BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hong KY, de Albuquerque CDL, Poppi RJ, Brolo AG. Determination of aqueous antibiotic solutions using SERS nanogratings. Analytica Chimica Acta 2017;982:148-55. [DOI: 10.1016/j.aca.2017.05.025] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
Number Citing Articles
1 Zhang MZ, Zhou ZM, Xu J, Wang WL, Pu SH, Hu WY, Luo P, Tian ZQ, Gong ZB, Liu GK. Qualitative analysis of trace quinolone antibiotics by SERS with fine structure dependent sensitivity. Spectrochim Acta A Mol Biomol Spectrosc 2022;278:121365. [PMID: 35576841 DOI: 10.1016/j.saa.2022.121365] [Reference Citation Analysis]
2 Xu L, Liu H, Chua TC, Hong M, Zhou H. Fabrication of SERS substrates by femtosecond LIPAA for detection of contaminants in foods. Optics & Laser Technology 2022;151:107954. [DOI: 10.1016/j.optlastec.2022.107954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Thu VT, Cuong NM, Cao DT, Hung LT, Ngan LT. Trace detection of ciprofloxacin antibiotic using surface-enhanced Raman scattering coupled with silver nanostars. Optik 2022;260:169043. [DOI: 10.1016/j.ijleo.2022.169043] [Reference Citation Analysis]
4 Javed Ansari M, Olegovich Bokov D, Abdalkareem Jasim S, Rudiansyah M, Suksatan W, Yasin G, Chupradit S, Alkaim AF, Fakri Mustafa Y, Imad Tarek D. Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. Journal of Molecular Liquids 2022;354:118895. [DOI: 10.1016/j.molliq.2022.118895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yilmaz H, Yilmaz D, Taskin IC, Culha M. Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev 2022;184:114184. [PMID: 35306126 DOI: 10.1016/j.addr.2022.114184] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Fornasaro S, Cialla-may D, Sergo V, Bonifacio A. The Role of Surface Enhanced Raman Scattering for Therapeutic Drug Monitoring of Antimicrobial Agents. Chemosensors 2022;10:128. [DOI: 10.3390/chemosensors10040128] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chen D, Wang C, Chen L, Gu Y, Zhang K, Wang Y, Sun H, Zhang Y, Yang Y, Fang Z, Tong D. Determination of fenamidone residues by surface-enhanced Raman spectroscopy. E3S Web Conf 2022;352:03038. [DOI: 10.1051/e3sconf/202235203038] [Reference Citation Analysis]
8 Liang JF, Peng C, Li P, Ye QX, Wang Y, Yi YT, Yao ZS, Chen GY, Zhang BB, Lin JJ, Luo Q, Chen X. A Review of Detection of Antibiotic Residues in Food by Surface-Enhanced Raman Spectroscopy. Bioinorg Chem Appl 2021;2021:8180154. [PMID: 34777490 DOI: 10.1155/2021/8180154] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Zhou C, Zou H, Sun C, Li Y. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials. Food Chem 2021;361:130109. [PMID: 34029899 DOI: 10.1016/j.foodchem.2021.130109] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
10 Hu S, Zhao M, Wang Z, Yang J, Chen D, Yan P. Development of a pH-dependent homogeneous liquid-liquid extraction by cold-induced phase separation in acetonitrile/water mixtures for determination of quinolone residues in animal-derived foods. J Chromatogr A 2021;1649:462235. [PMID: 34038778 DOI: 10.1016/j.chroma.2021.462235] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
11 Burtsev V, Erzina M, Guselnikova O, Miliutina E, Kalachyova Y, Svorcik V, Lyutakov O. Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime. Analyst 2021;146:3686-96. [PMID: 33955973 DOI: 10.1039/d0an02360d] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Mohaghegh F, Mazaheri Tehrani A, Rana D, Winterhalter M, Materny A. Detection and quantification of small concentrations of moxifloxacin using surface‐enhanced Raman spectroscopy in a Kretschmann configuration. J Raman Spectrosc 2021;52:1617-29. [DOI: 10.1002/jrs.6116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sun Y, Zhang N, Han C, Chen Z, Zhai X, Li Z, Zheng K, Zhu J, Wang X, Zou X, Huang X, Shi J. Competitive immunosensor for sensitive and optical anti-interference detection of imidacloprid by surface-enhanced Raman scattering. Food Chem 2021;358:129898. [PMID: 33933961 DOI: 10.1016/j.foodchem.2021.129898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yao C, Gao X, Liu X, Shen Y, Xie A. In-situ preparation of Ferrero® chocolate-like Cu2O@Ag microsphere as SERS substrate for detection of thiram. Journal of Materials Research and Technology 2021;11:857-65. [DOI: 10.1016/j.jmrt.2021.01.069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Chen J, Huang M, Kong L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Applied Surface Science 2020;533:147454. [DOI: 10.1016/j.apsusc.2020.147454] [Cited by in Crossref: 11] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
16 Niu Z, Liu H, Chen Y, Gu C, Zhao Z, Jiang T. Sandwich Au/SMSiO2/Ag hybrid substrate: synthesis, characterization, and surface-enhanced Raman scattering performance. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05066-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Wu Y, Liu Y, Tang X, Cheng Z, Liu H. Tunable plasmonics of hollow raspberry-like nanogold for the robust Raman scattering detection of antibiotics on a portable Raman spectrometer. Analyst 2020;145:5854-60. [PMID: 32661529 DOI: 10.1039/d0an01049a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
18 Neng J, Zhang Q, Sun P. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosens Bioelectron 2020;167:112480. [PMID: 32798805 DOI: 10.1016/j.bios.2020.112480] [Cited by in Crossref: 11] [Cited by in F6Publishing: 43] [Article Influence: 5.5] [Reference Citation Analysis]
19 Bodelón G, Pastoriza-Santos I. Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. Front Chem 2020;8:478. [PMID: 32582643 DOI: 10.3389/fchem.2020.00478] [Cited by in Crossref: 12] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
20 Lee H, Yang J, Liao J, Sitjar J, Liu BH, Sivashanmugan K, Fu W, Chen GD. Dielectric Nanoparticles Coated upon Silver Hollow Nanosphere as an Integrated Design to Reinforce SERS Detection of Trace Ampicillin in Milk Solution. Coatings 2020;10:390. [DOI: 10.3390/coatings10040390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Choi M, Kim S, Choi SH, Park HH, Byun KM. Highly reliable SERS substrate based on plasmonic hybrid coupling between gold nanoislands and periodic nanopillar arrays. Opt Express 2020;28:3598-606. [PMID: 32122025 DOI: 10.1364/OE.386726] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
22 Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020;14:28-117. [PMID: 31478375 DOI: 10.1021/acsnano.9b04224] [Cited by in Crossref: 1015] [Cited by in F6Publishing: 987] [Article Influence: 507.5] [Reference Citation Analysis]
23 [DOI: 10.1063/5.0027366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Frosch T, Knebl A, Frosch T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics 2019;9:19-37. [DOI: 10.1515/nanoph-2019-0401] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
25 Tian Y, Liu H, Chen Y, Zhou C, Jiang Y, Gu C, Jiang T, Zhou J. Seedless one-spot synthesis of 3D and 2D Ag nanoflowers for multiple phase SERS-based molecule detection. Sensors and Actuators B: Chemical 2019;301:127142. [DOI: 10.1016/j.snb.2019.127142] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
26 Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2020;1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Cited by in Crossref: 89] [Cited by in F6Publishing: 151] [Article Influence: 29.7] [Reference Citation Analysis]
27 Thrift WJ, Cabuslay A, Laird AB, Ranjbar S, Hochbaum AI, Ragan R. Surface-Enhanced Raman Scattering-Based Odor Compass: Locating Multiple Chemical Sources and Pathogens. ACS Sens 2019;4:2311-9. [PMID: 31416304 DOI: 10.1021/acssensors.9b00809] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
28 Weng S, Zhu W, Zhang X, Yuan H, Zheng L, Zhao J, Huang L, Han P. Recent advances in Raman technology with applications in agriculture, food and biosystems: A review. Artificial Intelligence in Agriculture 2019;3:1-10. [DOI: 10.1016/j.aiia.2019.11.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
29 Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019;119:10638-90. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Cited by in Crossref: 149] [Cited by in F6Publishing: 222] [Article Influence: 49.7] [Reference Citation Analysis]
30 Moronshing M, Bhaskar S, Mondal S, Ramamurthy SS, Subramaniam C. Surface-enhanced Raman scattering platform operating over wide pH range with minimal chemical enhancement effects: Test case of tyrosine. J Raman Spectrosc 2019;50:826-36. [DOI: 10.1002/jrs.5587] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
31 Dos Santos DP, Temperini MLA, Brolo AG. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Acc Chem Res 2019;52:456-64. [PMID: 30668089 DOI: 10.1021/acs.accounts.8b00563] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
32 Majdinasab M, Mitsubayashi K, Marty JL. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends Biotechnol 2019;37:898-915. [PMID: 30777309 DOI: 10.1016/j.tibtech.2019.01.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 12.7] [Reference Citation Analysis]
33 Wali LA, Hasan KK, Alwan AM. Rapid and Highly Efficient Detection of Ultra-low Concentration of Penicillin G by Gold Nanoparticles/Porous Silicon SERS Active Substrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;206:31-6. [DOI: 10.1016/j.saa.2018.07.103] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
34 Qi H, Chen H, Wang Y, Jiang L. Detection of ethyl carbamate in liquors using surface-enhanced Raman spectroscopy. R Soc Open Sci 2018;5:181539. [PMID: 30662756 DOI: 10.1098/rsos.181539] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
35 Zhang X, Salcedo WJ, Rahman MM, Brolo AG. Surface-enhanced Raman scattering from bowtie nanoaperture arrays. Surface Science 2018;676:39-45. [DOI: 10.1016/j.susc.2018.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
36 Wang S, Wang Z, Hao C, Peijnenburg WJGM. DFT/TDDFT insights into effects of dissociation and metal complexation on photochemical behavior of enrofloxacin in water. Environ Sci Pollut Res 2018;25:30609-16. [DOI: 10.1007/s11356-018-3032-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wang Q, Zhao W. Optical methods of antibiotic residues detections: A comprehensive review. Sensors and Actuators B: Chemical 2018;269:238-56. [DOI: 10.1016/j.snb.2018.04.097] [Cited by in Crossref: 59] [Cited by in F6Publishing: 68] [Article Influence: 14.8] [Reference Citation Analysis]
38 Yang L, Peng Y, Yang Y, Liu J, Li Z, Ma Y, Zhang Z, Wei Y, Li S, Huang Z, Long NV. Green and Sensitive Flexible Semiconductor SERS Substrates: Hydrogenated Black TiO 2 Nanowires. ACS Appl Nano Mater 2018;1:4516-27. [DOI: 10.1021/acsanm.8b00796] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
39 Huang Q, Wei W, Wang L, Chen H, Li T, Zhu X, Wu Y. Synthesis of uniform Ag nanosponges and its SERS application. Spectrochim Acta A Mol Biomol Spectrosc 2018;201:300-5. [PMID: 29763823 DOI: 10.1016/j.saa.2018.05.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
40 Xu D, Yang W, Zhang S, Chen J. High surface roughness gold nanoparticle/centimeter level silver nanowire heterostructure detectors for SERS application. Sensors and Actuators A: Physical 2018;279:457-61. [DOI: 10.1016/j.sna.2018.06.053] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
41 Etezadi D, Warner JB 4th, Lashuel HA, Altug H. Real-Time In Situ Secondary Structure Analysis of Protein Monolayer with Mid-Infrared Plasmonic Nanoantennas. ACS Sens 2018;3:1109-17. [PMID: 29845861 DOI: 10.1021/acssensors.8b00115] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
42 Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. Biosensors (Basel) 2018;8:E35. [PMID: 29614784 DOI: 10.3390/bios8020035] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 12.3] [Reference Citation Analysis]
43 Wu Y, Yu W, Yang B, Li P. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy. Analyst 2018;143:2363-8. [DOI: 10.1039/c8an00540k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
44 de Albuquerque CDL, Sobral-Filho RG, Poppi RJ, Brolo AG. Digital Protocol for Chemical Analysis at Ultralow Concentrations by Surface-Enhanced Raman Scattering. Anal Chem 2018;90:1248-54. [PMID: 29235850 DOI: 10.1021/acs.analchem.7b03968] [Cited by in Crossref: 33] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]
45 Kiefl EJ, Kiefl RF, dos Santos DP, Brolo AG. Evaluation of Surface-Enhanced Raman Spectroscopy Substrates from Single-Molecule Statistics. J Phys Chem C 2017;121:25487-93. [DOI: 10.1021/acs.jpcc.7b08691] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]