BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 2012;750:16-27. [PMID: 23062426 DOI: 10.1016/j.aca.2012.03.043] [Cited by in Crossref: 342] [Cited by in F6Publishing: 177] [Article Influence: 34.2] [Reference Citation Analysis]
Number Citing Articles
1 Li Z, Li G, Yan W, Lin L. Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy. Infrared Physics & Technology 2014;67:574-82. [DOI: 10.1016/j.infrared.2014.09.040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 3.1] [Reference Citation Analysis]
2 Tang WH, Ho WH, Chen YJ. Data assimilation and multisource decision-making in systems biology based on unobtrusive Internet-of-Things devices. Biomed Eng Online 2018;17:147. [PMID: 30396337 DOI: 10.1186/s12938-018-0574-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
3 Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021;178:113007. [PMID: 33556807 DOI: 10.1016/j.bios.2021.113007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
4 Kamusheva M, Tachkov K, Dimitrova M, Mitkova Z, García-Sáez G, Hernando ME, Goettsch W, Petrova G. A Systematic Review of Collective Evidences Investigating the Effect of Diabetes Monitoring Systems and Their Application in Health Care. Front Endocrinol (Lausanne) 2021;12:636959. [PMID: 33796074 DOI: 10.3389/fendo.2021.636959] [Reference Citation Analysis]
5 Quondamatteo F. Skin and diabetes mellitus: what do we know? Cell Tissue Res 2014;355:1-21. [PMID: 24318789 DOI: 10.1007/s00441-013-1751-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
6 Caduff A, Ben Ishai P, Feldman Y. Continuous noninvasive glucose monitoring; water as a relevant marker of glucose uptake in vivo. Biophys Rev 2019;11:1017-35. [PMID: 31741172 DOI: 10.1007/s12551-019-00601-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
7 Geng Z, Tang F, Ding Y, Li S, Wang X. Noninvasive Continuous Glucose Monitoring Using a Multisensor-Based Glucometer and Time Series Analysis. Sci Rep 2017;7:12650. [PMID: 28978974 DOI: 10.1038/s41598-017-13018-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
8 Huang J, Lai JHC, Han X, Chen Z, Xiao P, Liu Y, Chen L, Xu J, Chan KWY. Sensitivity schemes for dynamic glucose-enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3 T. NMR Biomed 2021;:e4640. [PMID: 34750891 DOI: 10.1002/nbm.4640] [Reference Citation Analysis]
9 Greene J, Louis J, Korostynska O, Mason A. State-of-the-Art Methods for Skeletal Muscle Glycogen Analysis in Athletes-The Need for Novel Non-Invasive Techniques. Biosensors (Basel) 2017;7:E11. [PMID: 28241495 DOI: 10.3390/bios7010011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
10 Dominguez RB, Orozco MA, Chávez G, Márquez-Lucero A. The Evaluation of a Low-Cost Colorimeter for Glucose Detection in Salivary Samples. Sensors (Basel) 2017;17:E2495. [PMID: 29104212 DOI: 10.3390/s17112495] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
11 Luo J, Luo P, Xie M, Du K, Zhao B, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosensors and Bioelectronics 2013;49:512-8. [DOI: 10.1016/j.bios.2013.05.021] [Cited by in Crossref: 65] [Cited by in F6Publishing: 44] [Article Influence: 7.2] [Reference Citation Analysis]
12 El-Safty SA, Shenashen MA. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020;5:100044. [PMID: 32181446 DOI: 10.1016/j.mtbio.2020.100044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. Prog Mater Sci 2019;106:100589. [PMID: 32189815 DOI: 10.1016/j.pmatsci.2019.100589] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 11.7] [Reference Citation Analysis]
14 Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors (Basel) 2020;20:E6925. [PMID: 33291519 DOI: 10.3390/s20236925] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
15 Chen Y, Xie T, Ye M, Lai Q, Wang Y, Xu Y, Chen W, Zheng W, Feng S, Huang Y. Combination of pathological and spectroscopic characterization to promote diagnosis of retinal pigment epithelium-Bruch's membrane complex in a diabetic rat model. Biomed Opt Express 2021;12:2221-35. [PMID: 33996225 DOI: 10.1364/BOE.419716] [Reference Citation Analysis]
16 Bruen D, Delaney C, Florea L, Diamond D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors (Basel). 2017;17:E1866. [PMID: 28805693 DOI: 10.3390/s17081866] [Cited by in Crossref: 300] [Cited by in F6Publishing: 168] [Article Influence: 60.0] [Reference Citation Analysis]
17 Li D, Xu Q, Liu Y, Wang R, Xu K, Yu H. A high-accuracy measurement method of glucose concentration in interstitial fluid based on microdialysis. Meas Sci Technol 2017;28:115701. [DOI: 10.1088/1361-6501/aa87e4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
18 Boselli L, Pomili T, Donati P, Pompa PP. Nanosensors for Visual Detection of Glucose in Biofluids: Are We Ready for Instrument-Free Home-Testing? Materials (Basel) 2021;14:1978. [PMID: 33920934 DOI: 10.3390/ma14081978] [Reference Citation Analysis]
19 Guo X, Mandelis A, Zinman B. Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry. Biomed Opt Express 2012;3:3012-21. [PMID: 23162736 DOI: 10.1364/BOE.3.003012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
20 Zhao S, Tao W, He Q, Zhao H, Yang H. Glucose solution determination based on liquid photoacoustic resonance. Appl Opt 2017;56:193-9. [PMID: 28085850 DOI: 10.1364/AO.56.000193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
21 Malasinghe LP, Ramzan N, Dahal K. Remote patient monitoring: a comprehensive study. J Ambient Intell Human Comput 2019;10:57-76. [DOI: 10.1007/s12652-017-0598-x] [Cited by in Crossref: 100] [Cited by in F6Publishing: 7] [Article Influence: 20.0] [Reference Citation Analysis]
22 Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015;14:45-57. [PMID: 25430866 DOI: 10.1038/nrd4477] [Cited by in Crossref: 300] [Cited by in F6Publishing: 247] [Article Influence: 37.5] [Reference Citation Analysis]
23 Olejnik A, Siuzdak K, Karczewski J, Grochowska K. A Flexible Nafion Coated Enzyme‐free Glucose Sensor Based on Au‐dimpled Ti Structures. Electroanalysis 2019;32:323-32. [DOI: 10.1002/elan.201900455] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
24 Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Reference Citation Analysis]
25 Jia M, Wu Q, Li H, Zhang Y, Guan Y, Feng L. The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine. Biosensors and Bioelectronics 2015;74:1029-37. [DOI: 10.1016/j.bios.2015.07.072] [Cited by in Crossref: 79] [Cited by in F6Publishing: 57] [Article Influence: 11.3] [Reference Citation Analysis]
26 Yokus BMA, Daniele MA. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens Bioelectron 2021;184:113249. [PMID: 33895689 DOI: 10.1016/j.bios.2021.113249] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Komkova MA, Eliseev AA, Poyarkov AA, Daboss EV, Evdokimov PV, Eliseev AA, Karyakin AA. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens Bioelectron 2022;202:113970. [PMID: 35032921 DOI: 10.1016/j.bios.2022.113970] [Reference Citation Analysis]
28 Ralbovsky NM, Lednev IK. Vibrational Spectroscopy for Detection of Diabetes: A Review. Appl Spectrosc 2021;75:929-46. [PMID: 33988040 DOI: 10.1177/00037028211019130] [Reference Citation Analysis]
29 Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, Campbell AS, Mercier PP, Wang J. Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. Adv Sci (Weinh) 2018;5:1800880. [PMID: 30356971 DOI: 10.1002/advs.201800880] [Cited by in Crossref: 163] [Cited by in F6Publishing: 120] [Article Influence: 40.8] [Reference Citation Analysis]
30 Beganović A, Beć KB, Grabska J, Stanzl MT, Brunner ME, Huck CW. Vibrational coupling to hydration shell - Mechanism to performance enhancement of qualitative analysis in NIR spectroscopy of carbohydrates in aqueous environment. Spectrochim Acta A Mol Biomol Spectrosc 2020;237:118359. [PMID: 32413729 DOI: 10.1016/j.saa.2020.118359] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
31 Pickup JC. Banting Memorial Lecture 2014 Technology and diabetes care: appropriate and personalized. Diabet Med 2015;32:3-13. [DOI: 10.1111/dme.12613] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
32 Hadar E, Chen R, Toledano Y, Tenenbaum-Gavish K, Atzmon Y, Hod M. Noninvasive, continuous, real-time glucose measurements compared to reference laboratory venous plasma glucose values. J Matern Fetal Neonatal Med 2019;32:3393-400. [PMID: 29635953 DOI: 10.1080/14767058.2018.1463987] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Xiao X, Peng S, Wang C, Cheng D, Li N, Dong Y, Li Q, Wei D, Liu P, Xie Z, Qu D, Li X. Metal/metal oxide@carbon composites derived from bimetallic Cu/Ni-based MOF and their electrocatalytic performance for glucose sensing. Journal of Electroanalytical Chemistry 2019;841:94-100. [DOI: 10.1016/j.jelechem.2019.04.038] [Cited by in Crossref: 35] [Cited by in F6Publishing: 12] [Article Influence: 11.7] [Reference Citation Analysis]
34 Sun K, Ding Z, Zhang J, Chen H, Qin Y, Xu S, Wu C, Yu J, Chiu DT. Enhancing the Long-Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Adv Healthc Mater 2021;10:e2001019. [PMID: 33094566 DOI: 10.1002/adhm.202001019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Fridman GY, Tang H, Feller-kopman D, Hong Y. MouthLab: A Tricorder Concept Optimized for Rapid Medical Assessment. Ann Biomed Eng 2015;43:2175-84. [DOI: 10.1007/s10439-015-1247-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Guan W, Liu M, Zhang C. Electrochemiluminescence detection in microfluidic cloth-based analytical devices. Biosensors and Bioelectronics 2016;75:247-53. [DOI: 10.1016/j.bios.2015.08.023] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 7.8] [Reference Citation Analysis]
37 Ndebele N, Mack J, Nyokong T. A 3,5-DistyrylBODIPY Dye Functionalized with Boronic Acid Groups for Direct Electrochemical Glucose Sensing. Electroanalysis 2019;31:137-45. [DOI: 10.1002/elan.201800651] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
38 Vashist SK, Schneider EM, Luong JH. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management. Diagnostics (Basel) 2014;4:104-28. [PMID: 26852680 DOI: 10.3390/diagnostics4030104] [Cited by in Crossref: 139] [Cited by in F6Publishing: 72] [Article Influence: 17.4] [Reference Citation Analysis]
39 Aloraefy M, Pfefer TJ, Ramella-Roman JC, Sapsford KE. In vitro evaluation of fluorescence glucose biosensor response. Sensors (Basel) 2014;14:12127-48. [PMID: 25006996 DOI: 10.3390/s140712127] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
40 Chen LS, Singh RJ. Niche point-of-care endocrine testing - Reviews of intraoperative parathyroid hormone and cortisol monitoring. Crit Rev Clin Lab Sci 2018;55:115-28. [PMID: 29357735 DOI: 10.1080/10408363.2018.1425975] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Karyakin AA, Nikulina SV, Vokhmyanina DV, Karyakina EE, Anaev EK, Chuchalin AG. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochemistry Communications 2017;83:81-4. [DOI: 10.1016/j.elecom.2017.09.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
42 Šťovíčková L, Tatarkovič M, Logerová H, Vavřinec J, Setnička V. Identification of spectral biomarkers for type 1 diabetes mellitus using the combination of chiroptical and vibrational spectroscopy. Analyst 2015;140:2266-72. [DOI: 10.1039/c4an01874e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 1.9] [Reference Citation Analysis]
43 Nguyen ND, Nguyen TV, Chu AD, Tran HV, Tran LT, Huynh CD. A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose. Arabian Journal of Chemistry 2018;11:1134-43. [DOI: 10.1016/j.arabjc.2017.12.035] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
44 Liu Q, Liu Y, Wu F, Cao X, Li Z, Alharbi M, Abbas AN, Amer MR, Zhou C. Highly Sensitive and Wearable In 2 O 3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. ACS Nano 2018;12:1170-8. [DOI: 10.1021/acsnano.7b06823] [Cited by in Crossref: 99] [Cited by in F6Publishing: 54] [Article Influence: 24.8] [Reference Citation Analysis]
45 Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends in Biotechnology 2014;32:363-71. [DOI: 10.1016/j.tibtech.2014.04.005] [Cited by in Crossref: 623] [Cited by in F6Publishing: 422] [Article Influence: 77.9] [Reference Citation Analysis]
46 De Pascali C, Francioso L, Giampetruzzi L, Rescio G, Signore MA, Leone A, Siciliano P. Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients. Sensors (Basel) 2021;21:1847. [PMID: 33800949 DOI: 10.3390/s21051847] [Reference Citation Analysis]
47 Romo-cárdenas G, Avilés-rodríguez G, Sánchez-lópez JDD, Cosío-león M, Luque P, Gómez-gutiérrez C, Nieto-hipólito JI, Vázquez-briseño M, Navarro-cota CX. Nyquist-Shannon theorem application for Savitzky-Golay smoothing window size parameter determination in bio-optical signals. Results in Physics 2018;11:17-22. [DOI: 10.1016/j.rinp.2018.08.033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 De la Paz E, Barfidokht A, Rios S, Brown C, Chao E, Wang J. Extended Noninvasive Glucose Monitoring in the Interstitial Fluid Using an Epidermal Biosensing Patch. Anal Chem 2021;93:12767-75. [PMID: 34477377 DOI: 10.1021/acs.analchem.1c02887] [Reference Citation Analysis]
49 Zhang P, Wang Y, Kuang C, Li S, Liu X. Measuring roll angle displacement based on ellipticity with high resolution and large range. Optics & Laser Technology 2015;65:126-30. [DOI: 10.1016/j.optlastec.2014.06.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
50 Ghazaryan A, Ovsepian SV, Ntziachristos V. Extended Near-Infrared Optoacoustic Spectrometry for Sensing Physiological Concentrations of Glucose. Front Endocrinol (Lausanne) 2018;9:112. [PMID: 29619009 DOI: 10.3389/fendo.2018.00112] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
51 Sturrock M, Hao W, Schwartzbaum J, Rempala GA. A mathematical model of pre-diagnostic glioma growth. J Theor Biol 2015;380:299-308. [PMID: 26073722 DOI: 10.1016/j.jtbi.2015.06.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
52 Kim JJ, Allison LK, Andrew TL. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci Adv 2019;5:eaaw0463. [PMID: 30899786 DOI: 10.1126/sciadv.aaw0463] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 8.3] [Reference Citation Analysis]
53 Chen D, Wang C, Chen W, Chen Y, Zhang JX. PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing. Biosens Bioelectron 2015;74:1047-52. [PMID: 26276540 DOI: 10.1016/j.bios.2015.07.036] [Cited by in Crossref: 57] [Cited by in F6Publishing: 37] [Article Influence: 8.1] [Reference Citation Analysis]
54 Aggidis AG, Newman JD, Aggidis GA. Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosensors and Bioelectronics 2015;74:243-62. [DOI: 10.1016/j.bios.2015.05.071] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
55 Esmaeeli A, Ghaffarinejad A, Zahedi A, Vahidi O. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor. Sensors and Actuators B: Chemical 2018;266:294-301. [DOI: 10.1016/j.snb.2018.03.132] [Cited by in Crossref: 51] [Cited by in F6Publishing: 24] [Article Influence: 12.8] [Reference Citation Analysis]
56 Huang H, Li T, Jiang M, Wei C, Ma S, Chen D, Tong W, Huang X. Construction of flexible enzymatic electrode based on gradient hollow fiber membrane and multi-wall carbon tubes meshes. Biosensors and Bioelectronics 2020;152:112001. [DOI: 10.1016/j.bios.2019.112001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
57 Jintao X, Liming Y, Yufei L, Chunyan L, Han C. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2017;179:250-4. [PMID: 28259064 DOI: 10.1016/j.saa.2017.02.032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
58 Jiang J, Zhang K, Qin J, Min X, Zhang L, Zou D, Xu K. Quantitative assessment of the effect of cholesterol on blood glucose measurement using near infrared spectroscopy and a method for error reduction: EFFECT OF CHOLESTEROL ON BLOOD GLUCOSE MEASUREMENT. Lasers Surg Med 2015;47:88-97. [DOI: 10.1002/lsm.22317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Das S, Pal S, Mitra M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J Med Biol Eng 2016;36:605-24. [PMID: 27853412 DOI: 10.1007/s40846-016-0164-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 26] [Article Influence: 8.2] [Reference Citation Analysis]
60 Chen D, Li H, Su X, Li N, Wang Y, Stevenson AC, Hu R, Li G. A wireless-electrodeless quartz crystal microbalance method for non-enzymatic glucose monitoring. Sensors and Actuators B: Chemical 2019;287:35-41. [DOI: 10.1016/j.snb.2019.02.035] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
61 Zhai Q, Gong S, Wang Y, Lyu Q, Liu Y, Ling Y, Wang J, Simon GP, Cheng W. Enokitake Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS Appl Mater Interfaces 2019;11:9724-9. [DOI: 10.1021/acsami.8b19383] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 15.7] [Reference Citation Analysis]
62 Scholtes-Timmerman MJ, Bijlsma S, Fokkert MJ, Slingerland R, van Veen SJ. Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring. J Diabetes Sci Technol 2014;8:974-9. [PMID: 25037192 DOI: 10.1177/1932296814543104] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
63 Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y, Ni Q, Zhang F, Zhou Z, Wang J, Niu G, Ma Y, Fu L, Chen X. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun 2017;8:1777. [PMID: 29176623 DOI: 10.1038/s41467-017-01764-1] [Cited by in Crossref: 71] [Cited by in F6Publishing: 58] [Article Influence: 14.2] [Reference Citation Analysis]
64 Wang J, Chou T, Chen L, Ho K. Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosensors and Bioelectronics 2015;63:317-24. [DOI: 10.1016/j.bios.2014.07.058] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
65 Burklund A, Tadimety A, Nie Y, Hao N, Zhang JXJ. Advances in diagnostic microfluidics. Adv Clin Chem 2020;95:1-72. [PMID: 32122520 DOI: 10.1016/bs.acc.2019.08.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
66 Rajendran R, Rayman G. Point-of-care blood glucose testing for diabetes care in hospitalized patients: an evidence-based review. J Diabetes Sci Technol 2014;8:1081-90. [PMID: 25355711 DOI: 10.1177/1932296814538940] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
67 Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. Sensors (Basel) 2018;18:E1440. [PMID: 29734744 DOI: 10.3390/s18051440] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
68 Li N, Zang H, Sun H, Jiao X, Wang K, Liu TC, Meng Y. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels. Molecules 2019;24:E1500. [PMID: 30999565 DOI: 10.3390/molecules24081500] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
69 Gao Y, Chen D, Hou X, Zhang Y, Yi S, Ji H, Wang Y, Yin L, Sun J. Microwave-assisted synthesis of hierarchically porous Co3O4/rGO nanocomposite for low-temperature acetone detection. J Colloid Interface Sci 2021;594:690-701. [PMID: 33780772 DOI: 10.1016/j.jcis.2021.03.041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
70 Bahartan K, Horman K, Gal A, Drexler A, Mayzel Y, Lin T. Assessing the Performance of a Noninvasive Glucose Monitor in People with Type 2 Diabetes with Different Demographic Profiles. J Diabetes Res 2017;2017:4393497. [PMID: 29527535 DOI: 10.1155/2017/4393497] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
71 Faustino RS, Arrell DK, Folmes CD, Terzic A, Perez-Terzic C. Stem cell systems informatics for advanced clinical biodiagnostics: tracing molecular signatures from bench to bedside. Croat Med J 2013;54:319-29. [PMID: 23986272 DOI: 10.3325//cmj.2013.54.319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
72 Chakraborty P, Dhar S, Deka N, Debnath K, Mondal SP. Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sensors and Actuators B: Chemical 2020;302:127134. [DOI: 10.1016/j.snb.2019.127134] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 11.5] [Reference Citation Analysis]
73 Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, Khine M, Kim J, Wang J, Kim J. Wearable sensors: modalities, challenges, and prospects. Lab Chip 2018;18:217-48. [PMID: 29182185 DOI: 10.1039/c7lc00914c] [Cited by in Crossref: 361] [Cited by in F6Publishing: 81] [Article Influence: 90.3] [Reference Citation Analysis]
74 Javid B, Fotouhi-Ghazvini F, Zakeri FS. Noninvasive Optical Diagnostic Techniques for Mobile Blood Glucose and Bilirubin Monitoring. J Med Signals Sens 2018;8:125-39. [PMID: 30181961 DOI: 10.4103/jmss.JMSS_8_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017;46:5903-24. [DOI: 10.1039/c7cs00403f] [Cited by in Crossref: 73] [Cited by in F6Publishing: 11] [Article Influence: 14.6] [Reference Citation Analysis]
76 Segman YJ. Device and Method for Noninvasive Glucose Assessment. J Diabetes Sci Technol 2018;12:1159-68. [PMID: 29575926 DOI: 10.1177/1932296818763457] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
77 Singh SP, Mukherjee S, Galindo LH, So PTC, Dasari RR, Khan UZ, Kannan R, Upendran A, Kang JW. Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing. Anal Bioanal Chem 2018;410:6469-75. [PMID: 30046865 DOI: 10.1007/s00216-018-1244-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
78 Sanati A, Esmaeili Y, Bidram E, Shariati L, Rafienia M, Mahshid S, Parlak O. Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today 2022;26:101350. [DOI: 10.1016/j.apmt.2021.101350] [Reference Citation Analysis]
79 Peng X, Yan Y, Liu H. On the use of fiber lasers in non-invasive blood glucose monitoring. Optical Fiber Technology 2022;68:102822. [DOI: 10.1016/j.yofte.2022.102822] [Reference Citation Analysis]
80 Lundsgaard-Nielsen SM, Pors A, Banke SO, Henriksen JE, Hepp DK, Weber A. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS One 2018;13:e0197134. [PMID: 29750797 DOI: 10.1371/journal.pone.0197134] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
81 Shao Y, Shen M, Zhou Y, Cui X, Li L, Zhang Y. Nanogenerator-based self-powered sensors for data collection. Beilstein J Nanotechnol 2021;12:680-93. [PMID: 34327113 DOI: 10.3762/bjnano.12.54] [Reference Citation Analysis]
82 Lee SH, Cho YC, Bin Choy Y. Noninvasive Self-diagnostic Device for Tear Collection and Glucose Measurement. Sci Rep 2019;9:4747. [PMID: 30894582 DOI: 10.1038/s41598-019-41066-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
83 Lee T, Kim I, Cheong DY, Roh S, Jung HG, Lee SW, Kim HS, Yoon DS, Hong Y, Lee G. Selective colorimetric urine glucose detection by paper sensor functionalized with polyaniline nanoparticles and cell membrane. Anal Chim Acta 2021;1158:338387. [PMID: 33863418 DOI: 10.1016/j.aca.2021.338387] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
84 Jeong JW, Arnob MM, Baek KM, Lee SY, Shih WC, Jung YS. 3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis. Adv Mater 2016;28:8695-704. [PMID: 27511881 DOI: 10.1002/adma.201602603] [Cited by in Crossref: 117] [Cited by in F6Publishing: 82] [Article Influence: 19.5] [Reference Citation Analysis]
85 Zilberstein G, Zilberstein R, Maor U, Righetti PG. Noninvasive wearable sensor for indirect glucometry. ELECTROPHORESIS 2018;39:2344-50. [DOI: 10.1002/elps.201700424] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
86 Munje RD, Muthukumar S, Prasad S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics. Sensors and Actuators B: Chemical 2017;238:482-90. [DOI: 10.1016/j.snb.2016.07.088] [Cited by in Crossref: 89] [Cited by in F6Publishing: 41] [Article Influence: 17.8] [Reference Citation Analysis]
87 Barman I, Dingari NC, Singh GP, Soares JS, Dasari RR, Smulko JM. Investigation of noise-induced instabilities in quantitative biological spectroscopy and its implications for noninvasive glucose monitoring. Anal Chem 2012;84:8149-56. [PMID: 22950485 DOI: 10.1021/ac301200n] [Cited by in Crossref: 37] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
88 Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020;49:7671-709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Cited by in Crossref: 75] [Cited by in F6Publishing: 25] [Article Influence: 37.5] [Reference Citation Analysis]
89 Sbrignadello S, Pacini G, Tura A. Determination of Glucose Levels during Dialysis Treatment: Different Sensors and Technologies. Journal of Sensors 2016;2016:1-8. [DOI: 10.1155/2016/8943095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
90 Sim JY, Ahn CG, Jeong EJ, Kim BK. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products. Sci Rep 2018;8:1059. [PMID: 29348411 DOI: 10.1038/s41598-018-19340-y] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 10.8] [Reference Citation Analysis]
91 Cano Perez JL, Gutiérrez-Gutiérrez J, Perezcampos Mayoral C, Pérez-Campos EL, Del Socorro Pina Canseco M, Tepech Carrillo L, Mayoral LP, Vargas Treviño M, Apreza EL, Rojas Laguna R. Fiber Optic Sensors: A Review for Glucose Measurement. Biosensors (Basel) 2021;11:61. [PMID: 33669087 DOI: 10.3390/bios11030061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
92 Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH. Biocompatible materials for continuous glucose monitoring devices. Chem Rev 2013;113:2528-49. [PMID: 23387395 DOI: 10.1021/cr300387j] [Cited by in Crossref: 195] [Cited by in F6Publishing: 151] [Article Influence: 21.7] [Reference Citation Analysis]
93 Santana-Jiménez LA, Márquez-Lucero A, Osuna V, Estrada-Moreno I, Dominguez RB. Naked-Eye Detection of Glucose in Saliva with Bienzymatic Paper-Based Sensor. Sensors (Basel) 2018;18:E1071. [PMID: 29614003 DOI: 10.3390/s18041071] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
94 Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A. A review of optical methods for continuous glucose monitoring. Applied Spectroscopy Reviews 2019;54:543-72. [DOI: 10.1080/05704928.2018.1486324] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
95 Guo X, Mandelis A, Zinman B. Applications of ultrasensitive wavelength-modulated differential photothermal radiometry to noninvasive glucose detection in blood serum: Application of MW-DPTR to nonivasive glucose detection in blood serum. J Biophoton 2013;6:911-9. [DOI: 10.1002/jbio.201200103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
96 Cheng J, Ji Z, Li M, Dai J. Study of a noninvasive blood glucose detection model using the near-infrared light based on SA-NARX. Biomedical Signal Processing and Control 2020;56:101694. [DOI: 10.1016/j.bspc.2019.101694] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
97 França TC, Dantas BB, Viana KM, Santos PTA, Costa ACFDM. Preparation and Characterization of Hybrid Fe<sub>3</sub>O<sub>4</sub>/APTES for Immobilization of GOX. MSF 2014;798-799:460-5. [DOI: 10.4028/www.scientific.net/msf.798-799.460] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
98 Abhari S, Niakan Kalhori SR, Ebrahimi M, Hasannejadasl H, Garavand A. Artificial Intelligence Applications in Type 2 Diabetes Mellitus Care: Focus on Machine Learning Methods. Healthc Inform Res 2019;25:248-61. [PMID: 31777668 DOI: 10.4258/hir.2019.25.4.248] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
99 John P, Vasa NJ, Unni SN, Rao SR. Glucose sensing in oral mucosa simulating phantom using differential absorption based frequency domain low-coherence interferometry. Appl Opt 2017;56:8257. [DOI: 10.1364/ao.56.008257] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
100 Xuan X, Yoon HS, Park JY. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron 2018;109:75-82. [PMID: 29529511 DOI: 10.1016/j.bios.2018.02.054] [Cited by in Crossref: 137] [Cited by in F6Publishing: 90] [Article Influence: 34.3] [Reference Citation Analysis]
101 Sadravi S, Honarasa F. Spectrophotometric nanomolar determination of glucose by using C-dots/$$\hbox {Fe}_{3}\hbox {O}_{4}$$ magnetic nanozyme. J Chem Sci 2019;131. [DOI: 10.1007/s12039-019-1629-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Zhao Y, Zhai Q, Dong D, An T, Gong S, Shi Q, Cheng W. Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Anal Chem 2019;91:6569-76. [PMID: 31006229 DOI: 10.1021/acs.analchem.9b00152] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
103 Teichert JF, Mazunin D, Bode JW. Chemical Sensing of Polyols with Shapeshifting Boronic Acids As a Self-Contained Sensor Array. J Am Chem Soc 2013;135:11314-21. [DOI: 10.1021/ja404981q] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 7.1] [Reference Citation Analysis]
104 Karpova EV, Karyakin AA. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry 2020;23:16-20. [DOI: 10.1016/j.coelec.2020.02.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
105 Yu LQ, Su FH, Ma MY, Lv YK. Metal-organic frameworks for the sorption of acetone and isopropanol in exhaled breath of diabetics prior to quantitation by gas chromatography. Mikrochim Acta 2019;186:588. [PMID: 31367797 DOI: 10.1007/s00604-019-3713-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
106 Saleh G, Alkaabi F, Al-Hajhouj N, Al-Towailib F, Al-Hamza S. Design of non-invasive glucose meter using near-infrared technique. J Med Eng Technol 2018;42:140-7. [PMID: 29498303 DOI: 10.1080/03091902.2018.1439114] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
107 Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021;15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 15.0] [Reference Citation Analysis]
108 Kricka LJ, Polsky TG, Park JY, Fortina P. The future of laboratory medicine - a 2014 perspective. Clin Chim Acta 2015;438:284-303. [PMID: 25219903 DOI: 10.1016/j.cca.2014.09.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
109 Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnology Advances 2016;34:139-60. [DOI: 10.1016/j.biotechadv.2016.01.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 35] [Article Influence: 9.3] [Reference Citation Analysis]
110 Xue J, Chen H, Xiong D, Huang G, Ai H, Liang Y, Yan X, Gan Y, Chen C, Chao R, Ye L. Noninvasive measurement of glucose in artificial plasma with near-infrared and Raman spectroscopy. Appl Spectrosc 2014;68:428-33. [PMID: 24694699 DOI: 10.1366/13-07250] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
111 Sanai F, Sahid AS, Huvanandana J, Spoa S, Boyle LH, Hribar J, Wang DT, Kwan B, Colagiuri S, Cox SJ, Telfer TJ. Evaluation of a Continuous Blood Glucose Monitor: A Novel and Non-Invasive Wearable Using Bioimpedance Technology. J Diabetes Sci Technol 2021;:19322968211054110. [PMID: 34711074 DOI: 10.1177/19322968211054110] [Reference Citation Analysis]
112 Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal Chem 2019;91:3778-83. [DOI: 10.1021/acs.analchem.8b05928] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 19.3] [Reference Citation Analysis]
113 Thakarda J, Dave P, Bhowmik S, Kubavat J, Maity P. 4-Iodophenylboronic Acid Stabilized Gold Cluster as a New Fluorescent Chemosensor for Saccharides Based on Excimer Emission Quenching. J Fluoresc 2021;31:447-54. [PMID: 33417107 DOI: 10.1007/s10895-020-02672-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Dasa MK, Markos C, Janting J, Bang O. Multispectral photoacoustic sensing for accurate glucose monitoring using a supercontinuum laser. J Opt Soc Am B 2019;36:A61. [DOI: 10.1364/josab.36.000a61] [Cited by in Crossref: 14] [Article Influence: 3.5] [Reference Citation Analysis]
115 Bandodkar AJ, Imani S, Nuñez-Flores R, Kumar R, Wang C, Mohan AMV, Wang J, Mercier PP. Re-usable electrochemical glucose sensors integrated into a smartphone platform. Biosens Bioelectron 2018;101:181-7. [PMID: 29073519 DOI: 10.1016/j.bios.2017.10.019] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 9.8] [Reference Citation Analysis]
116 Lu M, Su L, Luo Y, Ma X, Duan Z, Zhu D, Xiong Y. Gold nanoparticle etching induced by an enzymatic-like reaction for the colorimetric detection of hydrogen peroxide and glucose. Anal Methods 2019;11:4829-34. [DOI: 10.1039/c9ay01599j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
117 Chen Y, Zhang Y, Liang Z, Cao Y, Han Z, Feng X. Flexible inorganic bioelectronics. npj Flex Electron 2020;4. [DOI: 10.1038/s41528-020-0065-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 17.0] [Reference Citation Analysis]
118 Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I, Sammali E, Peviani M, Dell'Oro V, Colombo C, Morbidelli M, Forloni G, Perale G, Moscatelli D, Veglianese P. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release 2014;174:15-26. [PMID: 24225226 DOI: 10.1016/j.jconrel.2013.11.001] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
119 Sun K, Liu S, Liu J, Ding Z, Jiang Y, Zhang J, Chen H, Yu J, Wu C, Chiu DT. Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Anal Chem 2021;93:2359-66. [DOI: 10.1021/acs.analchem.0c04223] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
120 Wang Z, Yang Z, Dong T. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors (Basel) 2017;17:E341. [PMID: 28208620 DOI: 10.3390/s17020341] [Cited by in Crossref: 117] [Cited by in F6Publishing: 48] [Article Influence: 23.4] [Reference Citation Analysis]
121 Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017;46:366-88. [PMID: 27841420 DOI: 10.1039/c6cs00206d] [Cited by in Crossref: 195] [Cited by in F6Publishing: 39] [Article Influence: 48.8] [Reference Citation Analysis]
122 Elvebakk O, Tronstad C, Birkeland KI, Jenssen TG, Bjørgaas MR, Frøslie KF, Godang K, Kalvøy H, Martinsen ØG, Gulseth HL. Evaluation of Hypoglycaemia with Non-Invasive Sensors in People with Type 1 Diabetes and Impaired Awareness of Hypoglycaemia. Sci Rep 2018;8:14722. [PMID: 30283093 DOI: 10.1038/s41598-018-33189-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
123 Gao Q, Zhang J, Xie Z, Omisore O, Zhang J, Wang L, Li H. Highly stretchable sensors for wearable biomedical applications. J Mater Sci 2019;54:5187-223. [DOI: 10.1007/s10853-018-3171-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
124 Romo-cárdenas G, Sánchez-lópez JDD, Luque P, Cosío-león M, Nieto-hipólito JI, Vázquez-briseño M. Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements. Results in Physics 2017;7:1221-2. [DOI: 10.1016/j.rinp.2017.03.017] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
125 Arakawa T, Kuroki Y, Nitta H, Chouhan P, Toma K, Sawada S, Takeuchi S, Sekita T, Akiyoshi K, Minakuchi S, Mitsubayashi K. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosens Bioelectron 2016;84:106-11. [PMID: 26725934 DOI: 10.1016/j.bios.2015.12.014] [Cited by in Crossref: 125] [Cited by in F6Publishing: 90] [Article Influence: 17.9] [Reference Citation Analysis]
126 Moultrie F, Shriver A, Hartley C, Wilkinson D, Ewer AK, Rogers R, Adams E, Slater R. A universal right to pain relief: balancing the risks in a vulnerable patient population. The Lancet Child & Adolescent Health 2019;3:62-4. [DOI: 10.1016/s2352-4642(18)30269-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, Tian J, Khanh DP, Liu L, Chen P, Xu C. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Adv Mater 2017;29. [PMID: 28714117 DOI: 10.1002/adma.201702243] [Cited by in Crossref: 123] [Cited by in F6Publishing: 98] [Article Influence: 24.6] [Reference Citation Analysis]
128 La Count TD, Jajack A, Heikenfeld J, Kasting GB. Modeling Glucose Transport From Systemic Circulation to Sweat. Journal of Pharmaceutical Sciences 2019;108:364-71. [DOI: 10.1016/j.xphs.2018.09.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
129 Kim S, Cho J, Ku B, Jun M, Kim G, Yoo H, Park S, Kim JU. Variability of electrochemical skin conductance for screening diabetes mellitus. Biomed Eng Lett 2019;9:267-74. [PMID: 31168431 DOI: 10.1007/s13534-019-00111-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
130 Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release 2014;190:15-28. [PMID: 24747160 DOI: 10.1016/j.jconrel.2014.03.053] [Cited by in Crossref: 247] [Cited by in F6Publishing: 206] [Article Influence: 30.9] [Reference Citation Analysis]
131 Lu S, Lu Y, Jin M, Bao S, Li W, Yu L. Design and fabrication of highly sensitive and stable biochip for glucose biosensing. Applied Surface Science 2017;422:900-4. [DOI: 10.1016/j.apsusc.2017.06.103] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
132 Li J, Koinkar P, Fuchiwaki Y, Yasuzawa M. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring. Biosensors and Bioelectronics 2016;86:90-4. [DOI: 10.1016/j.bios.2016.06.037] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
133 Zanon M, Sparacino G, Facchinetti A, Talary MS, Mueller M, Caduff A, Cobelli C. Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness. Sensors (Basel) 2013;13:7279-95. [PMID: 23736850 DOI: 10.3390/s130607279] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
134 Bietenbeck A, Junker R, Luppa PB. Central Laboratory Service and Point-of-Care Testing in Germany—From Conflicting Notions to Complementary Understandings. Point of Care: The Journal of Near-Patient Testing & Technology 2015;14:1-11. [DOI: 10.1097/poc.0000000000000043] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
135 Bayrakli I, Erdogan YK. Photo-acoustic sensor based on an inexpensive piezoelectric film transducer and an amplitude-stabilized single-mode external cavity diode laser for in vitro measurements of glucose concentration. Optics & Laser Technology 2018;102:180-3. [DOI: 10.1016/j.optlastec.2017.12.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
136 Niu X, Li X, Pan J, He Y, Qiu F, Yan Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv 2016;6:84893-905. [DOI: 10.1039/c6ra12506a] [Cited by in Crossref: 129] [Cited by in F6Publishing: 3] [Article Influence: 21.5] [Reference Citation Analysis]
137 Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JH. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends in Biotechnology 2015;33:692-705. [DOI: 10.1016/j.tibtech.2015.09.001] [Cited by in Crossref: 423] [Cited by in F6Publishing: 327] [Article Influence: 60.4] [Reference Citation Analysis]
138 Zhang R, Liu S, Jin H, Luo Y, Zheng Z, Gao F, Zheng Y. Noninvasive Electromagnetic Wave Sensing of Glucose. Sensors (Basel) 2019;19:E1151. [PMID: 30866459 DOI: 10.3390/s19051151] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
139 Yang W, Liao N, Cheng H, Li Y, Bai X, Deng C. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer. AIP Advances 2018;8:035216. [DOI: 10.1063/1.5017169] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
140 Kasahara R, Kino S, Soyama S, Matsuura Y. Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed Opt Express 2018;9:289-302. [PMID: 29359104 DOI: 10.1364/BOE.9.000289] [Cited by in Crossref: 39] [Cited by in F6Publishing: 11] [Article Influence: 7.8] [Reference Citation Analysis]
141 Mccaul M, Glennon T, Diamond D. Challenges and opportunities in wearable technology for biochemical analysis in sweat. Current Opinion in Electrochemistry 2017;3:46-50. [DOI: 10.1016/j.coelec.2017.06.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 6.6] [Reference Citation Analysis]
142 Chen C, Zhao XL, Li ZH, Zhu ZG, Qian SH, Flewitt AJ. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors (Basel) 2017;17:E182. [PMID: 28106820 DOI: 10.3390/s17010182] [Cited by in Crossref: 118] [Cited by in F6Publishing: 78] [Article Influence: 23.6] [Reference Citation Analysis]
143 Mahmud MS, Fang H, Carreiro S, Wang H, Boyer EW. Wearables technology for drug abuse detection: A survey of recent advancement. Smart Health 2019;13:100062. [DOI: 10.1016/j.smhl.2018.09.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
144 Atchudan R, Muthuchamy N, Edison TNJI, Perumal S, Vinodh R, Park KH, Lee YR. An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens Bioelectron 2019;126:160-9. [PMID: 30399518 DOI: 10.1016/j.bios.2018.10.049] [Cited by in Crossref: 69] [Cited by in F6Publishing: 45] [Article Influence: 17.3] [Reference Citation Analysis]
145 Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 2015;87:394-8. [PMID: 25496376 DOI: 10.1021/ac504300n] [Cited by in Crossref: 358] [Cited by in F6Publishing: 258] [Article Influence: 44.8] [Reference Citation Analysis]
146 Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021;10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
147 Hartz J, Yingling L, Powell-Wiley TM. Use of Mobile Health Technology in the Prevention and Management of Diabetes Mellitus. Curr Cardiol Rep 2016;18:130. [PMID: 27826901 DOI: 10.1007/s11886-016-0796-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 5.4] [Reference Citation Analysis]
148 Avari P, Reddy M, Oliver N. Is it possible to constantly and accurately monitor blood sugar levels, in people with Type 1 diabetes, with a discrete device (non‐invasive or invasive)? Diabet Med 2020;37:532-44. [DOI: 10.1111/dme.13942] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
149 Frontino G, Meschi F, Bonfanti R, Rigamonti A, Battaglino R, Favalli V, Bonura C, Ferro G, Chiumello G. Future Perspectives in Glucose Monitoring Sensors. Eur Endocrinol 2013;9:6-11. [PMID: 30349603 DOI: 10.17925/EE.2013.09.01.21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
150 Ménard G, Biais B, Prodhomme D, Ballias P, Petit J, Just D, Rothan C, Rolin D, Gibon Y. High-Throughput Biochemical Phenotyping for Plants. Metabolomics Coming of Age with its Technological Diversity. Elsevier; 2013. pp. 407-39. [DOI: 10.1016/b978-0-12-397922-3.00009-5] [Cited by in Crossref: 7] [Article Influence: 0.8] [Reference Citation Analysis]
151 Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021;26:748. [PMID: 33535493 DOI: 10.3390/molecules26030748] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
152 Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, Barman I. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Acc Chem Res 2017;50:264-72. [PMID: 28071894 DOI: 10.1021/acs.accounts.6b00472] [Cited by in Crossref: 116] [Cited by in F6Publishing: 66] [Article Influence: 23.2] [Reference Citation Analysis]
153 Guk K, Han G, Lim J, Jeong K, Kang T, Lim EK, Jung J. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials (Basel) 2019;9:E813. [PMID: 31146479 DOI: 10.3390/nano9060813] [Cited by in Crossref: 90] [Cited by in F6Publishing: 42] [Article Influence: 30.0] [Reference Citation Analysis]
154 Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, Shin K, Choi SH, Hyeon T, Kim DH. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 2017;3:e1601314. [PMID: 28345030 DOI: 10.1126/sciadv.1601314] [Cited by in Crossref: 475] [Cited by in F6Publishing: 360] [Article Influence: 95.0] [Reference Citation Analysis]
155 [DOI: 10.1117/12.2216652] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
156 Karpova EV, Karyakina EE, Karyakin AA. Wearable non-invasive monitors of diabetes and hypoxia through continuous analysis of sweat. Talanta 2020;215:120922. [DOI: 10.1016/j.talanta.2020.120922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
157 Almalki M, Gray K, Sanchez FM. The use of self-quantification systems for personal health information: big data management activities and prospects. Health Inf Sci Syst 2015;3:S1. [PMID: 26019809 DOI: 10.1186/2047-2501-3-S1-S1] [Cited by in Crossref: 49] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
158 Witkowska Nery E, Kundys M, Jeleń PS, Jönsson-niedziółka M. Electrochemical Glucose Sensing: Is There Still Room for Improvement? Anal Chem 2016;88:11271-82. [DOI: 10.1021/acs.analchem.6b03151] [Cited by in Crossref: 125] [Cited by in F6Publishing: 83] [Article Influence: 20.8] [Reference Citation Analysis]
159 Howsmon D, Bequette BW. Hypo- and Hyperglycemic Alarms: Devices and Algorithms. J Diabetes Sci Technol 2015;9:1126-37. [PMID: 25931581 DOI: 10.1177/1932296815583507] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
160 Lee YS, Son M, Zhbanov A, Jung Y, Jung MH, Eom K, Nam SH, Park J, Yang S. Temperature Correction to Enhance Blood Glucose Monitoring Accuracy Using Electrical Impedance Spectroscopy. Sensors (Basel) 2020;20:E6231. [PMID: 33142877 DOI: 10.3390/s20216231] [Reference Citation Analysis]
161 Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017;3:e1701629. [PMID: 29279864 DOI: 10.1126/sciadv.1701629] [Cited by in Crossref: 158] [Cited by in F6Publishing: 100] [Article Influence: 31.6] [Reference Citation Analysis]
162 Omer AE, Shaker G, Safavi-Naeini S, Kokabi H, Alquié G, Deshours F, Shubair RM. Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Sci Rep 2020;10:15200. [PMID: 32938996 DOI: 10.1038/s41598-020-72114-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
163 Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. Analytica Chimica Acta 2016;929:1-22. [DOI: 10.1016/j.aca.2016.04.055] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
164 He W, Li X, Wang M, Li G, Lin L. Spectral data quality assessment based on variability analysis: application to noninvasive hemoglobin measurement by dynamic spectrum. Anal Methods 2015;7:5565-73. [DOI: 10.1039/c5ay00669d] [Cited by in Crossref: 14] [Article Influence: 2.0] [Reference Citation Analysis]
165 Yu ZF, Pirnstill CW, Coté GL. Dual-modulation, dual-wavelength, optical polarimetry system for glucose monitoring. J Biomed Opt 2016;21:87001. [PMID: 27477078 DOI: 10.1117/1.JBO.21.8.087001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
166 Liu J, Sun S, Shang H, Lai J, Zhang L. Electrochemical Biosensor Based on Bienzyme and Carbon Nanotubes Incorporated into an Os-complex Thin Film for Continuous Glucose Detection in Human Saliva. Electroanalysis 2016;28:2016-21. [DOI: 10.1002/elan.201501179] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
167 Li D, Wang R, Yu H, Li G, Sun Y, Liang W, Xu K. A method for measuring the volume of transdermally extracted interstitial fluid by a three-electrode skin resistance sensor. Sensors (Basel) 2014;14:7084-95. [PMID: 24759111 DOI: 10.3390/s140407084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
168 Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019;48:1465-91. [PMID: 29611861 DOI: 10.1039/c7cs00730b] [Cited by in Crossref: 386] [Cited by in F6Publishing: 92] [Article Influence: 128.7] [Reference Citation Analysis]
169 Imamura A, Zakashansky J, Cho K, Lin L, Carrilho E, Khine M. Stretchable Sensors for Nanomolar Glucose Detection. Adv Mater Technol 2020;5:1900843. [DOI: 10.1002/admt.201900843] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
170 Tronstad C, Elvebakk O, Staal OM, Kalvøy H, Høgetveit JO, Jenssen TG, Birkeland KI, Martinsen ØG. Non-invasive prediction of blood glucose trends during hypoglycemia. Analytica Chimica Acta 2019;1052:37-48. [DOI: 10.1016/j.aca.2018.12.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
171 Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications 2021;125:106973. [DOI: 10.1016/j.elecom.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
172 Hanna J, Bteich M, Tawk Y, Ramadan AH, Dia B, Asadallah FA, Eid A, Kanj R, Costantine J, Eid AA. Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy. Sci Adv 2020;6:eaba5320. [PMID: 32577523 DOI: 10.1126/sciadv.aba5320] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
173 Jin H, Abu-Raya YS, Haick H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv Healthc Mater 2017;6. [PMID: 28371294 DOI: 10.1002/adhm.201700024] [Cited by in Crossref: 128] [Cited by in F6Publishing: 80] [Article Influence: 25.6] [Reference Citation Analysis]
174 Chen H, Tan C, Lin Z, Wu T. The diagnostics of diabetes mellitus based on ensemble modeling and hair/urine element level analysis. Comput Biol Med 2014;50:70-5. [PMID: 24835087 DOI: 10.1016/j.compbiomed.2014.04.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
175 Majors CE, Smith CA, Natoli ME, Kundrod KA, Richards-Kortum R. Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. Lab Chip 2017;17:3351-87. [PMID: 28832061 DOI: 10.1039/c7lc00374a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
176 Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosensors and Bioelectronics 2020;148:111835. [DOI: 10.1016/j.bios.2019.111835] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
177 Cánovas R, Parrilla M, Blondeau P, Andrade FJ. A novel wireless paper-based potentiometric platform for monitoring glucose in blood. Lab Chip 2017;17:2500-7. [DOI: 10.1039/c7lc00339k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 5.2] [Reference Citation Analysis]
178 Ribet F, Stemme G, Roxhed N. Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring. Biosensors and Bioelectronics 2017;90:577-83. [DOI: 10.1016/j.bios.2016.10.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
179 Shaker G, Smith K, Omer AE, Liu S, Csech C, Wadhwa U, Safavi-naeini S, Hughson R. Non-Invasive Monitoring of Glucose Level Changes Utilizing a mm-Wave Radar System: . International Journal of Mobile Human Computer Interaction 2018;10:10-29. [DOI: 10.4018/ijmhci.2018070102] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
180 Guo X, Zhang D, Shojaei-Asanjan K, Sivagurunathan K, Melnikov A, Song P, Mandelis A. Noninvasive in vivo glucose detection in human finger interstitial fluid using wavelength-modulated differential photothermal radiometry. J Biophotonics 2019;12:e201800441. [PMID: 30809960 DOI: 10.1002/jbio.201800441] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
181 Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem 2014;406:3263-77. [PMID: 24287630 DOI: 10.1007/s00216-013-7473-1] [Cited by in Crossref: 217] [Cited by in F6Publishing: 151] [Article Influence: 24.1] [Reference Citation Analysis]
182 Peng Y, Li G, Zhou M, Wang H, Lin L. Dynamic spectrum extraction method based on independent component analysis combined dual-tree complex wavelet transform. RSC Adv 2017;7:11198-205. [DOI: 10.1039/c6ra28647j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
183 Sparacino G, Zanon M, Facchinetti A, Zecchin C, Maran A, Cobelli C. Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors (Basel) 2012;12:13753-80. [PMID: 23202020 DOI: 10.3390/s121013753] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
184 Pai PP, Sanki PK, Sarangi S, Banerjee S. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system. Rev Sci Instrum 2015;86:064901. [PMID: 26133859 DOI: 10.1063/1.4922416] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
185 Vashist SK. Continuous Glucose Monitoring Systems: A Review. Diagnostics (Basel) 2013;3:385-412. [PMID: 26824930 DOI: 10.3390/diagnostics3040385] [Cited by in Crossref: 135] [Cited by in F6Publishing: 67] [Article Influence: 15.0] [Reference Citation Analysis]
186 Fedorenko V, Damberga D, Grundsteins K, Ramanavicius A, Ramanavicius S, Coy E, Iatsunskyi I, Viter R. Application of Polydopamine Functionalized Zinc Oxide for Glucose Biosensor Design. Polymers (Basel) 2021;13:2918. [PMID: 34502958 DOI: 10.3390/polym13172918] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Mandpe P, Prabhakar B, Gupta H, Shende P. Glucose oxidase-based biosensor for glucose detection from biological fluids. SR 2020;40:497-511. [DOI: 10.1108/sr-01-2019-0017] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
188 Zhang YJ, Kwon H, Miri M, Kallos E, Cano-garcia H, Tong MS, Alu A. Noninvasive Glucose Sensor Based on Parity-Time Symmetry. Phys Rev Applied 2019;11. [DOI: 10.1103/physrevapplied.11.044049] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
189 Ali N, Rezvani HR, Motei D, Suleman S, Mahfouf W, Marty I, Ronkainen VP, Vainio SJ. Trisk 95 as a novel skin mirror for normal and diabetic systemic glucose level. Sci Rep 2020;10:12246. [PMID: 32699238 DOI: 10.1038/s41598-020-68972-6] [Reference Citation Analysis]
190 Kino S, Omori S, Katagiri T, Matsuura Y. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism. Biomed Opt Express 2016;7:701-8. [PMID: 26977373 DOI: 10.1364/BOE.7.000701] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
191 Liang D, Luo J, Huang Y, Liang X, Qiu X, Wang J, Yang M. A porous carbon nitride modified with cobalt phosphide as an efficient visible-light harvesting nanocomposite for photoelectrochemical enzymatic sensing of glucose. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3929-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
192 Hasan MK, Haque M, Sakib N, Love R, Ahamed SI. Smartphone-based Human Hemoglobin Level Measurement Analyzing Pixel Intensity of a Fingertip Video on Different Color Spaces. Smart Health 2018;5-6:26-39. [DOI: 10.1016/j.smhl.2017.11.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
193 Gusev M, Poposka L, Spasevski G, Kostoska M, Koteska B, Simjanoska M, Ackovska N, Stojmenski A, Tasic J, Trontelj J. Noninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability. Journal of Sensors 2020;2020:1-13. [DOI: 10.1155/2020/9628281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]