115:111068. [DOI: 10.1016/j.msec.2020.111068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
108 Brown TD, Slotosch A, Thibaudeau L, Taubenberger A, Loessner D, Vaquette C, Dalton PD, Hutmacher DW. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases 2012;7:13. [PMID: 22589056 DOI: 10.1007/s13758-011-0013-7] [Cited by in Crossref: 133] [Cited by in F6Publishing: 106] [Article Influence: 13.3] [Reference Citation Analysis]
109 Liu Y, Zhang L, Wei J, Yan S, Yu J, Li X. Promoting hepatocyte spheroid formation and functions by coculture with fibroblasts on micropatterned electrospun fibrous scaffolds. J Mater Chem B 2014;2:3029. [DOI: 10.1039/c3tb21779e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
110 Brown TD, Edin F, Detta N, Skelton AD, Hutmacher DW, Dalton PD. Melt electrospinning of poly(ε-caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing. Materials Science and Engineering: C 2014;45:698-708. [DOI: 10.1016/j.msec.2014.07.034] [Cited by in Crossref: 110] [Cited by in F6Publishing: 83] [Article Influence: 13.8] [Reference Citation Analysis]
111 Khalili S, Khorasani SN, Razavi SM, Hashemibeni B, Tamayol A. Nanofibrous Scaffolds with Biomimetic Composition for Skin Regeneration. Appl Biochem Biotechnol 2019;187:1193-203. [PMID: 30187343 DOI: 10.1007/s12010-018-2871-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
112 Fuchs A, Youssef A, Seher A, Hochleitner G, Dalton PD, Hartmann S, Brands RC, Müller-Richter UDA, Linz C. Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration - a pilot study in vitro. BMC Oral Health 2019;19:28. [PMID: 30709394 DOI: 10.1186/s12903-019-0717-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
113 Ortega I, Mckean R, Ryan AJ, Macneil S, Claeyssens F. Characterisation and evaluation of the impact of microfabricated pockets on the performance of limbal epithelial stem cells in biodegradable PLGA membranes for corneal regeneration. Biomater Sci 2014;2:723-34. [DOI: 10.1039/c3bm60268k] [Cited by in Crossref: 15] [Article Influence: 1.9] [Reference Citation Analysis]
114 Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. Materials (Basel) 2021;14:4773. [PMID: 34500862 DOI: 10.3390/ma14174773] [Reference Citation Analysis]
115 Paim Á, Tessaro IC, Cardozo NSM, Pranke P. Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. J Biol Phys 2018;44:245-71. [PMID: 29508186 DOI: 10.1007/s10867-018-9482-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
116 Horakova J, Mikes P, Saman A, Svarcova T, Jencova V, Suchy T, Heczkova B, Jakubkova S, Jirousova J, Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mater Sci Eng C Mater Biol Appl 2018;82:330-5. [PMID: 29025666 DOI: 10.1016/j.msec.2017.05.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
117 Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, Tesarova M, Lukas D, Amler E. Core/Shell Nanofibers with Embedded Liposomes as a Drug Delivery System. Biomacromolecules 2012;13:952-62. [DOI: 10.1021/bm2018118] [Cited by in Crossref: 159] [Cited by in F6Publishing: 139] [Article Influence: 15.9] [Reference Citation Analysis]
118 Anitha R, Vaikkath D, Shenoy SJ, Nair PD. Tissue-engineered islet-like cell clusters generated from adipose tissue-derived stem cells on three-dimensional electrospun scaffolds can reverse diabetes in an experimental rat model and the role of porosity of scaffolds on cluster differentiation. J Biomed Mater Res A 2020;108:749-59. [PMID: 31788956 DOI: 10.1002/jbm.a.36854] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Khorshidi S, Karkhaneh A. Formation of three-dimensionality in polyaniline-based nanofibers: A highly conductive permeable scaffold for stem cells residence. International Journal of Polymeric Materials and Polymeric Biomaterials 2016;65:629-35. [DOI: 10.1080/00914037.2016.1157794] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
120 Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater 2011;23:5651-7. [PMID: 22095922 DOI: 10.1002/adma.201103482] [Cited by in Crossref: 473] [Cited by in F6Publishing: 409] [Article Influence: 43.0] [Reference Citation Analysis]
121 Rampichová M, Chvojka J, Buzgo M, Prosecká E, Mikeš P, Vysloužilová L, Tvrdík D, Kochová P, Gregor T, Lukáš D, Amler E. Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Prolif 2013;46:23-37. [PMID: 23216517 DOI: 10.1111/cpr.12001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 4.9] [Reference Citation Analysis]
122 Yu Y, Hua S, Yang M, Fu Z, Teng S, Niu K, Zhao Q, Yi C. Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv 2016;6:110557-65. [DOI: 10.1039/c6ra17718b] [Cited by in Crossref: 64] [Article Influence: 10.7] [Reference Citation Analysis]
123 Kumar AP. Self Organized Skin Equivalent by Epithelial and Fibroblast Cells on Polycaprolactone Electrospun Mat with Porous Fibers. ATROA 2017;3. [DOI: 10.15406/atroa.2017.03.00056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
124 Pázmány R, Nagy KS, Zsembery Á, Jedlovszky–hajdu A. Ultrasound induced, easy-to-store porous poly(amino acid) based electrospun scaffolds. Journal of Molecular Liquids 2022;359:119243. [DOI: 10.1016/j.molliq.2022.119243] [Reference Citation Analysis]
125 Vaquette C, Cooper-White J. The use of an electrostatic lens to enhance the efficiency of the electrospinning process. Cell Tissue Res 2012;347:815-26. [PMID: 22287045 DOI: 10.1007/s00441-011-1318-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
126 Fuller KP, Gaspar D, Delgado LM, Pandit A, Zeugolis DI. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ -caprolactone electro-spun fibrous scaffolds. Nanomedicine 2016;11:1031-40. [DOI: 10.2217/nnm.16.21] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
127 Benatti ACB, Pattaro AF, Rodrigues AA, Xavier MV, Kaasi A, Barbosa MIR, Jardini AL, Filho RM, Kharmandayan P. Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. Materials for Biomedical Engineering. Elsevier; 2019. pp. 83-116. [DOI: 10.1016/b978-0-12-816901-8.00004-3] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
128 An S, Kim YI, Jo HS, Kim M, Swihart MT, Yarin AL, Yoon SS. Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Materialia 2018;143:174-80. [DOI: 10.1016/j.actamat.2017.09.068] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
129 Sabzi E, Abbasi F, Ghaleh H. Interconnected porous nanofibrous gelatin scaffolds prepared via a combined thermally induced phase separation/particulate leaching method. J Biomater Sci Polym Ed 2021;32:488-503. [PMID: 33138696 DOI: 10.1080/09205063.2020.1845921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
130 Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. J Biomater Sci Polym Ed 2021;:1-67. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Reference Citation Analysis]
131 Zhao Q, Zhou Y, Wang M. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomater 2021;123:312-24. [PMID: 33508508 DOI: 10.1016/j.actbio.2021.01.035] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
132 Reis TC, Correia IJ, Aguiar-ricardo A. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs. Nanoscale 2013;5:7528. [DOI: 10.1039/c3nr01668d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
133 Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 2012;33:5560-73. [DOI: 10.1016/j.biomaterials.2012.04.038] [Cited by in Crossref: 137] [Cited by in F6Publishing: 112] [Article Influence: 13.7] [Reference Citation Analysis]
134 Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 2013;9:4513-24. [PMID: 23036951 DOI: 10.1016/j.actbio.2012.09.029] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 7.9] [Reference Citation Analysis]
135 Li D, Chen W, Sun B, Li H, Wu T, Ke Q, Huang C, Ei-hamshary H, Al-deyab SS, Mo X. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces 2016;146:632-41. [DOI: 10.1016/j.colsurfb.2016.07.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
136 Nedjari S, Eap S, Hébraud A, Wittmer CR, Benkirane-jessel N, Schlatter G. Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organization: Electrospun Honeycomb as Nests for Controlled …. Macromol Biosci 2014;14:1580-9. [DOI: 10.1002/mabi.201400226] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
137 Cheng Z, Zhao K, Wu Z. Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International 2015;41:8599-604. [DOI: 10.1016/j.ceramint.2015.03.069] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
138 Zhong S, Zhang Y, Lim CT. Fabrication of Large Pores in Electrospun Nanofibrous Scaffolds for Cellular Infiltration: A Review. Tissue Engineering Part B: Reviews 2012;18:77-87. [DOI: 10.1089/ten.teb.2011.0390] [Cited by in Crossref: 140] [Cited by in F6Publishing: 134] [Article Influence: 14.0] [Reference Citation Analysis]
139 Aldemir Dikici B, Dikici S, Reilly GC, MacNeil S, Claeyssens F. A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. Materials (Basel) 2019;12:E2643. [PMID: 31434207 DOI: 10.3390/ma12162643] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
140 Cakmak S. Compressible polyglycolic acid-based nanofibrous matrices as a bone filler: fabrication, physicochemical characterisations, and biocompatibility evaluation. Materials Technology. [DOI: 10.1080/10667857.2021.1959216] [Reference Citation Analysis]
141 Ginestra P, Fiorentino A, Ceretti E. Micro-structuring of Titanium Collectors by Laser Ablation Technique: A Promising Approach to Produce Micro-patterned Scaffolds for Tissue Engineering Applications. Procedia CIRP 2017;65:19-24. [DOI: 10.1016/j.procir.2017.04.043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
142 Ratheesh G, Shi M, Lau P, Xiao Y, Vaquette C. Effect of Dual Pore Size Architecture on In Vitro Osteogenic Differentiation in Additively Manufactured Hierarchical Scaffolds. ACS Biomater Sci Eng 2021;7:2615-26. [PMID: 33881301 DOI: 10.1021/acsbiomaterials.0c01719] [Reference Citation Analysis]
143 Durham E, Tronci G, Yang X, Wood D, Russell S. Nonwoven scaffolds for bone regeneration. Biomedical Textiles for Orthopaedic and Surgical Applications. Elsevier; 2015. pp. 45-65. [DOI: 10.1016/b978-1-78242-017-0.00003-9] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
144 Farag A, Hashimi SM, Vaquette C, Bartold PM, Hutmacher DW, Ivanovski S. The effect of decellularized tissue engineered constructs on periodontal regeneration. J Clin Periodontol 2018;45:586-96. [PMID: 29500836 DOI: 10.1111/jcpe.12886] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
145 Haase T, Krost A, Sauter T, Kratz K, Peter J, Kamann S, Jung F, Lendlein A, Zohlnhöfer D, Rüder C. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds. J Tissue Eng Regen Med 2017;11:1034-44. [PMID: 25712330 DOI: 10.1002/term.2002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
146 An J, Chua CK, Leong KF, Chen C, Chen J. Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. Biomed Microdevices 2012;14:863-72. [DOI: 10.1007/s10544-012-9666-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
147 Ura DP, Karbowniczek JE, Szewczyk PK, Metwally S, Kopyściański M, Stachewicz U. Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering (Basel) 2019;6:E41. [PMID: 31075876 DOI: 10.3390/bioengineering6020041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
148 Fernández-Robredo P, Sancho A, Johnen S, Recalde S, Gama N, Thumann G, Groll J, García-Layana A. Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering. J Ophthalmol 2014;2014:510285. [PMID: 24672707 DOI: 10.1155/2014/510285] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
149 Paim A, Braghirolli DI, Cardozo NSM, Pranke P, Tessaro IC. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. Braz J Med Biol Res 2018;51:e6754. [PMID: 29590258 DOI: 10.1590/1414-431X20186754] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
150 Gopinathan J, Mano S, Elakkiya V, Pillai MM, Sahanand KS, Rai BKD, Selvakumar R, Bhattacharyya A. Biomolecule incorporated poly-ε-caprolactone nanofibrous scaffolds for enhanced human meniscal cell attachment and proliferation. RSC Adv 2015;5:73552-61. [DOI: 10.1039/c5ra14315b] [Cited by in Crossref: 28] [Article Influence: 4.0] [Reference Citation Analysis]
151 Wu T, Huang C, Li D, Yin A, Liu W, Wang J, Chen J, Ei-Hamshary H, Al-Deyab SS, Mo X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf B Biointerfaces 2015;133:179-88. [PMID: 26101818 DOI: 10.1016/j.colsurfb.2015.05.048] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
152 Tayebi L, Cui Z, Ye H. Design of a new 3D‐printed joint plug. Asia‐Pac J Chem Eng 2019;14. [DOI: 10.1002/apj.2360] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
153 Wunner F, Florczak S, Mieszczanek P, Bas O, De-juan-pardo E, Hutmacher D. 5.13 Electrospinning With Polymer Melts – State of the Art and Future Perspectives. Comprehensive Biomaterials II. Elsevier; 2017. pp. 217-35. [DOI: 10.1016/b978-0-12-803581-8.09318-8] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
154 Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. Nanoscale 2018;10:12228-55. [DOI: 10.1039/c8nr02002g] [Cited by in Crossref: 33] [Cited by in F6Publishing: 11] [Article Influence: 8.3] [Reference Citation Analysis]
155 Jose RR, Elia R, Firpo MA, Kaplan DL, Peattie RA. Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs. J Mater Sci Mater Med 2012;23:2679-95. [PMID: 22890517 DOI: 10.1007/s10856-012-4739-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
156 Bock N, Woodruff MA, Steck R, Hutmacher DW, Farrugia BL, Dargaville TR. Composites for Delivery of Therapeutics: Combining Melt Electrospun Scaffolds with Loaded Electrosprayed Microparticles: Electrosprayed/Electrospun Composites for Delivery of Therapeutics. Macromol Biosci 2014;14:202-14. [DOI: 10.1002/mabi.201300276] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
157 Song W, An D, Kao DI, Lu YC, Dai G, Chen S, Ma M. Nanofibrous microposts and microwells of controlled shapes and their hybridization with hydrogels for cell encapsulation. ACS Appl Mater Interfaces 2014;6:7038-44. [PMID: 24806031 DOI: 10.1021/am502046h] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
158 Asencio IO, Mittar S, Sherborne C, Raza A, Claeyssens F, MacNeil S. A methodology for the production of microfabricated electrospun membranes for the creation of new skin regeneration models. J Tissue Eng 2018;9:2041731418799851. [PMID: 30263105 DOI: 10.1177/2041731418799851] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
159 Gangolphe L, Leon-Valdivieso CY, Nottelet B, Déjean S, Bethry A, Pinese C, Bossard F, Garric X. Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 2021;129:112339. [PMID: 34579931 DOI: 10.1016/j.msec.2021.112339] [Reference Citation Analysis]
160 Liu Y, Lu J, Li H, Wei J, Li X. Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation. Acta Biomater 2015;11:114-25. [PMID: 25305234 DOI: 10.1016/j.actbio.2014.10.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
161 Khalili S, Nouri Khorasani S, Razavi M, Hashemi Beni B, Heydari F, Tamayol A. Nanofibrous scaffolds with biomimetic structure: NANOFIBROUS BIOMIMETIC STRUCTURE. J Biomed Mater Res 2018;106:370-6. [DOI: 10.1002/jbm.a.36246] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
162 Noreikaitė A, Antanavičiūtė I, Mikalayeva V, Darinskas A, Tamulevičius T, Adomavičiūtė E, Šimatonis L, Akramienė D, Stankevičius E. Scaffold design for artificial tissue with bone marrow stem cells. Medicina (Kaunas) 2017;53:203-10. [PMID: 28774494 DOI: 10.1016/j.medici.2017.07.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
163 Goh Y, Shakir I, Hussain R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 2013;48:3027-54. [DOI: 10.1007/s10853-013-7145-8] [Cited by in Crossref: 201] [Cited by in F6Publishing: 140] [Article Influence: 22.3] [Reference Citation Analysis]
164 Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021;9:535-73. [DOI: 10.1039/d0bm00973c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 22.0] [Reference Citation Analysis]
165 Ameer JM, Pr AK, Kasoju N. Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. J Funct Biomater 2019;10:E30. [PMID: 31324062 DOI: 10.3390/jfb10030030] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 14.3] [Reference Citation Analysis]
166 Jin Y, Xie C, Gao Q, Zhou X, Li G, Du J, He Y. Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering. Materials & Design 2021;197:109277. [DOI: 10.1016/j.matdes.2020.109277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
167 Sui T, Titov K, Ying S, Zhang H, Dolbnya IP, Tan J, Korsunsky A. Probing the nano-scale architecture of diamond-patterned electrospun fibre mats by synchrotron small angle X-ray scattering. RSC Adv 2017;7:8200-4. [DOI: 10.1039/c6ra25770d] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
168 Rampichová M, Chvojka J, Jenčová V, Kubíková T, Tonar Z, Erben J, Buzgo M, Daňková J, Litvinec A, Vocetková K, Plencner M, Prosecká E, Sovková V, Lukášová V, Králíčková M, Lukáš D, Amler E. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and in vivo bone tissue formation. Biomed Mater 2018;13:025004. [DOI: 10.1088/1748-605x/aa9717] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
169 Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018;132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Cited by in Crossref: 188] [Cited by in F6Publishing: 147] [Article Influence: 47.0] [Reference Citation Analysis]
170 Liu SL, Sun GH, Huang YY, Sun B, Zhang HD, Long YZ. Fabrication and Formation Mechanism of Electrospun Spatially Defined Fibrous Patterning Structures on Conductive and Insulating Substrates. KEM 2014;609-610:842-8. [DOI: 10.4028/www.scientific.net/kem.609-610.842] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
171 Hu W, Yu H. Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces. Carbohydrate Polymers 2013;95:716-27. [DOI: 10.1016/j.carbpol.2013.02.083] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
172 Mathew A, Vaquette C, Hashimi S, Rathnayake I, Huygens F, Hutmacher DW, Ivanovski S. Antimicrobial and Immunomodulatory Surface-Functionalized Electrospun Membranes for Bone Regeneration. Adv Healthc Mater 2017;6. [PMID: 28240815 DOI: 10.1002/adhm.201601345] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
173 Joshi VS, Lei NY, Walthers CM, Wu B, Dunn JC. Macroporosity enhances vascularization of electrospun scaffolds. J Surg Res 2013;183:18-26. [PMID: 23769018 DOI: 10.1016/j.jss.2013.01.005] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 5.9] [Reference Citation Analysis]
174 Vaquette C, Cooper-White J. A simple method for fabricating 3-D multilayered composite scaffolds. Acta Biomater 2013;9:4599-608. [PMID: 22902817 DOI: 10.1016/j.actbio.2012.08.015] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]