BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dalvand K, Ghiasvand A. Simultaneous analysis of PAHs and BTEX in soil by a needle trap device coupled with GC-FID and using response surface methodology involving Box-Behnken design. Analytica Chimica Acta 2019;1083:119-29. [DOI: 10.1016/j.aca.2019.07.063] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Kushwaha CS, Singh P, Shukla SK, Chehimi MM. Advances in conducting polymer nanocomposite based chemical sensors: An overview. Materials Science and Engineering: B 2022;284:115856. [DOI: 10.1016/j.mseb.2022.115856] [Reference Citation Analysis]
2 Chang H, Lu Y, Rakkesh AR. Research Progress of Polycyclic Aromatic Hydrocarbons Pretreatment Methods and Application of Computer Simulation Technology for Prediction and Degradation of Electrochemical Concentration Detection. Journal of Chemistry 2022;2022:1-16. [DOI: 10.1155/2022/6288072] [Reference Citation Analysis]
3 Yu B, Yuan Z, Yu Z, Xue-song F. BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chemical Engineering Journal 2022;435:134825. [DOI: 10.1016/j.cej.2022.134825] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Du X, Yuan J, Cao H, Ye L, Ma A, Du J, Pan J. Ultrasound-assisted micellar cleanup coupled with large-volume-injection enrichment for the analysis of polar drugs in blood and zebrafish samples. Ultrasonics Sonochemistry 2022;85:105998. [DOI: 10.1016/j.ultsonch.2022.105998] [Reference Citation Analysis]
5 Zeinali S, Khalilzadeh M, Pawliszyn J. The Evolution of Needle-Trap Devices with Focus on Aerosol Investigations. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116643] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022;12:6099-113. [PMID: 35424557 DOI: 10.1039/d1ra08633b] [Reference Citation Analysis]
7 Amiri A, Baghayeri M, Koshki M. Electrochemical deposition of polyaniline on the stainless steel mesh for the extraction of polycyclic aromatic hydrocarbons. Microchemical Journal 2022;173:107014. [DOI: 10.1016/j.microc.2021.107014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Yue B, Zhang X, Wang X, Lian L, Gao W, Zhang H, Hou S, Lou D. A Needle Extraction Device Packed with Molecularly Imprinted Polymer Functionalized Fiber for the Determination of Polycyclic Aromatic Hydrocarbon in Water. Water Air Soil Pollut 2022;233. [DOI: 10.1007/s11270-021-05471-y] [Reference Citation Analysis]
9 Derikvand A, Ghiasvand A, Dalvand K, Haddad PR. Fabrication and evaluation of a portable low-pressure headspace solid-phase microextraction device for on-site analysis. Microchemical Journal 2021;168:106362. [DOI: 10.1016/j.microc.2021.106362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sun Y, Zhou Q, Sheng X, Li S, Tong Y, Guo J, Zhou B, Zhao J, Liu M, Li Z, Li Y, Qu T, Chen C. Highly selective fluorescence sensor sensing benzo[a]pyrene in water utilizing carbon dots derived from 4-carboxyphenylboronic acid. Chemosphere 2021;282:131127. [PMID: 34119727 DOI: 10.1016/j.chemosphere.2021.131127] [Reference Citation Analysis]
11 Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. TrAC Trends in Analytical Chemistry 2021;139:116252. [DOI: 10.1016/j.trac.2021.116252] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
12 Baysal E, Uzun UC, Ertaş FN, Goksel O, Pelit L. Development of a new needle trap-based method for the determination of some volatile organic compounds in the indoor environment. Chemosphere 2021;277:130251. [PMID: 33774250 DOI: 10.1016/j.chemosphere.2021.130251] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Dalvand K, Balavandy SK, Li F, Breadmore M, Ghiasvand A. Optimization of smartphone-based on-site-capable uranium analysis in water using a 3D printed microdevice. Anal Bioanal Chem 2021;413:3243-51. [PMID: 33751164 DOI: 10.1007/s00216-021-03260-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Timofeeva I, Stepanova K, Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion. Talanta 2021;224:121888. [PMID: 33379097 DOI: 10.1016/j.talanta.2020.121888] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
15 Yang F, Zhang W, Zhao Y, Ji Y, Liu B, Zhou K. Optimization of Working Conditions by Response Surface Methodology of Sulfur Dioxide Gas Sensors Based on Au/CoO‐2La 2 WO 6 Nanoparticles. ChemistrySelect 2020;5:11145-51. [DOI: 10.1002/slct.202001415] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Zhang W, Yang F, Xu J, Gu C, Zhou K. Sensitive Carbon Monoxide Gas Sensor Based on Chemiluminescence on Nano-Au/Nd2O3-Ca3Nd2O6: Working Condition Optimization by Response Surface Methodology. ACS Omega 2020;5:20034-41. [PMID: 32832757 DOI: 10.1021/acsomega.0c01481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Yang F, Zhang W, Wang H, Gu C, Lu Y, Zhou K. Determination of formaldehyde using a novel Pt-doped nano-sized sensitive material: Operating conditions optimization by response surface method. Anal Chim Acta 2020;1132:47-54. [PMID: 32980110 DOI: 10.1016/j.aca.2020.07.070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Cheng G, Zhang M, Cao Y, Lu Y, Feng Y, Zhao S. Preparation and evaluation of lignite flotation collector derived from waste hot-pot oil. Fuel 2020;267:117138. [DOI: 10.1016/j.fuel.2020.117138] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
19 Viana VR, Ferreira WH, Azero EG, Dias ML, Andrade CT. Optimization of the Electrospinning Conditions by Box-Behnken Design to Prepare Poly(Vinyl Alcohol)/Chitosan Crosslinked Nanofibers. MSCE 2020;08:13-31. [DOI: 10.4236/msce.2020.84002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]