BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun D, Lu J, Zhang L, Chen Z. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review. Anal Chim Acta 2019;1082:1-17. [PMID: 31472698 DOI: 10.1016/j.aca.2019.07.054] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Vajhadin F, Ahadian S, Travas-Sejdic J, Lee J, Mazloum-Ardakani M, Salvador J, Aninwene GE 2nd, Bandaru P, Sun W, Khademhossieni A. Electrochemical cytosensors for detection of breast cancer cells. Biosens Bioelectron 2020;151:111984. [PMID: 31999590 DOI: 10.1016/j.bios.2019.111984] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
2 Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021;146:5474-95. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Reference Citation Analysis]
3 Zhou H, Du X, Zhang Z. Electrochemical Sensors for Detection of Markers on Tumor Cells. Int J Mol Sci 2021;22:8184. [PMID: 34360949 DOI: 10.3390/ijms22158184] [Reference Citation Analysis]
4 Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020;8:5808-25. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, Song Y, Yang C. Aptamer-Based Liquid Biopsy. ACS Appl Bio Mater 2020;3:2743-64. [DOI: 10.1021/acsabm.9b01194] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
6 Zhang A, Liu Q, Huang Z, Zhang Q, Wang R, Cui D. Electrochemical Cytosensor Based on a Gold Nanostar-Decorated Graphene Oxide Platform for Gastric Cancer Cell Detection. Sensors (Basel) 2022;22:2783. [PMID: 35408396 DOI: 10.3390/s22072783] [Reference Citation Analysis]
7 Shi X, Chen L, Chen S, Sun D. Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers. New J Chem 2021;45:15158-69. [DOI: 10.1039/d1nj01042e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zheng J, Shi H, Wang M, Duan C, Huang Y, Li C, Xiang Y, Li G. Homogenous Electrochemical Method for Ultrasensitive Detection of Tumor Cells Designed by Introduction of Poly(A) Tails onto Cell Membranes. Anal Chem 2020;92:2194-200. [PMID: 31850744 DOI: 10.1021/acs.analchem.9b04877] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
9 Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, Bai Q, Liang H, Chen L. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J Microbiol Biotechnol 2021;37:45. [PMID: 33554321 DOI: 10.1007/s11274-021-03002-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Smith MH, Fologea D. Kinetic Exclusion Assay of Biomolecules by Aptamer Capture. Sensors (Basel) 2020;20:E3442. [PMID: 32570818 DOI: 10.3390/s20123442] [Reference Citation Analysis]
11 Rhouati A, Marty J, Vasilescu A. Electrochemical biosensors combining aptamers and enzymatic activity: Challenges and analytical opportunities. Electrochimica Acta 2021;390:138863. [DOI: 10.1016/j.electacta.2021.138863] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hu X, Zang X, Lv Y. Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett 2021;21:422. [PMID: 33850563 DOI: 10.3892/ol.2021.12683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Reference Citation Analysis]
14 Dou Y, Li W, Xia Y, Chen Z, Wu Z, Ge Y, Lin Z, Zhang M, Yang K, Yuan B, Kang Z. Photo-Voltage Transients for Real-Time Analysis of the Interactions between Molecules and Membranes. ACS Appl Bio Mater 2021;4:620-9. [DOI: 10.1021/acsabm.0c01180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal Chim Acta 2020;1124:1-19. [PMID: 32534661 DOI: 10.1016/j.aca.2020.04.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
16 Lei L, Ma B, Xu C, Liu H. Emerging Tumor-on-Chips with Electrochemical Biosensors. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116640] [Reference Citation Analysis]
17 Guo T, Wu C, Offenhäusser A, Mayer D. A Novel Ratiometric Electrochemical Biosensor Based on a Split Aptamer for the Detection of Dopamine with Logic Gate Operations. Phys Status Solidi A 2020;217:1900924. [DOI: 10.1002/pssa.201900924] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Wang CH, Lee GB. Screening of multiple hemoprotein-specific aptamers and their applications for the binding, quantification, and extraction of hemoproteins in a microfluidic system. Biomicrofluidics 2020;14:024110. [PMID: 32549920 DOI: 10.1063/1.5141871] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Reference Citation Analysis]
20 Duffy E, Florek J, Colon S, Gerdon AE. Selected DNA aptamers as hydroxyapatite affinity reagents. Anal Chim Acta 2020;1110:115-21. [PMID: 32278386 DOI: 10.1016/j.aca.2020.03.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
21 Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 2021;333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Pan S, Yao D, Liang A, Wen G, Jiang Z. New Ag-Doped COF Catalytic Amplification Aptamer Analytical Platform for Trace Small Molecules with the Resonance Rayleigh Scattering Technique. ACS Appl Mater Interfaces 2020;12:12120-32. [DOI: 10.1021/acsami.0c00205] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
23 Zhang S, Rong F, Guo C, Duan F, He L, Wang M, Zhang Z, Kang M, Du M. Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coordination Chemistry Reviews 2021;439:213948. [DOI: 10.1016/j.ccr.2021.213948] [Cited by in Crossref: 36] [Cited by in F6Publishing: 16] [Article Influence: 36.0] [Reference Citation Analysis]
24 Jiang D, Huang C, Shao L, Wang X, Jiao Y, Li W, Chen J, Xu X. Magneto-controlled aptasensor for simultaneous detection of ochratoxin A and fumonisin B1 using inductively coupled plasma mass spectrometry with multiple metal nanoparticles as element labels. Anal Chim Acta 2020;1127:182-9. [PMID: 32800122 DOI: 10.1016/j.aca.2020.06.057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Qiu W, Wang Q, Yano N, Kataoka Y, Handa M, Gao F, Tanaka H. Flexible flower-like MOF of Cu2(trans-1,4-cyclohexanedicarboxylic acid)2 as the electroactive matrix material for label-free and highly sensitive sensing of thrombin. Electrochimica Acta 2020;353:136611. [DOI: 10.1016/j.electacta.2020.136611] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis. Talanta 2020;220:121436. [PMID: 32928438 DOI: 10.1016/j.talanta.2020.121436] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
27 Huang Y, Pei X, Du S, Li Z, Gu X, Sun W, Niu X. Target-induced ratiometric electrochemical aptasensor for highly sensitive detection of thrombin based on AuNPs-MXene. Microchemical Journal 2022;181:107774. [DOI: 10.1016/j.microc.2022.107774] [Reference Citation Analysis]
28 Lu H, Jin D, Zhu L, Guo T, Li X, Peng XX, Mo G, Tang L, Zhang GJ, Yang F. Tumor-cell detection, labeling and phenotyping with an electron-doped bifunctional signal-amplifier. Biosens Bioelectron 2020;170:112662. [PMID: 33032198 DOI: 10.1016/j.bios.2020.112662] [Reference Citation Analysis]
29 Xing Y, Liu J, Sun S, Ming T, Wang Y, Luo J, Xiao G, Li X, Xie J, Cai X. New electrochemical method for programmed death-ligand 1 detection based on a paper-based microfluidic aptasensor. Bioelectrochemistry 2021;140:107789. [PMID: 33677221 DOI: 10.1016/j.bioelechem.2021.107789] [Reference Citation Analysis]
30 Agafonova L, Zhdanov D, Gladilina Y, Kanashenko S, Shumyantseva V. A pilot study on an electrochemical approach for assessing transient DNA transfection in eukaryotic cells. Journal of Electroanalytical Chemistry 2022;920:116635. [DOI: 10.1016/j.jelechem.2022.116635] [Reference Citation Analysis]
31 Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021;53:961-78. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020;11:840-50. [PMID: 32101379 DOI: 10.1111/1759-7714.13353] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
33 Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022;:1-10. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Reference Citation Analysis]
34 Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
35 Wu R, Feng Z, Zhang J, Jiang L, Zhu J. Quantum dots for electrochemical cytosensing. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116531] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Sahu SS, Stiller C, Gomero EP, Nagy Á, Karlström AE, Linnros J, Dev A. Electrokinetic sandwich assay and DNA mediated charge amplification for enhanced sensitivity and specificity. Biosens Bioelectron 2021;176:112917. [PMID: 33421763 DOI: 10.1016/j.bios.2020.112917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sun ZF, Chang Y, Xia N. Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. Biosensors (Basel) 2021;11:281. [PMID: 34436082 DOI: 10.3390/bios11080281] [Reference Citation Analysis]
38 Ning Y, Wang X, Chen P, Liu S, Hu J, Xiao R, Li L, Lu F. Targeted inhibition of methicillin-resistant Staphylococcus aureus biofilm formation by a graphene oxide-loaded aptamer/berberine bifunctional complex. Drug Deliv 2022;29:1675-83. [PMID: 35616277 DOI: 10.1080/10717544.2022.2079768] [Reference Citation Analysis]
39 Chen J, Xu J, Wan T, Deng H, Li D. High-Sensitive Detection of Small-Cell Lung Cancer Cells Based on Terminal Deoxynucleotidyl Transferase-Mediated Extension Polymerization Aptamer Probe. ACS Biomater Sci Eng 2021;7:1169-80. [PMID: 33541073 DOI: 10.1021/acsbiomaterials.0c01633] [Reference Citation Analysis]
40 Lu C, Han J, Sun X, Yang G. Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. Sensors (Basel) 2020;20:E6073. [PMID: 33114569 DOI: 10.3390/s20216073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Chen J, Li H, Xie H, Xu D. A novel method combining aptamer-Ag10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Anal Chim Acta 2020;1132:20-7. [PMID: 32980107 DOI: 10.1016/j.aca.2020.07.061] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
42 Vajhadin F, Mazloum-Ardakani M, Shahidi M, Moshtaghioun SM, Haghiralsadat F, Ebadi A, Amini A. MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe2O4@Ag magnetic nanohybrids conjugated to the HB5 aptamer. Biosens Bioelectron 2022;195:113626. [PMID: 34543916 DOI: 10.1016/j.bios.2021.113626] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
43 Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS Nano 2021. [PMID: 34677049 DOI: 10.1021/acsnano.0c10240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Vajhadin F, Mazloum-ardakani M, Tavangar Z, Shahidi M. Design of a nanocytosensor for isolation and electrochemical detection of folate-overexpressed circulating tumor cells. Sensors and Actuators B: Chemical 2022;365:131873. [DOI: 10.1016/j.snb.2022.131873] [Reference Citation Analysis]
45 Miranda-Castro R, Palchetti I, de-Los-Santos-Álvarez N. The Translational Potential of Electrochemical DNA-Based Liquid Biopsy. Front Chem 2020;8:143. [PMID: 32266206 DOI: 10.3389/fchem.2020.00143] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
46 Liu J, Liu X, Yang L, Cai A, Zhou X, Zhou C, Li G, Wang Q, Wu M, Wu L, Ji H, Qin Y. A highly sensitive electrochemical cytosensor based on a triple signal amplification strategy using both nanozyme and DNAzyme. J Mater Chem B 2022. [PMID: 35029262 DOI: 10.1039/d1tb02545g] [Reference Citation Analysis]
47 Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021;181:113151. [PMID: 33740543 DOI: 10.1016/j.bios.2021.113151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Crulhas BP, Basso CR, Castro GR, Pedrosa VA. Review—Recent Advances Based on a Sensor for Cancer Biomarker Detection. ECS J Solid State Sci Technol 2021;10:047004. [DOI: 10.1149/2162-8777/abf757] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Ștefan G, Hosu O, De Wael K, Lobo-castañón MJ, Cristea C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochimica Acta 2021;376:137994. [DOI: 10.1016/j.electacta.2021.137994] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]