BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jung CW, Jacobs P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging. 1995;13:661-674. [PMID: 8569441 DOI: 10.1016/0730-725x(95)00024-b] [Cited by in Crossref: 509] [Cited by in F6Publishing: 101] [Article Influence: 19.6] [Reference Citation Analysis]
Number Citing Articles
1 Cahill KS, Germain S, Byrne BJ, Walter GA. Non-invasive analysis of myoblast transplants in rodent cardiac muscle. Int J Cardiovasc Imaging 2004;20:593-8. [PMID: 15856647 DOI: 10.1007/s10554-004-3902-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
2 Castaneda RT, Khurana A, Khan R, Daldrup-Link HE. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp 2011;:e3482. [PMID: 22083287 DOI: 10.3791/3482] [Cited by in Crossref: 22] [Cited by in F6Publishing: 48] [Article Influence: 2.0] [Reference Citation Analysis]
3 Rahmanzadeh L, Ghorbani M, Jahanshahi M. Synthesis and Characterization of Fe 3 O 4 @ Polyrhodanine Nanocomposite with Core-Shell Morphology. Adv Polym Technol 2014;33:n/a-n/a. [DOI: 10.1002/adv.21463] [Cited by in Crossref: 13] [Article Influence: 1.6] [Reference Citation Analysis]
4 Gharagozlou M, Bayati R. Low temperature processing and magnetic properties of zinc ferrite nanoparticles. Superlattices and Microstructures 2015;78:190-200. [DOI: 10.1016/j.spmi.2014.12.004] [Cited by in Crossref: 23] [Article Influence: 3.3] [Reference Citation Analysis]
5 Ghosh D, Lee Y, Thomas S, Kohli AG, Yun DS, Belcher AM, Kelly KA. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol 2012;7:677-82. [PMID: 22983492 DOI: 10.1038/nnano.2012.146] [Cited by in Crossref: 203] [Cited by in F6Publishing: 185] [Article Influence: 20.3] [Reference Citation Analysis]
6 Yue H, Park JA, Ho SL, Ahmad MY, Cha H, Liu S, Tegafaw T, Marasini S, Ghazanfari A, Kim S, Chae KS, Chang Y, Lee GH. New Class of Efficient T2 Magnetic Resonance Imaging Contrast Agent: Carbon-Coated Paramagnetic Dysprosium Oxide Nanoparticles. Pharmaceuticals (Basel) 2020;13:E312. [PMID: 33076332 DOI: 10.3390/ph13100312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hsieh V, Jasanoff A. Bioengineered probes for molecular magnetic resonance imaging in the nervous system. ACS Chem Neurosci 2012;3:593-602. [PMID: 22896803 DOI: 10.1021/cn300059r] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
8 Langley J, Liu W, Jordan EK, Frank JA, Zhao Q. Quantification of SPIO nanoparticles in vivo using the finite perturber method. Magn Reson Med 2011;65:1461-9. [PMID: 21500271 DOI: 10.1002/mrm.22727] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
9 Meyers JD, Doane T, Burda C, Basilion JP. Nanoparticles for imaging and treating brain cancer. Nanomedicine (Lond) 2013;8:123-43. [PMID: 23256496 DOI: 10.2217/nnm.12.185] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 7.9] [Reference Citation Analysis]
10 Wang C, Ravi S, Martinez GV, Chinnasamy V, Raulji P, Howell M, Davis Y, Mallela J, Seehra MS, Mohapatra S. Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 2012;163:82-92. [PMID: 22561339 DOI: 10.1016/j.jconrel.2012.04.030] [Cited by in Crossref: 70] [Cited by in F6Publishing: 60] [Article Influence: 7.0] [Reference Citation Analysis]
11 Pan D, Caruthers SD, Chen J, Winter PM, SenPan A, Schmieder AH, Wickline SA, Lanza GM. Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2010;2:471-90. [PMID: 20485473 DOI: 10.4155/fmc.10.5] [Cited by in Crossref: 65] [Cited by in F6Publishing: 49] [Article Influence: 5.9] [Reference Citation Analysis]
12 Nairan A, Khan M, Khan U, Iqbal M, Riaz S, Naseem S. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures. Nanomaterials (Basel) 2016;6:E73. [PMID: 28335203 DOI: 10.3390/nano6040073] [Cited by in Crossref: 39] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
13 Weissig V, Guzman-Villanueva D. Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine 2015;10:1245-57. [PMID: 25709446 DOI: 10.2147/IJN.S65526] [Cited by in Crossref: 75] [Cited by in F6Publishing: 19] [Article Influence: 10.7] [Reference Citation Analysis]
14 Hong R, Cima MJ, Weissleder R, Josephson L. Magnetic microparticle aggregation for viscosity determination by MR. Magn Reson Med 2008;59:515-20. [PMID: 18306403 DOI: 10.1002/mrm.21526] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
15 Smolensky ED, Park HY, Berquó TS, Pierre VC. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications - effect of anchoring group and ligand exchange protocol. Contrast Media Mol Imaging 2011;6:189-99. [PMID: 21861279 DOI: 10.1002/cmmi.417] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 2.8] [Reference Citation Analysis]
16 Clément O, Luciani A. Imaging the lymphatic system: possibilities and clinical applications. Eur Radiol 2004;14:1498-507. [PMID: 15007613 DOI: 10.1007/s00330-004-2265-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.2] [Reference Citation Analysis]
17 Cheng L, Shen S, Shi S, Yi Y, Wang X, Song G, Yang K, Liu G, Barnhart TE, Cai W, Liu Z. FeSe2-Decorated Bi2Se3 Nanosheets Fabricated via Cation Exchange for Chelator-Free 64Cu-labeling and Multimodal Image-Guided Photothermal-Radiation Therapy. Adv Funct Mater 2016;26:2185-97. [PMID: 27110230 DOI: 10.1002/adfm.201504810] [Cited by in Crossref: 184] [Cited by in F6Publishing: 170] [Article Influence: 30.7] [Reference Citation Analysis]
18 Kokeny P, Cheng YN, Liu S, Xie H, Jiang Q. Quantifications of in vivo labeled stem cells based on measurements of magnetic moments. Magn Reson Imaging 2017;35:141-7. [PMID: 27594530 DOI: 10.1016/j.mri.2016.08.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
19 Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine. 2014;9:1641-1653. [PMID: 24729700 DOI: 10.2147/ijn.s48979] [Cited by in Crossref: 14] [Cited by in F6Publishing: 35] [Article Influence: 1.8] [Reference Citation Analysis]
20 Li Y, Wang G, Griffin L, Banda NK, Saba LM, Groman EV, Scheinman R, Moghimi SM, Simberg D. Complement opsonization of nanoparticles: Differences between humans and preclinical species. J Control Release 2021;338:548-56. [PMID: 34481928 DOI: 10.1016/j.jconrel.2021.08.048] [Reference Citation Analysis]
21 Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, Dravid VP. Theranostic Magnetic Nanostructures (MNS) for Cancer. Cancer Treat Res 2015;166:51-83. [PMID: 25895864 DOI: 10.1007/978-3-319-16555-4_3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
22 Sabale S, Jadhav V, Khot V, Zhu X, Xin M, Chen H. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications. J Mater Sci Mater Med 2015;26:127. [PMID: 25690622 DOI: 10.1007/s10856-015-5466-7] [Cited by in Crossref: 47] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
23 Al Faraj A, Fauvelle F, Luciani N, Lacroix G, Levy M, Crémillieux Y, Canet-Soulas E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int J Nanomedicine 2011;6:351-61. [PMID: 21499425 DOI: 10.2147/IJN.S16653] [Cited by in Crossref: 43] [Cited by in F6Publishing: 15] [Article Influence: 3.9] [Reference Citation Analysis]
24 Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014;19:11465-86. [PMID: 25093986 DOI: 10.3390/molecules190811465] [Cited by in Crossref: 141] [Cited by in F6Publishing: 108] [Article Influence: 17.6] [Reference Citation Analysis]
25 Pernet-Gallay K, Jouneau PH, Bertrand A, Delaroche J, Farion R, Rémy C, Barbier EL. Vascular permeability in the RG2 glioma model can be mediated by macropinocytosis and be independent of the opening of the tight junction. J Cereb Blood Flow Metab 2017;37:1264-75. [PMID: 27306752 DOI: 10.1177/0271678X16654157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Nejadnik H, Lenkov O, Gassert F, Fretwell D, Lam I, Daldrup-Link HE. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects. Sci Rep 2016;6:25897. [PMID: 27174199 DOI: 10.1038/srep25897] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
27 Santiesteban DY, Kubelick K, Dhada KS, Dumani D, Suggs L, Emelianov S. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies. Ann Biomed Eng 2016;44:750-72. [PMID: 26692081 DOI: 10.1007/s10439-015-1509-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
28 Nahar K, Absar S, Patel B, Ahsan F. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm 2014;464:185-95. [PMID: 24463004 DOI: 10.1016/j.ijpharm.2014.01.007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
29 Kargina YV, Perepukhov AM, Kharin AY, Zvereva EA, Koshelev AV, Zinovyev SV, Maximychev AV, Alykova AF, Sharonova NV, Zubov VP, Gulyaev MV, Pirogov YA, Vasiliev AN, Ischenko AA, Timoshenko VY. Silicon Nanoparticles Prepared by Plasma‐Assisted Ablative Synthesis: Physical Properties and Potential Biomedical Applications. Phys Status Solidi A 2019;216:1800897. [DOI: 10.1002/pssa.201800897] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
30 Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 2010;16:561-73. [PMID: 21074494 DOI: 10.1016/j.molmed.2010.09.004] [Cited by in Crossref: 162] [Cited by in F6Publishing: 140] [Article Influence: 13.5] [Reference Citation Analysis]
31 Kermanian M, Sadighian S, Ramazani A, Naghibi M, Khoshkam M, Ghezelbash P. Inulin-Coated Iron Oxide Nanoparticles: A Theranostic Platform for Contrast-Enhanced MR Imaging of Acute Hepatic Failure. ACS Biomater Sci Eng 2021;7:2701-15. [PMID: 34061500 DOI: 10.1021/acsbiomaterials.0c01792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Hernando D, Cook RJ, Diamond C, Reeder SB. Magnetic susceptibility as a B0 field strength independent MRI biomarker of liver iron overload. Magn Reson Med 2013;70:648-56. [PMID: 23801540 DOI: 10.1002/mrm.24848] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
33 Daldrup-Link HE. Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology. 2017;284:616-629. [PMID: 28825888 DOI: 10.1148/radiol.2017162759] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 14.4] [Reference Citation Analysis]
34 Shanhua H, Huijing H, Moon MJ, Heo SH, Lim HS, Park IK, Cho CS, Kwak SH, Jeong YY. MR detection of LPS-induced neutrophil activation using mannan-coated superparamagnetic iron oxide nanoparticles. Mol Imaging Biol 2013;15:685-92. [PMID: 23670353 DOI: 10.1007/s11307-013-0643-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
35 Vasić K, Knez Ž, Leitgeb M. Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation. Sci Rep 2020;10:19478. [PMID: 33173138 DOI: 10.1038/s41598-020-76463-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
36 Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med 2010;51 Suppl 1:51S-65S. [PMID: 20395341 DOI: 10.2967/jnumed.109.068163] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 5.4] [Reference Citation Analysis]
37 Coulter JA, Butterworth KT, Jain S. Prostate cancer radiotherapy: potential applications of metal nanoparticles for imaging and therapy. Br J Radiol. 2015;88:20150256. [PMID: 26051659 DOI: 10.1259/bjr.20150256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
38 Lee JH, Kim JW, Cheon J. Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 2013;35:274-84. [PMID: 23579479 DOI: 10.1007/s10059-013-0103-0] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 6.2] [Reference Citation Analysis]
39 Kim B, Yang J, Hwang M, Choi J, Kim HO, Jang E, Lee JH, Ryu SH, Suh JS, Huh YM, Haam S. Aptamer-modified magnetic nanoprobe for molecular MR imaging of VEGFR2 on angiogenic vasculature. Nanoscale Res Lett 2013;8:399. [PMID: 24066922 DOI: 10.1186/1556-276X-8-399] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
40 Oldenburg AL, Gallippi CM, Tsui F, Nichols TC, Beicker KN, Chhetri RK, Spivak D, Richardson A, Fischer TH. Magnetic and contrast properties of labeled platelets for magnetomotive optical coherence tomography. Biophys J 2010;99:2374-83. [PMID: 20923673 DOI: 10.1016/j.bpj.2010.08.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
41 Hitchens TK, Liu L, Foley LM, Simplaceanu V, Ahrens ET, Ho C. Combining perfluorocarbon and superparamagnetic iron-oxide cell labeling for improved and expanded applications of cellular MRI. Magn Reson Med 2015;73:367-75. [PMID: 24478194 DOI: 10.1002/mrm.25120] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
42 Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA. In Vivo Cellular Imaging for Translational Medical Research. Curr Med Imaging Rev 2009;5:19-38. [PMID: 19768136 DOI: 10.2174/157340509787354697] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 4.2] [Reference Citation Analysis]
43 Li T, Gendelman HE, Zhang G, Puligujja P, McMillan JM, Bronich TK, Edagwa B, Liu XM, Boska MD. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy. Int J Nanomedicine 2015;10:3779-90. [PMID: 26082630 DOI: 10.2147/IJN.S83279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 0.3] [Reference Citation Analysis]
44 Yeh BJ, Anani T, David AE. Improving the Size Homogeneity of Multicore Superparamagnetic Iron Oxide Nanoparticles. Int J Mol Sci 2020;21:E3476. [PMID: 32423113 DOI: 10.3390/ijms21103476] [Reference Citation Analysis]
45 Miao X, Xu W, Cha H, Chang Y, Oh IT, Chae KS, Lee GH. Application of Dye-coated Ultrasmall Gadolinium Oxide Nanoparticles for Biomedical Dual Imaging: Biomedical Dual Imaging Agent. Bull Korean Chem Soc 2017;38:1058-68. [DOI: 10.1002/bkcs.11220] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
46 Grimm J, Kircher MF, Weissleder R. [Cell tracking. Principles and applications]. Radiologe 2007;47:25-33. [PMID: 17187264 DOI: 10.1007/s00117-006-1449-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.3] [Reference Citation Analysis]
47 Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008;29:487-96. [PMID: 17964647 DOI: 10.1016/j.biomaterials.2007.08.050] [Cited by in Crossref: 619] [Cited by in F6Publishing: 526] [Article Influence: 41.3] [Reference Citation Analysis]
48 Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, Auh S, Wilson CM, Sharma K, Aronova MA, Leapman RD, Griffiths GL, Hall MD. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 2008;6:80. [PMID: 19094226 DOI: 10.1186/1479-5876-6-80] [Cited by in Crossref: 169] [Cited by in F6Publishing: 159] [Article Influence: 12.1] [Reference Citation Analysis]
49 Li SK, Lizak MJ, Jeong EK. MRI in ocular drug delivery. NMR Biomed 2008;21:941-56. [PMID: 18186077 DOI: 10.1002/nbm.1230] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
50 Banda NK, Mehta G, Chao Y, Wang G, Inturi S, Fossati-Jimack L, Botto M, Wu L, Moghimi SM, Simberg D. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Part Fibre Toxicol 2014;11:64. [PMID: 25425420 DOI: 10.1186/s12989-014-0064-2] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
51 Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 2009;75:465-74. [PMID: 18843256 DOI: 10.1038/ki.2008.496] [Cited by in Crossref: 184] [Cited by in F6Publishing: 168] [Article Influence: 13.1] [Reference Citation Analysis]
52 Zhang Z, Mascheri N, Dharmakumar R, Li D. Cellular magnetic resonance imaging: potential for use in assessing aspects of cardiovascular disease. Cytotherapy 2008;10:575-86. [PMID: 18608350 DOI: 10.1080/14653240802165699] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
53 Hyodo F, Chandramouli GV, Matsumoto S, Matsumoto K, Mitchell JB, Krishna MC, Munasinghe JP. Estimation of tumor microvessel density by MRI using a blood pool contrast agent. Int J Oncol 2009;35:797-804. [PMID: 19724915 DOI: 10.3892/ijo_00000392] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
54 Lee IJ, Park JY, Kim YI, Lee YS, Jeong JM, Kim J, Kim EE, Kang KW, Lee DS, Jeong S, Kim EJ, Kim YI, Chung JW. Image-Based Analysis of Tumor Localization After Intra-Arterial Delivery of Technetium-99m-Labeled SPIO Using SPECT/CT and MRI. Mol Imaging 2017;16:1536012116689001. [PMID: 28654377 DOI: 10.1177/1536012116689001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
55 Cheng WZ, Zeng MS, Yan FH, Rao SX, Shen JZ, Chen CZ, Zhang SJ, Shi WB. Ferucarbotran versus Gd-DTPA-enhanced MR imaging in the detection of focal hepatic lesions. World J Gastroenterol 2007; 13(36): 4891-4896 [PMID: 17828821 DOI: 10.3748/wjg.v13.i36.4891] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
56 Chen S, Wang L, Duce SL, Brown S, Lee S, Melzer A, Cuschieri A, André P. Engineered biocompatible nanoparticles for in vivo imaging applications. J Am Chem Soc 2010;132:15022-9. [PMID: 20919679 DOI: 10.1021/ja106543j] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 6.5] [Reference Citation Analysis]
57 Ali-sharbati, Amiri G, Mousarezaei R. Structural, Magnetic, and Microwave-Absorption Properties of Nanocrystalline Ca(MnSn) x Fe12−2x O19 Ferrites. Journal of Elec Materi 2015;44:715-9. [DOI: 10.1007/s11664-014-3552-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Quarantelli M. MRI/MRS in neuroinflammation: methodology and applications. Clin Transl Imaging 2015;3:475-89. [PMID: 26705534 DOI: 10.1007/s40336-015-0142-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
59 Kübler J, Martirosian P, Jacoby J, Gohla G, Winkelmann MT, Nikolaou K, Hoffmann R. Fluid-based augmentation of magnetic resonance visualization of interventional devices. J Appl Clin Med Phys 2021;22:261-9. [PMID: 34453864 DOI: 10.1002/acm2.13407] [Reference Citation Analysis]
60 Yildirimer L, Thanh NT, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6:585-607. [PMID: 23293661 DOI: 10.1016/j.nantod.2011.10.001] [Cited by in Crossref: 380] [Cited by in F6Publishing: 314] [Article Influence: 34.5] [Reference Citation Analysis]
61 Szpak A, Kania G, Skórka T, Tokarz W, Zapotoczny S, Nowakowska M. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives. J Nanopart Res 2013;15:1372. [PMID: 23420339 DOI: 10.1007/s11051-012-1372-9] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 4.8] [Reference Citation Analysis]
62 Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010;110:2921-59. [PMID: 20067234 DOI: 10.1021/cr900232t] [Cited by in Crossref: 466] [Cited by in F6Publishing: 408] [Article Influence: 38.8] [Reference Citation Analysis]
63 Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci 2015;6:225-36. [PMID: 28553472 DOI: 10.1039/c4sc02778g] [Cited by in Crossref: 78] [Cited by in F6Publishing: 32] [Article Influence: 9.8] [Reference Citation Analysis]
64 Ebrahimi M, Raeisi Shahraki R, Seyyed Ebrahimi SA, Masoudpanah SM. Magnetic Properties of Zinc Ferrite Nanoparticles Synthesized by Coprecipitation Method. J Supercond Nov Magn 2014;27:1587-92. [DOI: 10.1007/s10948-014-2485-4] [Cited by in Crossref: 23] [Article Influence: 2.9] [Reference Citation Analysis]
65 Taborda A, Carvalho A. Superparamagnetic iron oxide nanoparticles – Proton Nuclear Magnetic Resonance Dispersion curves. Eur Phys J Appl Phys 2008;43:145-8. [DOI: 10.1051/epjap:2008095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
66 Vignaud A, Rodriguez I, Ennis DB, DeSilva R, Kellman P, Taylor J, Bennett E, Wen H. Detection of myocardial capillary orientation with intravascular iron-oxide nanoparticles in spin-echo MRI. Magn Reson Med 2006;55:725-30. [PMID: 16506158 DOI: 10.1002/mrm.20827] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
67 Burrell JS, Walker-Samuel S, Boult JK, Baker LC, Jamin Y, Halliday J, Waterton JC, Robinson SP. Investigating the Vascular Phenotype of Subcutaneously and Orthotopically Propagated PC3 Prostate Cancer Xenografts Using Combined Carbogen Ultrasmall Superparamagnetic Iron Oxide MRI. Top Magn Reson Imaging 2016;25:237-43. [PMID: 27748709 DOI: 10.1097/RMR.0000000000000102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
68 Jing Y, Mal N, Williams PS, Mayorga M, Penn MS, Chalmers JJ, Zborowski M. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. FASEB J 2008;22:4239-47. [PMID: 18725459 DOI: 10.1096/fj.07-105544] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 3.9] [Reference Citation Analysis]
69 Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F. Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomedicine 2016;11:5883-96. [PMID: 27877036 DOI: 10.2147/IJN.S110579] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
70 Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan D, Hu G, Scott MJ, Fuhrhop RW, Gaffney PJ, Wickline SA. Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano. 2009;3:3917-3926. [PMID: 19908850 DOI: 10.1021/nn900819y] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 5.9] [Reference Citation Analysis]
71 Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 2007;7:861-7. [PMID: 17335265 DOI: 10.1021/nl062306v] [Cited by in Crossref: 225] [Cited by in F6Publishing: 193] [Article Influence: 15.0] [Reference Citation Analysis]
72 Qian C, Zabow G, Koretsky A. Engineering novel detectors and sensors for MRI. J Magn Reson 2013;229:67-74. [PMID: 23245489 DOI: 10.1016/j.jmr.2012.11.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
73 Czarniecki M, Pesapane F, Wood BJ, Choyke PL, Turkbey B. Ultra-small superparamagnetic iron oxide contrast agents for lymph node staging of high-risk prostate cancer. Transl Androl Urol 2018;7:S453-61. [PMID: 30363485 DOI: 10.21037/tau.2018.05.15] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
74 Liu T, Spincemaille P, de Rochefort L, Wong R, Prince M, Wang Y. Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields. Magn Reson Imaging 2010;28:1383-9. [PMID: 20688448 DOI: 10.1016/j.mri.2010.06.011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
75 Arms L, Smith DW, Flynn J, Palmer W, Martin A, Woldu A, Hua S. Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front Pharmacol 2018;9:802. [PMID: 30154715 DOI: 10.3389/fphar.2018.00802] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
76 Cantillon-Murphy P, Wald LL, Zahn M, Adalsteinsson E. Measuring SPIO and Gd contrast agent magnetization using 3 T MRI. NMR Biomed 2009;22:891-7. [PMID: 19588450 DOI: 10.1002/nbm.1412] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
77 Dumani DS, Cook JR, Kubelick KP, Luci JJ, Emelianov SY. Photomagnetic Prussian blue nanocubes: Synthesis, characterization, and biomedical applications. Nanomedicine 2020;24:102138. [PMID: 31846739 DOI: 10.1016/j.nano.2019.102138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
78 Wade TP, Kozlowski P. Longitudinal studies of angiogenesis in hormone-dependent Shionogi tumors. Neoplasia 2007;9:563-8. [PMID: 17710159 DOI: 10.1593/neo.07313] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
79 Burrell JS, Bradley RS, Walker-Samuel S, Jamin Y, Baker LC, Boult JK, Withers PJ, Halliday J, Waterton JC, Robinson SP. MRI measurements of vessel calibre in tumour xenografts: Comparison with vascular corrosion casting. Microvasc Res. 2012;84:323-329. [PMID: 22921880 DOI: 10.1016/j.mvr.2012.08.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
80 Naha PC, Liu Y, Hwang G, Huang Y, Gubara S, Jonnakuti V, Simon-Soro A, Kim D, Gao L, Koo H, Cormode DP. Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption. ACS Nano 2019;13:4960-71. [PMID: 30642159 DOI: 10.1021/acsnano.8b08702] [Cited by in Crossref: 81] [Cited by in F6Publishing: 69] [Article Influence: 27.0] [Reference Citation Analysis]
81 Wang P, Moore A. Theranostic magnetic resonance imaging of type 1 diabetes and pancreatic islet transplantation. Quant Imaging Med Surg 2012;2:151-62. [PMID: 23256077 DOI: 10.3978/j.issn.2223-4292.2012.08.04] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
82 Gossuin Y, Disch S, Vuong QL, Gillis P, Hermann RP, Park JH, Sailor MJ. NMR relaxation and magnetic properties of superparamagnetic nanoworms. Contrast Media Mol Imaging 2010;5:318-22. [PMID: 21190269 DOI: 10.1002/cmmi.387] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
83 Forte E, Fiorenza D, Torino E, Costagliola di Polidoro A, Cavaliere C, Netti PA, Salvatore M, Aiello M. Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J Clin Med 2019;9:E89. [PMID: 31905769 DOI: 10.3390/jcm9010089] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
84 Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 2014;4:290-306. [PMID: 24505237 DOI: 10.7150/thno.7341] [Cited by in Crossref: 145] [Cited by in F6Publishing: 123] [Article Influence: 18.1] [Reference Citation Analysis]
85 Rameshbabu R, Neppolian B. Surfactant Assisted Hydrothermal Synthesis of Superparamagnetic ZnFe2O4 Nanoparticles as an Efficient Visible-Light Photocatalyst for the Degradation of Organic Pollutant. J Clust Sci 2016;27:1977-87. [DOI: 10.1007/s10876-016-1057-0] [Cited by in Crossref: 7] [Article Influence: 1.2] [Reference Citation Analysis]
86 Müller WE, Wang X, Guo YW, Schröder HC. Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach. Mar Drugs 2012;10:2369-87. [PMID: 23203265 DOI: 10.3390/md10112369] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
87 Taylor A, Herrmann A, Moss D, Sée V, Davies K, Williams SR, Murray P. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking. PLoS One 2014;9:e100259. [PMID: 24959883 DOI: 10.1371/journal.pone.0100259] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
88 Wang JT, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Shah AM, Sosabowski J, Mather SJ, Roig A, Ke X, Tendeloo GV, de Rosales RTM, Tobias G, Al-Jamal KT. Magnetically Decorated Multi-Walled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents. Adv Funct Mater 2014;24:1880-94. [PMID: 26097444 DOI: 10.1002/adfm.201302892] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.7] [Reference Citation Analysis]
89 Dhanasekaran V, Anandhavelu S, Polychroniadis E, Mahalingam T. Microstructural properties evaluation of Fe2O3 nanostructures. Materials Letters 2014;126:288-90. [DOI: 10.1016/j.matlet.2014.04.065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Wu YL, Ye Q, Foley LM, Hitchens TK, Sato K, Williams JB, Ho C. In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci U S A 2006;103:1852-7. [PMID: 16443687 DOI: 10.1073/pnas.0507198103] [Cited by in Crossref: 166] [Cited by in F6Publishing: 151] [Article Influence: 10.4] [Reference Citation Analysis]
91 Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F, Yang X, Xu H. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One 2012;7:e37376. [PMID: 22615995 DOI: 10.1371/journal.pone.0037376] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
92 Karmali PP, Chao Y, Park JH, Sailor MJ, Ruoslahti E, Esener SC, Simberg D. Different effect of hydrogelation on antifouling and circulation properties of dextran-iron oxide nanoparticles. Mol Pharm 2012;9:539-45. [PMID: 22243419 DOI: 10.1021/mp200375x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
93 Ovejero JG, Gallo-Cordova A, Roca AG, Morales MP, Veintemillas-Verdaguer S. Reproducibility and Scalability of Magnetic Nanoheater Synthesis. Nanomaterials (Basel) 2021;11:2059. [PMID: 34443890 DOI: 10.3390/nano11082059] [Reference Citation Analysis]
94 Cui X, Mathe D, Kovács N, Horváth I, Jauregui-Osoro M, Torres Martin de Rosales R, Mullen GE, Wong W, Yan Y, Krüger D, Khlobystov AN, Gimenez-Lopez M, Semjeni M, Szigeti K, Veres DS, Lu H, Hernández I, Gillin WP, Protti A, Petik KK, Green MA, Blower PJ. Synthesis, Characterization, and Application of Core-Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents. Bioconjug Chem 2016;27:319-28. [PMID: 26172432 DOI: 10.1021/acs.bioconjchem.5b00338] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
95 Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A 2007;104:932-6. [PMID: 17215365 DOI: 10.1073/pnas.0610298104] [Cited by in Crossref: 337] [Cited by in F6Publishing: 307] [Article Influence: 22.5] [Reference Citation Analysis]
96 Carvalho A, Taborda A. Unusual longitudinal relaxation time behaviour of colloidal solutions of superparamagnetic nanoparticles. Eur Phys J Appl Phys 2007;40:265-8. [DOI: 10.1051/epjap:2007156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
97 Das M, Oyarzabal EA, Chen L, Lee SH, Shah N, Gerlach G, Zhang W, Chao TH, Berge NVD, Liu C, Donley C, Montgomery SA, Shih YI. One-pot synthesis of carboxymethyl-dextran coated iron oxide nanoparticles (CION) for preclinical fMRI and MRA applications. Neuroimage 2021;238:118213. [PMID: 34116153 DOI: 10.1016/j.neuroimage.2021.118213] [Reference Citation Analysis]
98 Herman P, Sanganahalli BG, Hyder F. Multimodal measurements of blood plasma and red blood cell volumes during functional brain activation. J Cereb Blood Flow Metab 2009;29:19-24. [PMID: 18766196 DOI: 10.1038/jcbfm.2008.100] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
99 Kostopoulou A, Brintakis K, Fragogeorgi E, Anthousi A, Manna L, Begin-Colin S, Billotey C, Ranella A, Loudos G, Athanassakis I, Lappas A. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level. Nanomaterials (Basel) 2018;8:E315. [PMID: 29747449 DOI: 10.3390/nano8050315] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
100 Ketkar-Atre A, Struys T, Soenen SJ, Lambrichts I, Verfaillie CM, De Cuyper M, Himmelreich U. Variability in contrast agent uptake by different but similar stem cell types. Int J Nanomedicine 2013;8:4577-91. [PMID: 24399873 DOI: 10.2147/IJN.S51588] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 0.3] [Reference Citation Analysis]
101 Simon GH, Bauer J, Saborovski O, Fu Y, Corot C, Wendland MF, Daldrup-Link HE. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol 2006;16:738-45. [PMID: 16308692 DOI: 10.1007/s00330-005-0031-2] [Cited by in Crossref: 134] [Cited by in F6Publishing: 125] [Article Influence: 7.9] [Reference Citation Analysis]
102 Jung KH, Kim HK, Park JA, Nam KS, Lee GH, Chang Y, Kim TJ. Gd Complexes of DO3A-(Biphenyl-2,2'-bisamides) Conjugates as MRI Blood-Pool Contrast Agents. ACS Med Chem Lett 2012;3:1003-7. [PMID: 24900422 DOI: 10.1021/ml300223b] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
103 Lee H, Shin TH, Cheon J, Weissleder R. Recent Developments in Magnetic Diagnostic Systems. Chem Rev 2015;115:10690-724. [PMID: 26258867 DOI: 10.1021/cr500698d] [Cited by in Crossref: 173] [Cited by in F6Publishing: 135] [Article Influence: 24.7] [Reference Citation Analysis]
104 Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 2011;12:3705-22. [PMID: 21747701 DOI: 10.3390/ijms12063705] [Cited by in Crossref: 88] [Cited by in F6Publishing: 66] [Article Influence: 8.0] [Reference Citation Analysis]
105 Andronesi OC, Mintzopoulos D, Righi V, Psychogios N, Kesarwani M, He J, Yasuhara S, Dai G, Rahme LG, Tzika AA. Combined off-resonance imaging and T2 relaxation in the rotating frame for positive contrast MR imaging of infection in a murine burn model. J Magn Reson Imaging 2010;32:1172-83. [PMID: 21031524 DOI: 10.1002/jmri.22349] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
106 Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine. 2014;9:711-726. [PMID: 24511229 DOI: 10.2147/ijn.s53717] [Cited by in Crossref: 47] [Cited by in F6Publishing: 54] [Article Influence: 5.9] [Reference Citation Analysis]
107 Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM, Huttner AJ, Hyder F, Piepmeier JM, Saltzman WM, Zhou J. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. J Neurooncol 2015;121:441-9. [PMID: 25403507 DOI: 10.1007/s11060-014-1658-0] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
108 Kaczmarek JC, Patel AK, Kauffman KJ, Fenton OS, Webber MJ, Heartlein MW, DeRosa F, Anderson DG. Polymer-Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. Angew Chem Int Ed Engl 2016;55:13808-12. [PMID: 27690187 DOI: 10.1002/anie.201608450] [Cited by in Crossref: 103] [Cited by in F6Publishing: 104] [Article Influence: 17.2] [Reference Citation Analysis]
109 Liu Z, Lin H, Zhao M, Dai C, Zhang S, Peng W, Chen Y. 2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics 2018;8:1648-64. [PMID: 29556347 DOI: 10.7150/thno.23369] [Cited by in Crossref: 74] [Cited by in F6Publishing: 60] [Article Influence: 18.5] [Reference Citation Analysis]
110 Oldenburg AL, Wu G, Spivak D, Tsui F, Wolberg AS, Fischer TH. Imaging and Elastometry of Blood Clots Using Magnetomotive Optical Coherence Tomography and Labeled Platelets. IEEE J Sel Top Quantum Electron 2011;18:1100-9. [PMID: 23833549 DOI: 10.1109/JSTQE.2011.2162580] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
111 Kale A, Nathani H, Srivastava R, Misra R. Superparamagnetic behaviour of nanocrystalline Ni – Zn, Zn – Mn and Ni – Mn ferrites processed by reverse micelle method. Materials Science and Technology 2013;20:999-1005. [DOI: 10.1179/026708304225019876] [Cited by in Crossref: 11] [Article Influence: 1.2] [Reference Citation Analysis]
112 Lee HY, Lee SH, Xu C, Xie J, Lee JH, Wu B, Koh AL, Wang X, Sinclair R, Wang SX, Nishimura DG, Biswal S, Sun S, Cho SH, Chen X. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 2008;19:165101. [PMID: 21394237 DOI: 10.1088/0957-4484/19/16/165101] [Cited by in Crossref: 86] [Cited by in F6Publishing: 66] [Article Influence: 6.1] [Reference Citation Analysis]
113 Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008;29:4012-21. [PMID: 18649936 DOI: 10.1016/j.biomaterials.2008.07.004] [Cited by in Crossref: 334] [Cited by in F6Publishing: 282] [Article Influence: 23.9] [Reference Citation Analysis]
114 Wei H, Insin N, Lee J, Han HS, Cordero JM, Liu W, Bawendi MG. Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 2012;12:22-5. [PMID: 22185195 DOI: 10.1021/nl202721q] [Cited by in Crossref: 181] [Cited by in F6Publishing: 158] [Article Influence: 16.5] [Reference Citation Analysis]