BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2020;1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Cited by in Crossref: 89] [Cited by in F6Publishing: 151] [Article Influence: 29.7] [Reference Citation Analysis]
Number Citing Articles
1 Xiang S, Wang X, Pang Y, Ge C, Xu Y, Chen L, Li S, Wang L. Porous Au/AAO: A simple and feasible SERS substrate for dynamic monitoring and mechanism analysis of DNA oxidation. Applied Surface Science 2022;606:154842. [DOI: 10.1016/j.apsusc.2022.154842] [Reference Citation Analysis]
2 Perez-estebanez M, Cheuquepan W, Huidobro M, Cuevas JV, Hernandez S, Heras A, Colina A. Raman spectroelectrochemical determination of clopyralid in tap water. Microchemical Journal 2022;183:108018. [DOI: 10.1016/j.microc.2022.108018] [Reference Citation Analysis]
3 Lu L, Xu L, Zhang Y, Jiang T. Multiplexed surface-enhanced Raman scattering detection of melamine and dicyandiamide in dairy food enabled by three-dimensional polystyrene@silver@graphene oxide hybrid substrate. Applied Surface Science 2022;603:154419. [DOI: 10.1016/j.apsusc.2022.154419] [Reference Citation Analysis]
4 Güngör Z, Ozay H. Ultra-fast pH determination with a new colorimetric pH-sensing hydrogel for biomedical and environmental applications. Reactive and Functional Polymers 2022;180:105398. [DOI: 10.1016/j.reactfunctpolym.2022.105398] [Reference Citation Analysis]
5 Zhang J, Li Y, Lv M, Bai Y, Liu Z, Weng X, You C. Determination of 5-Hydroxymethylfurfural (5-HMF) in milk products by surface-enhanced Raman spectroscopy and its simulation analysis. Spectrochim Acta A Mol Biomol Spectrosc 2022;279:121393. [PMID: 35605423 DOI: 10.1016/j.saa.2022.121393] [Reference Citation Analysis]
6 Zhang X, Xie X, Zhang L, Yao K, Huang Y. Optoplasmonic MOFs film for SERS detection. Spectrochim Acta A Mol Biomol Spectrosc 2022;278:121362. [PMID: 35576840 DOI: 10.1016/j.saa.2022.121362] [Reference Citation Analysis]
7 Wang D, Gong Z, Tang M, Fan W, Huang B, Fan M. Halogen ion modified Ag NPs for ultrasensitive SERS detection of nitroaromatic explosives. Anal Methods 2022. [PMID: 36124919 DOI: 10.1039/d2ay01299e] [Reference Citation Analysis]
8 Lin C, Li L, Feng J, Zhang Y, Guo H, Lin X, Li R. A novel Apt-SERS platform for the determination of cardiac troponin I based on coral-like silver-modified magnetic substrate and BCA method. Anal Chim Acta 2022;1225:340253. [PMID: 36038245 DOI: 10.1016/j.aca.2022.340253] [Reference Citation Analysis]
9 Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. Nano Res . [DOI: 10.1007/s12274-022-4914-1] [Reference Citation Analysis]
10 Li L, Zhang Y, Zheng W, Li X, Zhao Y. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection. Talanta 2022;247:123599. [DOI: 10.1016/j.talanta.2022.123599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu B, Tang H, Liu Q, Wang W, Li H, Zheng S, Sun F, Zhao X. Core-shell SERS nanotags-based western blot. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123888] [Reference Citation Analysis]
12 Zhou S, Hu Z, Zhang Y, Wang D, Gong Z, Fan M. Differentiation and identification structural similar chemicals using SERS Coupled with different chemometric methods:the example of Fluoroquinolones. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108023] [Reference Citation Analysis]
13 Teng Y, Huang W, Li X, Pan Z, Shao K. Electrochemically assisted wide area Raman with standard curved surface quantification method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022. [DOI: 10.1016/j.saa.2022.121932] [Reference Citation Analysis]
14 Mikoliunaite L, Talaikis M, Michalowska A, Dobilas J, Stankevic V, Kudelski A, Niaura G. Thermally Stable Magneto-Plasmonic Nanoparticles for SERS with Tunable Plasmon Resonance. Nanomaterials (Basel) 2022;12:2860. [PMID: 36014725 DOI: 10.3390/nano12162860] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhang Y, Li W, Zhang H, Wang S, Li X, Zaigham Abbas Naqvi SM, Hu J. Dual-functional SERRS and fluorescent aptamer sensor for abscisic acid detection via charged gold nanorods. Front Chem 2022;10:965761. [DOI: 10.3389/fchem.2022.965761] [Reference Citation Analysis]
16 Podoynitsyn SN. Quantitative SERS method on a colloid at the initial stage of rapid coagulation. Eur Phys J Plus 2022;137. [DOI: 10.1140/epjp/s13360-022-03142-3] [Reference Citation Analysis]
17 Qu Q, Zeng C, Huang J, Wang M, Qi W, He Z. Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate. Front Chem Sci Eng . [DOI: 10.1007/s11705-022-2177-8] [Reference Citation Analysis]
18 Lu H, Zhang S, Jiang Z, Tang A. Sb2Se3 nanorods in the confined space of TiO2 nanotube arrays facilitating photoelectrochemical hydrogen evolution. Journal of Alloys and Compounds 2022;912:165201. [DOI: 10.1016/j.jallcom.2022.165201] [Reference Citation Analysis]
19 Uhuo OV, Waryo TT, Douman SF, Januarie KC, Nwambaekwe KC, Ndipingwi MM, Ekwere P, Iwuoha EI. Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340326] [Reference Citation Analysis]
20 Cong T, Zhang Y, Huang H, Zhao Y, Li C, Fan Z, Pan L. MOF-derived AuNS/LDH with high adsorption ability for surface enhanced Raman spectroscopy detection. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340201] [Reference Citation Analysis]
21 Duan N, Yao T, Li C, Wang Z, Wu S. Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta 2022;245:123445. [DOI: 10.1016/j.talanta.2022.123445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Lim H, Jeon CS, Park YM, Lee HN, Pyun SH, Kim HJ. Controllable fabrication of silver-deposited polyurethane acrylate nanopillar array film as a flexible surface-enhanced Raman scattering (SERS) substrate with high sensitivity and reproducibility. Mikrochim Acta 2022;189:288. [PMID: 35879508 DOI: 10.1007/s00604-022-05391-6] [Reference Citation Analysis]
23 Campu A, Muresan I, Craciun A, Cainap S, Astilean S, Focsan M. Cardiac Troponin Biosensor Designs: Current Developments and Remaining Challenges. IJMS 2022;23:7728. [DOI: 10.3390/ijms23147728] [Reference Citation Analysis]
24 He Y, Xu W, Qu M, Zhang C, Wang W, Cheng F. Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Compr Rev Food Sci Food Saf 2022. [PMID: 35794726 DOI: 10.1111/1541-4337.12968] [Reference Citation Analysis]
25 Koczor-Benda Z, Roelli P, Galland C, Rosta E. Molecular Vibration Explorer: an Online Database and Toolbox for Surface-Enhanced Frequency Conversion and Infrared and Raman Spectroscopy. J Phys Chem A 2022. [PMID: 35792893 DOI: 10.1021/acs.jpca.2c03700] [Reference Citation Analysis]
26 Zheng Z, Shi M, Xu Y, Liu S, Zhong H, Shou Q, Huang J, Luan T, Li Z, Xing X. Light-Induced Dynamic Assembly of Gold Nanoparticles in a Lab-on-Fiber Platform for Surface-Enhanced Raman Scattering Detection. ACS Appl Nano Mater 2022;5:8005-11. [DOI: 10.1021/acsanm.2c01108] [Reference Citation Analysis]
27 Das A, Chadha R, Mishra A, Maiti N. Conformational Selectivity of Merocyanine on Nanostructured Silver Films: Surface Enhanced Resonance Raman Scattering (SERRS) and Density Functional Theoretical (DFT) Study. Front Chem 2022;10:902585. [DOI: 10.3389/fchem.2022.902585] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li H, Merkl P, Sommertune J, Thersleff T, Sotiriou GA. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. Adv Sci (Weinh) 2022;:e2201133. [PMID: 35670133 DOI: 10.1002/advs.202201133] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Kim JD, Choi H, Kim K, Chae H, Yi H, Jeong MH, Lee N, Lee M, Kim MC, Suk JW, Lee K, Jeong HE, Ok JG. Ionic solution-processable Ag nanostructures with tunable optical and electrical properties and strong adhesion to general substrates. Applied Materials Today 2022;27:101475. [DOI: 10.1016/j.apmt.2022.101475] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Iarossi M, Hubarevich A, Iachetta G, Dipalo M, Huang J, Darvill D, De Angelis F. Probing ND7/23 neuronal cells before and after differentiation with SERS using Sharp-tipped Au nanopyramid arrays. Sensors and Actuators B: Chemical 2022;361:131724. [DOI: 10.1016/j.snb.2022.131724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Xia D, Jiang P, Cai Z, Zhou R, Tu B, Gao N, Chang G, He H, He Y. Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing. Mikrochim Acta 2022;189:232. [PMID: 35614151 DOI: 10.1007/s00604-022-05328-z] [Reference Citation Analysis]
32 Wei L, Liu W, Zhu C, Wang D, Gong Z, Fan M. Assessing the effect of different pH maintenance situations on bacterial SERS spectra. Anal Bioanal Chem 2022. [PMID: 35606451 DOI: 10.1007/s00216-022-04125-0] [Reference Citation Analysis]
33 Liebel M, Calderon I, Pazos-Perez N, van Hulst NF, Alvarez-Puebla RA. Widefield SERS for High-Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022;61:e202200072. [PMID: 35107845 DOI: 10.1002/anie.202200072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Marques FC, Azevedo GC, Senna CA, Archanjo BS, Corrêa CC, Matos RC, Dos Santos DP, Andrade GFS. Structural characterization and plasmonic properties of manganese oxide-coated gold nanorods. Spectrochim Acta A Mol Biomol Spectrosc 2022;272:120988. [PMID: 35151165 DOI: 10.1016/j.saa.2022.120988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Bao Y, Zhang X, Xiang X, Zhang Y, Zhao B, Guo X. Revealing the effect of intramolecular interactions on DNA SERS detection: SERS capability for structural analysis. Phys Chem Chem Phys 2022;24:10311-7. [PMID: 35437563 DOI: 10.1039/d1cp05607g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Cao Y, Wu R, Zhang W, Luo J, Li Y, Ning L, Shen R, Wang D, Ye W. Killing two birds with one stone: Silver nanoparticles loaded on ultrathin N-doped carbon-coated TiO2 porous spheres with narrow bandgap for efficient SERS sensing and photoinduced antibacterial applications. Applied Surface Science 2022;583:152512. [DOI: 10.1016/j.apsusc.2022.152512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Zhu C, Liu W, Wang D, Gong Z, Fan M. Boosting bacteria differentiation efficiency with multidimensional surface-enhanced Raman scattering: the example of Bacillus cereus. Luminescence 2022. [PMID: 35481694 DOI: 10.1002/bio.4268] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Bai Y, Xu L, Chai H, Zhou L, Jiang G, Zhang G. Recent Advances on DNAzyme-Based Biosensors for Detection of Uranyl. Front Chem 2022;10:882250. [DOI: 10.3389/fchem.2022.882250] [Reference Citation Analysis]
39 Liu W, Wei L, Wang D, Zhu C, Huang Y, Gong Z, Tang C, Fan M. Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Anal Chem 2022. [PMID: 35476403 DOI: 10.1021/acs.analchem.2c00502] [Reference Citation Analysis]
40 S. AK, Mohan PA, J. PM, Antony A, K. JM. Exploring the Surface-Enhanced Raman Scattering on Electrospun TiO2/Ag Hybrid Structure for Pesticide Detection. Plasmonics. [DOI: 10.1007/s11468-022-01638-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Lindquist NC, Bido AT, Brolo AG. Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c00319] [Reference Citation Analysis]
42 Feng L, Li C, Wang L, Li J, Liu X, Li Q, Luo S, Shen J. Self-Referenced Surface-Enhanced Raman Scattering Nanosubstrate for the Quantitative Detection of Neurotransmitters. ACS Appl Bio Mater 2022. [PMID: 35417131 DOI: 10.1021/acsabm.2c00272] [Reference Citation Analysis]
43 Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS Appl Mater Interfaces 2022. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Reference Citation Analysis]
44 Tian Y, Sun Y, Wang Y, Li X, Zhu D, Yebra-biurrun MC. Development of a Handheld System for Liquor Authenticity Detection Based on Laser Spectroscopy Technique. Journal of Spectroscopy 2022;2022:1-8. [DOI: 10.1155/2022/4404749] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Liu W, Zhang J, Hou J, Aziguli H, Zhang Q, Jiang H. Self-Assembly of Au–Ag Alloy Hollow Nanochains for Enhanced Plasmon-Driven Surface-Enhanced Raman Scattering. Nanomaterials 2022;12:1244. [DOI: 10.3390/nano12081244] [Reference Citation Analysis]
46 Vendamani VS, Rao SVSN, Pathak AP, Soma VR. Silicon Nanostructures for Molecular Sensing: A Review. ACS Appl Nano Mater 2022;5:4550-82. [DOI: 10.1021/acsanm.1c04569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Duan C, Li J, Zhang Y, Ding K, Geng X, Guan Y. Portable instruments for on-site analysis of environmental samples. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116653] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
48 Liu B, Zheng S, Liu Q, Gao B, Zhao X, Sun F. SERS-based lateral flow immunoassay strip for ultrasensitive and quantitative detection of acrosomal protein SP10. Microchemical Journal 2022;175:107191. [DOI: 10.1016/j.microc.2022.107191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Liebel M, Calderon I, Pazos‐perez N, Hulst NF, Alvarez‐puebla RA. Widefield SERS for High‐Throughput Nanoparticle Screening. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202200072] [Reference Citation Analysis]
50 Li S, Yang Y, Wang S, Gao Y, Song Z, Chen L, Chen Z. Advances in metal graphitic nanocapsules for biomedicine. Exploration. [DOI: 10.1002/exp.20210223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Ye Z, Jia X, Lou M, Huang H, Lu P, Ye G, Gong X, Zhu Y, Yan B. Surface-enhanced Raman scattering substrates prepared by controlled synthesis of gold nanobipyramids in microchannels. Microfluid Nanofluid 2022;26. [DOI: 10.1007/s10404-022-02535-1] [Reference Citation Analysis]
52 Wang G, Shi J, Zhang Q, Wang R, Huang L. Resolution enhancement of angular plasmonic biochemical sensors via optimizing centroid algorithm. Chemometrics and Intelligent Laboratory Systems 2022. [DOI: 10.1016/j.chemolab.2022.104531] [Reference Citation Analysis]
53 Geng H, Vilms Pedersen S, Ma Y, Haghighi T, Dai H, Howes PD, Stevens MM. Noble Metal Nanoparticle Biosensors: From Fundamental Studies toward Point-of-Care Diagnostics. Acc Chem Res 2022;55:593-604. [PMID: 35138817 DOI: 10.1021/acs.accounts.1c00598] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
54 Zhang Y, Li L, Zhang H, Shang J, Li C, Naqvi SMZA, Birech Z, Hu J. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal Bioanal Chem 2022. [PMID: 35141764 DOI: 10.1007/s00216-022-03923-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Song Y, Chen J, Yang X, Zhang D, Zou Y, Ni D, Ye J, Yu Z, Chen Q, Jin S, Liang P. Fabrication of Fe3O4@Ag magnetic nanoparticles for highly active SERS enhancement and paraquat detection. Microchemical Journal 2022;173:107019. [DOI: 10.1016/j.microc.2021.107019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Hossain MK, Drmosh QA. Silver Nanoparticles and Nanorings for Surface-Enhanced Raman Scattering. Plasmonics. [DOI: 10.1007/s11468-021-01572-w] [Reference Citation Analysis]
57 Han Y, Fang X, Sun Z, Kang C, Zha L, Zhang X. Ag Nanoparticle-Decorated Graphene Oxide Coatings on the Inner Walls of Optofluidic Capillaries for Real-Time Trace SERS Detection. ACS Appl Nano Mater 2022;5:2445-50. [DOI: 10.1021/acsanm.1c04145] [Reference Citation Analysis]
58 Eleftheriades BG, Storey EE, Helmy AS. Label‐Free Spontaneous Raman Sensing in Photonic Crystal Fibers with Nanomolar Sensitivity. Advanced Optical Materials 2022;10:2101117. [DOI: 10.1002/adom.202101117] [Reference Citation Analysis]
59 Liu B, Zheng S, Li H, Xu J, Tang H, Wang Y, Wang Y, Sun F, Zhao X. Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags. Talanta 2022;237:122955. [PMID: 34736680 DOI: 10.1016/j.talanta.2021.122955] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
60 Nguyen PHL, Rubin S, Sarangi P, Pal P, Fainman Y. SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing. Appl Phys Lett 2022;120:023701. [DOI: 10.1063/5.0075528] [Reference Citation Analysis]
61 Chen Z, Feng K, Chen Z, Shen J, Li H. Surface-Enhanced Raman Scattering on Silver Sinusoidal Nanograting: Impact of Interactions of Grating-Coupled Surface Plasmon Polaritons. Plasmonics. [DOI: 10.1007/s11468-021-01587-3] [Reference Citation Analysis]
62 Prakash J, Samriti, Wijesundera DN, Rajapaksa I, Chu W. Ion beam nanoengineering of surfaces for molecular detection using surface enhanced Raman scattering. Mol Syst Des Eng 2022;7:411-21. [DOI: 10.1039/d2me00006g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Lu Y, Lin L, Ye J. Human metabolite detection by surface-enhanced Raman spectroscopy. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100205] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Tim B, Błaszkiewicz P, Kotkowiak M. Recent Advances in Metallic Nanoparticle Assemblies for Surface-Enhanced Spectroscopy. Int J Mol Sci 2021;23:291. [PMID: 35008714 DOI: 10.3390/ijms23010291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Wang R, Cao H. Development of Au NPs-decorated filter paper as a SERS platform for the detection of benzidine. RSC Adv 2021;11:39797-803. [PMID: 35494121 DOI: 10.1039/d1ra05706e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Tian Y, Tang X, Fu Y, Shang S, Dong G, Li T, Huang X, Zhu D. Simultaneous extraction and surface enhanced Raman spectroscopy detection for the rapid and reliable identification of nicotine released from snus products. Anal Methods 2021;13:5608-16. [PMID: 34806734 DOI: 10.1039/d1ay01601f] [Reference Citation Analysis]
67 Ke NH, Tuan DA, Thong TT, Long NH, Thanh NH, Tuan Hung LV. Preparation of SERS Substrate with Ag Nanoparticles Covered on Pyramidal Si Structure for Abamectin Detection. Plasmonics 2021;16:2125-37. [DOI: 10.1007/s11468-021-01386-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
68 Yang J, Pan M, Liu K, Xie X, Wang S, Hong L, Wang S. Core-shell AuNRs@Ag-enhanced and magnetic separation-assisted SERS immunosensing platform for amantadine detection in animal-derived foods. Sensors and Actuators B: Chemical 2021;349:130783. [DOI: 10.1016/j.snb.2021.130783] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
69 El-Mashtoly SF, Gerwert K. Diagnostics and Therapy Assessment Using Label-Free Raman Imaging. Anal Chem 2021. [PMID: 34852454 DOI: 10.1021/acs.analchem.1c04483] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
70 Liu W, Zhou S, Liu J, Zhao X, Feng Z, Wang D, Gong Z, Fan M. Quantitative detection of 6-thioguanine in body fluids based on a free-standing liquid membrane SERS substrate. Anal Bioanal Chem 2021. [PMID: 34812902 DOI: 10.1007/s00216-021-03790-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
71 Xu G, Song P, Xia L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics 2021;10:4419-45. [DOI: 10.1515/nanoph-2021-0363] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Wang C, Shang M, Wei H, Zhang M, Zou W, Meng X, Chen W, Shao H, Lai Y. Specific and sensitive on-site detection of Cr(VI) by surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical 2021;346:130594. [DOI: 10.1016/j.snb.2021.130594] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
73 Hossain MK, Kitahama Y, Ozaki Y. Half-raspberry-like bimetallic nanoassembly: Interstitial dependent correlated surface plasmon resonances and surface-enhanced Raman spectroscopy. Phys Chem Chem Phys 2021;23:23875-85. [PMID: 34651624 DOI: 10.1039/d1cp03402b] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
74 Dong J, Zhao K, Wang Q, Yuan J, Han Q, Gao W, Wang Y, Qi J, Sun M. Plasmonic alloy nanochains assembled via dielectrophoresis for ultrasensitive SERS. Opt Express 2021;29:36857-70. [PMID: 34809086 DOI: 10.1364/OE.440914] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Ji Z, Zhang C, Ye Y, Ji J, Dong H, Forsberg E, Cheng X, He S. Magnetically Enhanced Liquid SERS for Ultrasensitive Analysis of Bacterial and SARS-CoV-2 Biomarkers. Front Bioeng Biotechnol 2021;9:735711. [PMID: 34660557 DOI: 10.3389/fbioe.2021.735711] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
76 Fan W, Gao W, Jiao J, Wang D, Fan M. Highly sensitive SERS detection of residual nitrofurantoin and 1-amino-hydantoin in aquatic products and feeds. Luminescence 2021. [PMID: 34637600 DOI: 10.1002/bio.4148] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
77 Markina NE, Cialla-May D, Markin AV. Cyclodextrin-assisted surface-enhanced Raman spectroscopy: a critical review. Anal Bioanal Chem 2021. [PMID: 34635933 DOI: 10.1007/s00216-021-03704-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
78 Durai L, Badhulika S. 3D, large-area NiCo2O4 microflowers as a highly stable substrate for rapid and trace level detection of flutamide in biofluids via surface-enhanced Raman scattering (SERS). Mikrochim Acta 2021;188:371. [PMID: 34625854 DOI: 10.1007/s00604-021-05034-2] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
79 Liu H, He Y, Cao K. Flexible Surface‐Enhanced Raman Scattering Substrates: A Review on Constructions, Applications, and Challenges. Adv Mater Interfaces 2021;8:2100982. [DOI: 10.1002/admi.202100982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
80 Ali HT, Mateen A, Ashraf F, Javed MR, Ali A, Mahmood K, Zohaib A, Amin N, Ikram S, Yusuf M. A new SERS substrate based on Zn2GeO4 nanostructures for the rapid identification of E.Coli and methylene blue. Ceramics International 2021;47:27998-8003. [DOI: 10.1016/j.ceramint.2021.07.291] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Lu R, Qi Z, Wang S, Tian X, Xu X. Rapid detection of illegal biguanides in hypoglycemic health products using molecular imprinting combined with SERS technology. Microchemical Journal 2021;169:106523. [DOI: 10.1016/j.microc.2021.106523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
82 Fan W, Yang S, Gao W, Wang D, Fan M. Highly sensitive bromide aided SERS detection of furazolidone and 3-amino-2-oxazolidinone residual in aquaculture products. Microchemical Journal 2021;169:106532. [DOI: 10.1016/j.microc.2021.106532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
83 Yu Z, Huang L, Zhang Z, Li G. Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti3C2Tx/DNA/Ag Membrane Substrate. Anal Chem 2021;93:13072-9. [PMID: 34515467 DOI: 10.1021/acs.analchem.1c03019] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
84 Deidda R, Avohou HT, Dumont E, Hubert C, Hubert P, De Bleye C, Ziemons É. Application of the analytical quality by design principles to the development of a qualitative surface‐enhanced Raman scattering method: A proof of concept. J Raman Spectroscopy 2022;53:20-32. [DOI: 10.1002/jrs.6249] [Reference Citation Analysis]
85 Huang C, Zhao H, Peng Z, Zheng B, Zhang C, Wang J. One-step fabrication of highly dense gold nanoparticles on polyamide for surface-enhanced Raman scattering. Applied Surface Science 2021;561:149856. [DOI: 10.1016/j.apsusc.2021.149856] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
86 Magalhães FB, Jaimes RFVV, Cório P, Salcedo WJ. SERS fluctuations of NAD molecules adsorbed on arrays of Au nanocylinders. Opt Mater Express 2021;11:3154. [DOI: 10.1364/ome.434894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Meng X, Qiu L, Xi G, Wang X, Guo L. Smart design of high‐performance surface‐enhanced Raman scattering substrates. SmartMat 2021;2:466-87. [DOI: 10.1002/smm2.1058] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
88 Liu J, Liu W, Zhou S, Wang D, Gong Z, Fan M. Free-Standing Membrane Liquid-State Platform for SERS-Based Determination of Norfloxacin in Environmental Samples. J Anal Test 2021;5:217-24. [DOI: 10.1007/s41664-021-00192-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Duan Q, Liu Y, Chang S, Chen H, Chen JH. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors (Basel) 2021;21:5262. [PMID: 34450704 DOI: 10.3390/s21165262] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
90 Yu S, Li X, Lu W, Li H, Fu YV, Liu F. Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens. Anal Chem 2021;93:11089-98. [PMID: 34339167 DOI: 10.1021/acs.analchem.1c00431] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
91 Liu D, Liu C, Yuan Y, Zhang X, Huang Y, Yan S. Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection. Anal Chem 2021;93:10672-8. [PMID: 34308643 DOI: 10.1021/acs.analchem.1c02139] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
92 Atanasov PA, Nedyalkov NN, Fukata N, Jevasuwan W. Advanced silver and gold substrates for surface-enhanced Raman spectroscopy of pesticides. Spectroscopy Letters 2021;54:528-38. [DOI: 10.1080/00387010.2021.1950190] [Reference Citation Analysis]
93 Hossain MK, Drmosh QA. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 2021;263:120141. [PMID: 34280795 DOI: 10.1016/j.saa.2021.120141] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
94 Hossain MK, Drmosh QA, Mohamedkhair AK. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate. Chem Asian J 2021;16:1807-19. [PMID: 34009749 DOI: 10.1002/asia.202100386] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
95 Samek O, Bernatová S, Dohnal F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics 2021;10:2537-61. [DOI: 10.1515/nanoph-2021-0095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
96 Chen Y, Liu H, Li X, Tang S, Gu C, Wei G, Jiang T, Zhou X. Development of RGO@MoS2@Ag ternary nanocomposites with tunable geometry structure for recyclable SERS detection. Sensors and Actuators B: Chemical 2021;339:129856. [DOI: 10.1016/j.snb.2021.129856] [Cited by in Crossref: 6] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
97 Ettabib MA, Marti A, Liu Z, Bowden BM, Zervas MN, Bartlett PN, Wilkinson JS. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sens 2021;6:2025-45. [PMID: 34114813 DOI: 10.1021/acssensors.1c00366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
98 Wang L, Womiloju AA, Höppener C, Schubert US, Hoeppener S. On the stability of microwave-fabricated SERS substrates - chemical and morphological considerations. Beilstein J Nanotechnol 2021;12:541-51. [PMID: 34194890 DOI: 10.3762/bjnano.12.44] [Reference Citation Analysis]
99 Guo Z, Chen P, Yosri N, Chen Q, Elseedi HR, Zou X, Yang H. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. Food Reviews International. [DOI: 10.1080/87559129.2021.1934005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
100 Li L, Zhang Y, Zhou Y, Zheng W, Sun Y, Ma G, Zhao Y. Optical Fiber Optofluidic Bio‐Chemical Sensors: A Review. Laser & Photonics Reviews 2021;15:2000526. [DOI: 10.1002/lpor.202000526] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
101 Puglieri TS, Madden O, Andrade GFS. SHINERS in cultural heritage: Can SHINERS spectra always be compared with normal Raman spectra? A study of alizarin and its adsorption in the silicon dioxide shell. J Raman Spectrosc 2021;52:1406-17. [DOI: 10.1002/jrs.6172] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Wang XA, Shen W, Zhou B, Yu D, Tang X, Liu J, Huang X. The rationality of using core-shell nanoparticles with embedded internal standards for SERS quantitative analysis based glycerol-assisted 3D hotspots platform. RSC Adv 2021;11:20326-34. [PMID: 35479874 DOI: 10.1039/d1ra01957k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
103 Liu J, Liu W, Huang Y, Zhao X, Feng Z, Wang D, Gong Z, Fan M. Self-supporting liquid film as reproducible SERS platform for therapeutic drug monitoring of berberine hydrochloride in human urine. Microchemical Journal 2021;165:106122. [DOI: 10.1016/j.microc.2021.106122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
104 Shiao MH, Wu T, Huang HJ, Peng CY, Lin YS, Lai TY, Lin YW. Dendritic Forest-Like Ag Nanostructures Prepared Using Fluoride-Assisted Galvanic Replacement Reaction for SERS Applications. Nanomaterials (Basel) 2021;11:1359. [PMID: 34063866 DOI: 10.3390/nano11061359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Martins NC, Fateixa S, Fernandes T, Nogueira HI, Trindade T. Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Appl Nano Mater 2021;4:4484-95. [DOI: 10.1021/acsanm.1c00112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
106 Liman G, Yildiz E, Ilhan H, Cetin AE, Demirel G. Hot‐Spot Engineering Through Soft Actuators for Surface‐Enhanced Raman Spectroscopy (SERS) Applications. Advanced Optical Materials 2021;9:2100009. [DOI: 10.1002/adom.202100009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Wang X, Ma L, Sun S, Liu T, Zhou H, Liu X, Guan M. Rapid, highly sensitive and quantitative detection of interleukin 6 based on SERS magnetic immunoassay. Anal Methods 2021;13:1823-31. [PMID: 33885657 DOI: 10.1039/d0ay02304c] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
108 Chen H, Das A, Bi L, Choi N, Moon JI, Wu Y, Park S, Choo J. Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria. Nanoscale 2020;12:21560-70. [PMID: 33094771 DOI: 10.1039/d0nr06340a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 37] [Article Influence: 21.0] [Reference Citation Analysis]
109 Miao X, Fang Q, Xiao X, Liu S, Wu R, Yan J, Nie B, Liu J. Integrating Cycled Enzymatic DNA Amplification and Surface-Enhanced Raman Scattering for Sensitive Detection of Circulating Tumor DNA. Front Mol Biosci 2021;8:676065. [PMID: 34017856 DOI: 10.3389/fmolb.2021.676065] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
110 Lin Y, Wang L, Zhang H, Wu L, Fan H, Liu X, Zheng R, Tian X, He H. Widely tunable surface plasmon resonance and uniquely superior SERS performance of Au nanotube network films. Nanotechnology 2021;32. [PMID: 33823499 DOI: 10.1088/1361-6528/abf511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Wang C, Wan Y, Su Y, Cai Y, Xiong S, Yuan D, Xia Z, Zhu J, Kong L. An Expedient SERS Strip Tactic for Rapid On-Site Detection with Long-Time Sensitivity and Repeatability. Advances in Materials Science and Engineering 2021;2021:1-8. [DOI: 10.1155/2021/5560513] [Reference Citation Analysis]
112 Xu F, Xuan M, Ben Z, Shang W, Ma G. Surface enhanced Raman scattering analysis with filter-based enhancement substrates: A mini review. Reviews in Analytical Chemistry 2021;40:75-92. [DOI: 10.1515/revac-2021-0126] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Hu C, Wang X, Liu L, Fu C, Chu K, Smith ZJ. Fast confocal Raman imaging via context-aware compressive sensing. Analyst 2021;146:2348-57. [PMID: 33624650 DOI: 10.1039/d1an00088h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
114 Xie Z, Zhao F, Zou S, Zhu F, Zhang Z, Wang W. TiO2 nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates. Journal of Alloys and Compounds 2021;861:157999. [DOI: 10.1016/j.jallcom.2020.157999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
115 Wang X, Ma L, Hu C, Liu T, Sun S, Liu X, Guan M. Simultaneous Quantitative Detection of IL-6 and PCT Using SERS magnetic immunoassay with sandwich structure. Nanotechnology 2021;32. [PMID: 33711835 DOI: 10.1088/1361-6528/abee48] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021;230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
117 Lindquist NC, Brolo AG. Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. J Phys Chem C 2021;125:7523-32. [DOI: 10.1021/acs.jpcc.0c11150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
118 Yu D, Yin Q, Wang J, Yang J, Chen Z, Gao Z, Huang Q, Li S. SERS-Based Immunoassay Enhanced with Silver Probe for Selective Separation and Detection of Alzheimer's Disease Biomarkers. Int J Nanomedicine 2021;16:1901-11. [PMID: 33707945 DOI: 10.2147/IJN.S293042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
119 Zhu Y, Wu J, Wang K, Xu H, Qu M, Gao Z, Guo L, Xie J. Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 2021;224:121852. [DOI: 10.1016/j.talanta.2020.121852] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
120 Guselnikova O, Lim H, Na J, Eguchi M, Kim HJ, Elashnikov R, Postnikov P, Svorcik V, Semyonov O, Miliutina E, Lyutakov O, Yamauchi Y. Enantioselective SERS sensing of pseudoephedrine in blood plasma biomatrix by hierarchical mesoporous Au films coated with a homochiral MOF. Biosens Bioelectron 2021;180:113109. [PMID: 33677356 DOI: 10.1016/j.bios.2021.113109] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
121 Kim EJ, Kim H, Park E, Kim T, Chung DR, Choi YM, Kang M. Paper-Based Multiplex Surface-Enhanced Raman Scattering Detection Using Polymerase Chain Reaction Probe Codification. Anal Chem 2021;93:3677-85. [PMID: 33606501 DOI: 10.1021/acs.analchem.0c05285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
122 Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 16] [Cited by in F6Publishing: 70] [Article Influence: 16.0] [Reference Citation Analysis]
123 Huang CT, Jan FJ, Chang CC. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection. Molecules 2021;26:E281. [PMID: 33429970 DOI: 10.3390/molecules26020281] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
124 Wang P, Sun Y, Li X, Wang L, Xu Y, Li G. Recent Advances in Metal Organic Frameworks Based Surface Enhanced Raman Scattering Substrates: Synthesis and Applications. Molecules 2021;26:E209. [PMID: 33401623 DOI: 10.3390/molecules26010209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
125 Zhu X, Liu P, Xue T, Ge Y, Ai S, Sheng Y, Wu R, Xu L, Tang K, Wen Y. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceramics International 2021;47:173-84. [DOI: 10.1016/j.ceramint.2020.08.121] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
126 Galbács G, Kéri A, Kohut A, Veres M, Geretovszky Z. Nanoparticles in analytical laser and plasma spectroscopy – a review of recent developments in methodology and applications. J Anal At Spectrom 2021;36:1826-72. [DOI: 10.1039/d1ja00149c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
127 Li C, Huang Y, Li X, Zhang Y, Chen Q, Ye Z, Alqarni Z, Bell SEJ, Xu Y. Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates. J Mater Chem C 2021;9:11517-52. [DOI: 10.1039/d1tc02134f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
128 Xu F, Shang W, Ma G, Zhu Y, Wu M. Metal organic framework wrapped gold nanourchin assembled on filter membrane for fast and sensitive SERS analysis. Sensors and Actuators B: Chemical 2021;326:128968. [DOI: 10.1016/j.snb.2020.128968] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
129 Liu Y, Zhu W, Hu J, Shen A. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. Nanoscale Adv 2021;3:6568-79. [DOI: 10.1039/d1na00464f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Jaworska A, Malek K, Kudelski A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim Acta A Mol Biomol Spectrosc 2021;251:119410. [PMID: 33465573 DOI: 10.1016/j.saa.2020.119410] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
131 Vlasko-Vlasov VK, Sulwer M, Shevchenko EV, Parker J, Kwok WK. Ring patterns generated by an expanding colloidal meniscus. Phys Rev E 2020;102:052608. [PMID: 33327138 DOI: 10.1103/PhysRevE.102.052608] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
132 Cheng L, Zhu G, Liu G, Zhu L. FDTD simulation of the optical properties for gold nanoparticles. Mater Res Express 2020;7:125009. [DOI: 10.1088/2053-1591/abd139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
133 Yang Y, Li Y, Li X, Zhang L, Kouadio Fodjo E, Han S. Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers. Chemical Engineering Journal 2020;402:125179. [DOI: 10.1016/j.cej.2020.125179] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
134 Fan W, Yang S, Zhang Y, Huang B, Gong Z, Wang D, Fan M. Multifunctional Flexible SERS Sensor on a Fixate Gel Pad: Capturing, Derivation, and Selective Picogram Indirect Detection of Explosive 2,2',4,4',6,6'-Hexanitrostilbene. ACS Sens 2020;5:3599-606. [PMID: 33155795 DOI: 10.1021/acssensors.0c01908] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
135 Tay L, Poirier S, Ghaemi A, Hulse J, Wang S. Paper‐based surface‐enhanced Raman spectroscopy sensors for field applications. J Raman Spectrosc 2021;52:563-72. [DOI: 10.1002/jrs.6017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
136 Miyazaki CM, Carthy E, Kinahan DJ. Biosensing on the Centrifugal Microfluidic Lab-on-a-Disc Platform. Processes 2020;8:1360. [DOI: 10.3390/pr8111360] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
137 Liu W, Huang Y, Liu J, Chao S, Liu X, Wang D, Gong Z, Li C, Fan M, Huang C. Self-Healing 3D Liquid Freestanding Plasmonic Nanoparticle Membrane for Reproducible Surface-Enhanced Raman Spectroscopy Sensing. ACS Appl Nano Mater 2020;3:10014-21. [DOI: 10.1021/acsanm.0c02003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
138 Huang Y, Liu W, Gong Z, Wu W, Fan M, Wang D, Brolo AG. Detection of Buried Explosives Using a Surface-Enhanced Raman Scattering (SERS) Substrate Tailored for Miniaturized Spectrometers. ACS Sens 2020;5:2933-9. [PMID: 32799533 DOI: 10.1021/acssensors.0c01412] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
139 Li C, Chai L, Chen Q, Ye Z, Xu Y, Bell SE. Superhydrophobic needles tipped with 2‐dimensional arrays of plasmonic colloidal nanoparticles for microdroplet SERS analysis. J Raman Spectrosc 2021;52:386-93. [DOI: 10.1002/jrs.5992] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
140 He J, Li H, Zhang L, Zhi X, Li X, Wang X, Feng Z, Shen G, Ding X. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. Food Chem 2021;339:128085. [PMID: 33152876 DOI: 10.1016/j.foodchem.2020.128085] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
141 Liu R, Jiang L, Yu Z, Chen Y, Xu R, Jin S. Flexible SERS platform based on Ti 3 C 2 T x -modified filter paper: preparation and SERS application. Appl Opt 2020;59:7846. [DOI: 10.1364/ao.398454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
142 de Oliveira DG, Pimentel GA, Andrade GF. Chitosan stabilization and control over hot spot formation of gold nanospheres and SERS performance evaluation. Vibrational Spectroscopy 2020;110:103119. [DOI: 10.1016/j.vibspec.2020.103119] [Reference Citation Analysis]
143 Wang C, Wang X, Li C, Xu X, Ye W, Qiu G, Wang D. Silver mirror films deposited on well plates for SERS detection of multi-analytes: Aiming at 96-well technology. Talanta 2021;222:121544. [PMID: 33167251 DOI: 10.1016/j.talanta.2020.121544] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
144 Choi JH, Lee JH, Choi JW. Applications of Bionano Sensor for Extracellular Vesicles Analysis. Materials (Basel) 2020;13:E3677. [PMID: 32825537 DOI: 10.3390/ma13173677] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
145 Liu W, Huang Y, Liu J, Chao S, Wang D, Gong Z, Feng Z, Fan M. Unsupported liquid-state platform for SERS-based determination of triazophos. Mikrochim Acta 2020;187:502. [PMID: 32812088 DOI: 10.1007/s00604-020-04474-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
146 Jia M, E Z, Zhai F, Bing X. Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs. Molecules 2020;25:E3590. [PMID: 32784605 DOI: 10.3390/molecules25163590] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
147 Paczesny J, Richter Ł, Hołyst R. Recent Progress in the Detection of Bacteria Using Bacteriophages: A Review. Viruses 2020;12:E845. [PMID: 32756438 DOI: 10.3390/v12080845] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
148 Jiang X, Liu W, Luo B, Liu X, Huang Y, Wang D, Fan M, Gong Z. Copper foam in situ loaded with precious metal nanoparticles as transmission SEIRAS substrate for rapid detection of dithiocarbamate pesticides. Anal Methods 2020;12:3600-7. [PMID: 32701090 DOI: 10.1039/d0ay01044h] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
149 Chen S, Ding C, Lin Y, Wu X, Yuan W, Meng X, Su W, Zhang KQ. SERS-active substrate assembled by Ag NW-embedded porous polystyrene fibers. RSC Adv 2020;10:21845-51. [PMID: 35516612 DOI: 10.1039/d0ra01454k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
150 Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. Micromachines (Basel) 2020;11:E356. [PMID: 32235546 DOI: 10.3390/mi11040356] [Cited by in Crossref: 18] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
151 Nguyen Thi H, Nguyen DH, Vu MT, Tran HN, Pham Tran LP, Nguyen-thi N, Le NTT, Le Minh Tri N. Fabrication process and characterization of AgNPs/PVA/cellulose as a SERS platform for in-situ detection of residual pesticides in fruit. Mater Res Express 2020;7:035019. [DOI: 10.1088/2053-1591/ab7e6c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
152 dos Santos DP. Statistical Analysis of Surface-Enhanced Raman Scattering Enhancement Distributions. J Phys Chem C 2020;124:6811-21. [DOI: 10.1021/acs.jpcc.9b11574] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
153 Gurian E, Giraudi P, Rosso N, Tiribelli C, Bonazza D, Zanconati F, Giuricin M, Palmisano S, de Manzini N, Sergo V, Bonifacio A. Differentiation between stages of non-alcoholic fatty liver diseases using surface-enhanced Raman spectroscopy. Anal Chim Acta 2020;1110:190-8. [PMID: 32278395 DOI: 10.1016/j.aca.2020.02.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
154 Martín-gracia B, Martín-barreiro A, Cuestas-ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020;8:6710-38. [DOI: 10.1039/d0tb00861c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
155 Wallace GQ, Masson J. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020;145:7162-85. [DOI: 10.1039/d0an01274b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
156 Wang Q, Wang L. Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale 2020;12:7485-99. [DOI: 10.1039/d0nr00040j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 44] [Article Influence: 14.5] [Reference Citation Analysis]
157 Colombo RNP, Gonçales VR, Gautam S, Tilley R, Gooding JJ, Córdoba de Torresi SI. Spatially localized electrodeposition of multiple metals via light-activated electrochemistry for surface enhanced Raman spectroscopy applications. Chem Commun 2020. [DOI: 10.1039/d0cc01661f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]