BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abou-khalil L, Salloum-abou-jaoude G, Reinhart G, Pickmann C, Zimmermann G, Nguyen-thi H. Influence of gravity level on Columnar-to-Equiaxed Transition during directional solidification of Al – 20 wt.% Cu alloys. Acta Materialia 2016;110:44-52. [DOI: 10.1016/j.actamat.2016.03.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu X, Yu Q, Pan X, Yu Z, Lu X. Image contrast enhancement algorithm for X-ray observation of space materials in situ. J Inst 2022;17:P06010. [DOI: 10.1088/1748-0221/17/06/p06010] [Reference Citation Analysis]
2 Lin W, Zhou B, Liu Y, Guo X, Zheng T, Zhong Y, Zhang L, Zhang Q, Wang Q. Dendrite morphology in Al-20 wt%Cu hypoeutectic alloys in 24 T high magnetic field quantified by ex-situ X-ray tomography. Journal of Alloys and Compounds 2022;918:165679. [DOI: 10.1016/j.jallcom.2022.165679] [Reference Citation Analysis]
3 Zhou B, Guo X, Lin W, Liu Y, Guo Y, Zheng T, Zhong Y, Wang H, Wang Q. Effect of Vertical High Magnetic Field on the Morphology of Solid-Liquid Interface during the Directional Solidification of Zn-2wt.%Bi Immiscible Alloy. Metals 2022;12:875. [DOI: 10.3390/met12050875] [Reference Citation Analysis]
4 Zhao Y, Su H, Fan G, Liu C, Huang T, Yang W, Zhang J, Liu L, Fu H. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field. Acta Metall Sin (Engl Lett ) 2022;35:1164-74. [DOI: 10.1007/s40195-022-01372-z] [Reference Citation Analysis]
5 Ngomesse F, Reinhart G, Soltani H, Zimmermann G, Browne D, Sillekens W, Nguyen-thi H. In situ investigation of the Columnar-to-Equiaxed Transition during directional solidification of Al–20 wt.%Cu alloys on Earth and in microgravity. Acta Materialia 2021;221:117401. [DOI: 10.1016/j.actamat.2021.117401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
6 Sugiura Y, Koike R. High-gravitational effect on process stabilization for metal powder bed fusion. Additive Manufacturing 2021;46:102153. [DOI: 10.1016/j.addma.2021.102153] [Reference Citation Analysis]
7 Witusiewicz V, Sturz L, Viardin A, Pickmann C, Zimmermann G. Effect of convection on directional solidification in transparent succinonitrile–2.2wt.%(d)camphor alloy. Acta Materialia 2021;216:117086. [DOI: 10.1016/j.actamat.2021.117086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Bergeon N, Reinhart G, Mota FL, Mangelinck-Noël N, Nguyen-Thi H. Analysis of gravity effects during binary alloy directional solidification by comparison of microgravity and Earth experiments with in situ observation. Eur Phys J E Soft Matter 2021;44:98. [PMID: 34286363 DOI: 10.1140/epje/s10189-021-00102-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Song Y, Jiang H, Zhang L, He J, Zhao J. Integrated model for describing the microstructure evolution of the inoculated Al-Zn-Mg-Cu alloys in continuous solidification. Results in Physics 2021;26:104465. [DOI: 10.1016/j.rinp.2021.104465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Soltani H, Ngomesse F, Reinhart G, Benoudia MC, Zahzouh M, Nguyen-thi H. Impact of gravity on directional solidification of refined Al-20wt.%Cu alloy investigated by in situ X-radiography. Journal of Alloys and Compounds 2021;862:158028. [DOI: 10.1016/j.jallcom.2020.158028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
11 Xu X, Ding H, Huang H, Liang H, Chen R, Guo J, Fu H. Microstructure formation and columnar to equiaxed transition during cold crucible directional solidification of a high-Nb TiAl alloy. Journal of Materials Research and Technology 2021;11:2221-34. [DOI: 10.1016/j.jmrt.2021.02.052] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
12 Wegener M, Dreißigacker C, Becker M, Kargl F. Isothermal furnace for long-term in situ and real-time X-radiography solidification experiments. Rev Sci Instrum 2021;92:035114. [PMID: 33819986 DOI: 10.1063/5.0037398] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang Z, Luo S, Wang W, Zhu M. Numerical Simulation of Solidification Structure of Continuously Cast Billet with Grain Motion. Metall Mater Trans B 2020;51:2882-94. [DOI: 10.1007/s11663-020-01953-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Soltani H, Reinhart G, Benoudia M, Ngomesse F, Zahzouh M, Nguyen-thi H. Impact of growth velocity on grain structure formation during directional solidification of a refined Al-20 wt.%Cu alloy. Journal of Crystal Growth 2020;548:125819. [DOI: 10.1016/j.jcrysgro.2020.125819] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Nelson T, Cai B, Warnken N, Lee P, Boller E, Magdysyuk O, Green N. Gravity effect on thermal-solutal convection during solidification revealed by four-dimensional synchrotron imaging with compositional mapping. Scripta Materialia 2020;180:29-33. [DOI: 10.1016/j.scriptamat.2019.12.026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
16 Gránásy L, Tóth GI, Warren JA, Podmaniczky F, Tegze G, Rátkai L, Pusztai T. Phase-field modeling of crystal nucleation in undercooled liquids – A review. Progress in Materials Science 2019;106:100569. [DOI: 10.1016/j.pmatsci.2019.05.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
17 Yang Q, Liu Y, Liu J, Wang L, Chen Z, Wang M, Zhong S, Wu Y, Wang H. Microstructure evolution of the rapidly solidified alloy powders and composite powders. Materials & Design 2019;182:108045. [DOI: 10.1016/j.matdes.2019.108045] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
18 Sakane S, Takaki T, Ohno M, Shibuta Y. Simulation method based on phase-field lattice Boltzmann model for long-distance sedimentation of single equiaxed dendrite. Computational Materials Science 2019;164:39-45. [DOI: 10.1016/j.commatsci.2019.03.047] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
19 Li Y, Mangelinck-noël N, Zimmermann G, Sturz L, Nguyen-thi H. Comparative study of directional solidification of Al-7 wt% Si alloys in Space and on Earth: Effects of gravity on dendrite growth and Columnar-to-equiaxed transition. Journal of Crystal Growth 2019;513:20-9. [DOI: 10.1016/j.jcrysgro.2019.02.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
20 Soltani H, Reinhart G, Benoudia MC, Zahzouh M, Nguyen-thi H. Impact of gravity-related phenomena on the grain structure formation: comparative study between horizontal and vertical solidification of a refined Al-20wt.%Cu alloy. IOP Conf Ser : Mater Sci Eng 2019;529:012019. [DOI: 10.1088/1757-899x/529/1/012019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
21 Jia Y, Wang D, Fu Y, Dong A, Zhu G, Shu D, Sun B. In situ Investigation of the Heterogeneous Nucleation Sequence in Al-15 Weight Percent Cu Alloy Inoculated by Al-Ti-B. Metall and Mat Trans A 2019;50:1795-804. [DOI: 10.1007/s11661-019-05144-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
22 Li Y, Mangelinck-noël N, Zimmermann G, Sturz L, Nguyen-thi H. Effect of solidification conditions and surface pores on the microstructure and columnar-to-equiaxed transition in solidification under microgravity. Journal of Alloys and Compounds 2018;749:344-54. [DOI: 10.1016/j.jallcom.2018.03.300] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Rodrigues AV, Lima TS, Vida TA, Brito C, Garcia A, Cheung N. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al–Cu–Ni Alloys. Met Mater Int 2018;24:1058-76. [DOI: 10.1007/s12540-018-0116-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
24 Xuan W, Lan J, Liu H, Li C, Wang J, Ren W, Zhong Y, Li X, Ren Z. Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During Directional Solidification. Metall and Mat Trans A 2017;48:3804-13. [DOI: 10.1007/s11661-017-4135-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
25 Liu D, Zhang H, Li Y, Chen X, Liu Y. Effects of composition and growth rate on the microstructure transformation of β-rods/lamellae/α-rods in directionally solidified Mg-Li alloy. Materials & Design 2017;119:199-207. [DOI: 10.1016/j.matdes.2017.01.074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]