BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Storer AC, Ménard R. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol. 1994;244:486-500. [PMID: 7845227 DOI: 10.1016/0076-6879(94)44035-2] [Cited by in Crossref: 168] [Cited by in F6Publishing: 166] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Crabb JW, O'Neil J, Miyagi M, West K, Hoff HF. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues. Protein Sci 2002;11:831-40. [PMID: 11910026 DOI: 10.1110/ps.4400102] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 3.9] [Reference Citation Analysis]
2 Batool M, Hussain D, Akrem A, Najam-Ul-Haq M, Saeed S, Zaka SM, Nawaz MS, Buck F, Saeed Q. Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Sci Rep 2020;10:3444. [PMID: 32103102 DOI: 10.1038/s41598-020-60432-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
3 Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog 2006;2:e117. [PMID: 17083274 DOI: 10.1371/journal.ppat.0020117] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 4.1] [Reference Citation Analysis]
4 Gupta S, Mangel WF, Mcgrath WJ, Perek JL, Lee DW, Takamoto K, Chance MR. DNA Binding Provides a Molecular Strap Activating the Adenovirus Proteinase. Molecular & Cellular Proteomics 2004;3:950-9. [DOI: 10.1074/mcp.m400037-mcp200] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
5 Axtell MJ, Chisholm ST, Dahlbeck D, Staskawicz BJ. Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease: AvrRpt2 is a cysteine protease effector protein. Molecular Microbiology 2003;49:1537-46. [DOI: 10.1046/j.1365-2958.2003.03666.x] [Cited by in Crossref: 166] [Cited by in F6Publishing: 144] [Article Influence: 8.7] [Reference Citation Analysis]
6 Mansur F, Luoga W, Buttle D, Duce I, Lowe A, Behnke J. The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstoma in vitro. Veterinary Parasitology 2014;201:48-58. [DOI: 10.1016/j.vetpar.2013.12.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
7 Hu B, Zhang D, Zhao K, Wang Y, Pei L, Fu Q, Ma X. Spotlight on USP4: Structure, Function, and Regulation. Front Cell Dev Biol 2021;9:595159. [PMID: 33681193 DOI: 10.3389/fcell.2021.595159] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Bono JM, Matzkin LM, Hoang K, Brandsmeier L. Molecular evolution of candidate genes involved in post-mating-prezygotic reproductive isolation. J Evol Biol 2015;28:403-14. [PMID: 25522894 DOI: 10.1111/jeb.12574] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
9 Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J 2011;278:4917-26. [PMID: 21995438 DOI: 10.1111/j.1742-4658.2011.08393.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
10 Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-coates JA, Burke RD, Miller KM. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: A unique cytoplasmic cysteine protease. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2008;149:477-89. [DOI: 10.1016/j.cbpb.2007.11.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
11 Klemba M, Gluzman I, Goldberg DE. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J Biol Chem. 2004;279:43000-43007. [PMID: 15304495 DOI: 10.1074/jbc.M408123200] [Cited by in Crossref: 135] [Cited by in F6Publishing: 60] [Article Influence: 7.5] [Reference Citation Analysis]
12 Liou G, Chiang YC, Wang Y, Weng JK. Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants. J Biol Chem 2018;293:18601-12. [PMID: 30291143 DOI: 10.1074/jbc.RA118.005695] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Marraffini LA, Dedent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev. 2006;70:192-221. [PMID: 16524923 DOI: 10.1128/mmbr.70.1.192-221.2006] [Cited by in Crossref: 466] [Cited by in F6Publishing: 238] [Article Influence: 29.1] [Reference Citation Analysis]
14 Babél LM, Linneversl CJ, Schmidt BF. Production of Active Mammalian and Viral Proteases in Bacterial Expression Systems. Biotechnology and Genetic Engineering Reviews 2000;17:213-54. [DOI: 10.1080/02648725.2000.10647993] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
15 Serveau C, Lalmanach G, Hirata I, Scharfstein J, Juliano MA, Gauthier F. Discrimination of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, and mammalian cathepsins B and L, by a pH-inducible fluorogenic substrate of trypanosomal cysteine proteinases. Eur J Biochem 1999;259:275-80. [PMID: 9914503 DOI: 10.1046/j.1432-1327.1999.00032.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 0.7] [Reference Citation Analysis]
16 Pan X, Chen J, Yang M, Wu J, He G, Yin Y, He M, Xu W, Xu P, Cai W, Zhang F. Enzyme/pH dual-responsive polymer prodrug nanoparticles based on 10-hydroxycamptothecin-carboxymethylchitosan for enhanced drug stability and anticancer efficacy. European Polymer Journal 2019;117:372-81. [DOI: 10.1016/j.eurpolymj.2019.04.050] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Crow A, Hughes RK, Taieb F, Oswald E, Banfield MJ. The molecular basis of ubiquitin-like protein NEDD8 deamidation by the bacterial effector protein Cif. Proc Natl Acad Sci U S A 2012;109:E1830-8. [PMID: 22691497 DOI: 10.1073/pnas.1112107109] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
18 Massimi I, Park E, Rice K, Muller-Esterl W, Sauder D, McGavin MJ. Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem. 2002;277:41770-41777. [PMID: 12207024 DOI: 10.1074/jbc.m207162200] [Cited by in Crossref: 71] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
19 Pereira GAN, da Silva EB, Braga SFP, Leite PG, Martins LC, Vieira RP, Soh WT, Villela FS, Costa FMR, Ray D, de Andrade SF, Brandstetter H, Oliveira RB, Caffrey CR, Machado FS, Ferreira RS. Discovery and characterization of trypanocidal cysteine protease inhibitors from the 'malaria box'. Eur J Med Chem 2019;179:765-78. [PMID: 31284086 DOI: 10.1016/j.ejmech.2019.06.062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
20 Ménard R, Carmona E, Takebe S, Dufour E, Plouffe C, Mason P, Mort JS. Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem 1998;273:4478-84. [PMID: 9468501 DOI: 10.1074/jbc.273.8.4478] [Cited by in Crossref: 106] [Cited by in F6Publishing: 99] [Article Influence: 4.4] [Reference Citation Analysis]
21 Nath A, Kailo GG, Mednyánszky Z, Kiskó G, Csehi B, Pásztorné-Huszár K, Gerencsér-Berta R, Galambos I, Pozsgai E, Bánvölgyi S, Vatai G. Antioxidant and Antibacterial Peptides from Soybean Milk through Enzymatic- and Membrane-Based Technologies. Bioengineering (Basel) 2019;7:E5. [PMID: 31905687 DOI: 10.3390/bioengineering7010005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
22 Szwed R, Grzebieniak Z, Saleh Y, Ekonjo GB, Siewinski M. Cysteine peptidase and its inhibitor activity levels and vitamin E concentration in normal human serum and colorectal carcinomas. World J Gastroenterol 2005; 11(6): 850-853 [PMID: 15682479 DOI: 10.3748/wjg.v11.i6.850] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Johnson-Buck AE, McDowell SE, Walter NG. Metal ions: supporting actors in the playbook of small ribozymes. Met Ions Life Sci 2011;9:175-96. [PMID: 22010272 DOI: 10.1039/9781849732512-00175] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
24 Takeuchi Y, Fujiwara T, Shimone Y, Miyataka H, Satoh T, Kirk KL, Hori H. Possible involvement of radical intermediates in the inhibition of cysteine proteases by allenyl esters and amides. Bioorg Med Chem Lett 2008;18:6202-5. [PMID: 18951789 DOI: 10.1016/j.bmcl.2008.10.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
25 Toh EC, Dashper SG, Huq NL, Attard TJ, O'Brien-Simpson NM, Chen YY, Cross KJ, Stanton DP, Paolini RA, Reynolds EC. Porphyromonas gingivalis cysteine proteinase inhibition by kappa-casein peptides. Antimicrob Agents Chemother 2011;55:1155-61. [PMID: 21173178 DOI: 10.1128/AAC.00466-10] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
26 Demmer U, Warkentin E, Srivastava A, Kockelkorn D, Pötter M, Marx A, Fuchs G, Ermler U. Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase. J Biol Chem 2013;288:6363-70. [PMID: 23325803 DOI: 10.1074/jbc.M112.421263] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
27 Kumar A, Dasaradhi P, Chauhan VS, Malhotra P. Exploring the role of putative active site amino acids and pro-region motif of recombinant falcipain-2: a principal hemoglobinase of Plasmodium falciparum. Biochemical and Biophysical Research Communications 2004;317:38-45. [DOI: 10.1016/j.bbrc.2004.02.177] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 0.9] [Reference Citation Analysis]
28 Fyfe P, Rao V, Zemla A, Cameron S, Hunter W. Specificity and Mechanism of Acinetobacter baumanii Nicotinamidase: Implications for Activation of the Front-Line Tuberculosis Drug Pyrazinamide. Angew Chem 2009;121:9340-3. [DOI: 10.1002/ange.200903407] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
29 Cordara G, van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. An Unusual Member of the Papain Superfamily: Mapping the Catalytic Cleft of the Marasmius oreades agglutinin (MOA) with a Caspase Inhibitor. PLoS One 2016;11:e0149407. [PMID: 26901797 DOI: 10.1371/journal.pone.0149407] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
30 Hänzelmann P, Schäfer A, Völler D, Schindelin H. Structural insights into functional modes of proteins involved in ubiquitin family pathways. Methods Mol Biol 2012;832:547-76. [PMID: 22350912 DOI: 10.1007/978-1-61779-474-2_39] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
31 Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. Biochim Biophys Acta 2014;1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Cited by in Crossref: 108] [Cited by in F6Publishing: 111] [Article Influence: 12.0] [Reference Citation Analysis]
32 Fernández-lucas J, Castañeda D, Hormigo D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technology 2017;68:91-101. [DOI: 10.1016/j.tifs.2017.08.017] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
33 Lockwood TD. Redox control of protein degradation. Antioxid Redox Signal 2000;2:851-78. [PMID: 11213489 DOI: 10.1089/ars.2000.2.4-851] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 1.4] [Reference Citation Analysis]
34 Nakajima N, Sugimoto M, Ishihara K. Earthworm-serine protease: characterization, molecular cloning, and application of the catalytic functions. Journal of Molecular Catalysis B: Enzymatic 2003;23:191-212. [DOI: 10.1016/s1381-1177(03)00082-1] [Cited by in Crossref: 19] [Article Influence: 1.0] [Reference Citation Analysis]
35 Müller S, Faulhaber A, Sieber C, Pfeifer D, Hochberg T, Gansz M, Deshmukh SD, Dauth S, Brix K, Saftig P, Peters C, Henneke P, Reinheckel T. The endolysosomal cysteine cathepsins L and K are involved in macrophage-mediated clearance of Staphylococcus aureus and the concomitant cytokine induction. FASEB J 2014;28:162-75. [PMID: 24036885 DOI: 10.1096/fj.13-232272] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
36 Godat E, Hervé-Grvépinet V, Veillard F, Lecaille F, Belghazi M, Brömme D, Lalmanach G. Regulation of cathepsin K activity by hydrogen peroxide. Biol Chem 2008;389:1123-6. [PMID: 18979635 DOI: 10.1515/BC.2008.109] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
37 Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation. Biochem J 2002;363:417-29. [PMID: 11964142 DOI: 10.1042/0264-6021:3630417] [Cited by in Crossref: 68] [Cited by in F6Publishing: 136] [Article Influence: 3.4] [Reference Citation Analysis]
38 Komander D. Mechanism, specificity and structure of the deubiquitinases. Subcell Biochem 2010;54:69-87. [PMID: 21222274 DOI: 10.1007/978-1-4419-6676-6_6] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 12.0] [Reference Citation Analysis]
39 Storer AC, Ménard R. Papain. Handbook of Proteolytic Enzymes. Elsevier; 2013. pp. 1858-61. [DOI: 10.1016/b978-0-12-382219-2.00418-x] [Cited by in Crossref: 8] [Article Influence: 0.9] [Reference Citation Analysis]
40 Washington EJ, Banfield MJ, Dangl JL. What a difference a Dalton makes: bacterial virulence factors modulate eukaryotic host cell signaling systems via deamidation. Microbiol Mol Biol Rev 2013;77:527-39. [PMID: 24006474 DOI: 10.1128/MMBR.00013-13] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
41 Guo J, Xiang Y, Guan Z, He Y. Papain-catalyzed aldol reaction for the synthesis of trifluoromethyl carbinol derivatives. Journal of Molecular Catalysis B: Enzymatic 2016;131:55-64. [DOI: 10.1016/j.molcatb.2016.05.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
42 Faheem M, Martins-de-Sa D, Vidal JF, Álvares AC, Brandão-Neto J, Bird LE, Tully MD, von Delft F, Souto BM, Quirino BF, Freitas SM, Barbosa JA. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome. Sci Rep 2016;6:38031. [PMID: 27934875 DOI: 10.1038/srep38031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
43 Mangel WF, San Martín C. Structure, function and dynamics in adenovirus maturation. Viruses 2014;6:4536-70. [PMID: 25421887 DOI: 10.3390/v6114536] [Cited by in Crossref: 78] [Cited by in F6Publishing: 62] [Article Influence: 9.8] [Reference Citation Analysis]
44 Zong Y, Bice TW, Ton-That H, Schneewind O, Narayana SV. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem 2004;279:31383-9. [PMID: 15117963 DOI: 10.1074/jbc.M401374200] [Cited by in Crossref: 171] [Cited by in F6Publishing: 71] [Article Influence: 9.5] [Reference Citation Analysis]
45 Klabunde T, Sharma S, Telenti A, Jacobs WR, Sacchettini JC. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Mol Biol 1998;5:31-6. [DOI: 10.1038/nsb0198-31] [Cited by in Crossref: 183] [Cited by in F6Publishing: 168] [Article Influence: 7.6] [Reference Citation Analysis]
46 Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc Natl Acad Sci U S A 2004;101:302-7. [PMID: 14694194 DOI: 10.1073/pnas.2036536100] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 4.7] [Reference Citation Analysis]
47 Lv Z, Qiu L, Liu Z, Wang W, Chen H, Jia Y, Jia Z, Jiang S, Wang L, Song L. Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. Dev Comp Immunol 2018;89:152-62. [PMID: 30144489 DOI: 10.1016/j.dci.2018.08.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Jahng WJ, Xue L, Rando RR. Lecithin retinol acyltransferase is a founder member of a novel family of enzymes. Biochemistry 2003;42:12805-12. [PMID: 14596594 DOI: 10.1021/bi035370p] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 1.9] [Reference Citation Analysis]
49 Bergmann EM, James MNG. The 3C Proteinases of Picornaviruses and Other Positive-Sense, Single-Stranded RNA Viruses. In: von der Helm K, Korant BD, Cheronis JC, editors. Proteases as Targets for Therapy. Berlin: Springer Berlin Heidelberg; 2000. pp. 117-43. [DOI: 10.1007/978-3-642-57092-6_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
50 Zhai X, Meek TD. Catalytic Mechanism of Cruzain from Trypanosoma cruzi As Determined from Solvent Kinetic Isotope Effects of Steady-State and Pre-Steady-State Kinetics. Biochemistry 2018;57:3176-90. [PMID: 29336553 DOI: 10.1021/acs.biochem.7b01250] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
51 Zamora MA, Baldoni HA, Rodriguez AM, Enriz RD, Sosa CP, Perczel A, Kucsman A, Farkas O, Deretey E, Vank JC, Csizmadia IG. Peptide model XXVIII: An exploratory ab initio and density functional study on the side-chain-backbone interaction in N -acetyl- L -cysteine- N -methylamide and N -formyl- L -cysteinamide in their γ L -backbone conformations. Can J Chem 2002;80:832-44. [DOI: 10.1139/v02-076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 0.7] [Reference Citation Analysis]
52 Santos LH, Waldner BJ, Fuchs JE, Pereira GAN, Liedl KR, Caffarena ER, Ferreira RS. Understanding Structure–Activity Relationships for Trypanosomal Cysteine Protease Inhibitors by Simulations and Free Energy Calculations. J Chem Inf Model 2019;59:137-48. [DOI: 10.1021/acs.jcim.8b00557] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
53 Wolters PJ, Raymond WW, Blount JL, Caughey GH. Regulated Expression, Processing, and Secretion of Dog Mast Cell Dipeptidyl Peptidase I. Journal of Biological Chemistry 1998;273:15514-20. [DOI: 10.1074/jbc.273.25.15514] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 1.8] [Reference Citation Analysis]
54 Sardi F, Manta B, Portillo-Ledesma S, Knoops B, Comini MA, Ferrer-Sueta G. Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection. Anal Biochem 2013;435:74-82. [PMID: 23296042 DOI: 10.1016/j.ab.2012.12.017] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
55 Arthur JS, Gauthier S, Elce JS. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett 1995;368:397-400. [PMID: 7635186 DOI: 10.1016/0014-5793(95)00691-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 1.3] [Reference Citation Analysis]
56 Ding J, Wang W, Feng H, Zhang Y, Wang DC. Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms. J Biol Chem 2012;287:26911-20. [PMID: 22700987 DOI: 10.1074/jbc.M112.368043] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
57 Kumari N, Lee KK, Jha S. Targeting the Ubiquitin Proteasome System in Cancer. In: Shahzad HN, editor. Neoplasm. InTech; 2018. [DOI: 10.5772/intechopen.76705] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
58 Khan AR, James MN. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 1998;7:815-36. [PMID: 9568890 DOI: 10.1002/pro.5560070401] [Cited by in Crossref: 319] [Cited by in F6Publishing: 296] [Article Influence: 13.3] [Reference Citation Analysis]
59 Park J, Cho J, Kim EE, Song EJ. Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019;20:E5997. [PMID: 31795161 DOI: 10.3390/ijms20235997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Abdul Halim MF, Rodriguez R, Stoltzfus JD, Duggin IG, Pohlschroder M. Conserved residues are critical for Haloferax volcanii archaeosortase catalytic activity: Implications for convergent evolution of the catalytic mechanisms of non-homologous sortases from archaea and bacteria. Mol Microbiol 2018;108:276-87. [PMID: 29465796 DOI: 10.1111/mmi.13935] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
61 Ma Q, Zhao X, Nasser Eddine A, Geerlof A, Li X, Cronan JE, Kaufmann SH, Wilmanns M. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proc Natl Acad Sci U S A 2006;103:8662-7. [PMID: 16735476 DOI: 10.1073/pnas.0510436103] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 3.3] [Reference Citation Analysis]
62 Homaei A, Stevanato R, Etemadipour R, Hemmati R. Purification, catalytic, kinetic and thermodynamic characteristics of a novel ficin from Ficus johannis. Biocatalysis and Agricultural Biotechnology 2017;10:360-6. [DOI: 10.1016/j.bcab.2017.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
63 Bombasaro JA, Zamora MA, Baldoni HA, Enriz RD. An Exhaustive Conformational Analysis of N -Acetyl- l -cysteine- N -methylamide. Identification of the Complete Set of Interconversion Pathways on the ab Initio and DFT Potential Energy Hypersurface. J Phys Chem A 2005;109:874-84. [DOI: 10.1021/jp0460386] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
64 Castro HC, Abreu PA, Geraldo RB, Martins RC, dos Santos R, Loureiro NI, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011;24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
65 Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry 2017;56:6713-25. [PMID: 29185711 DOI: 10.1021/acs.biochem.7b01066] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
66 Buller AR, Townsend CA. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc Natl Acad Sci U S A 2013;110:E653-61. [PMID: 23382230 DOI: 10.1073/pnas.1221050110] [Cited by in Crossref: 87] [Cited by in F6Publishing: 74] [Article Influence: 9.7] [Reference Citation Analysis]
67 Fu P, Zhang X, Jin M, Xu L, Wang C, Xia Z, Zhu Y. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog 2013;9:e1003322. [PMID: 23633953 DOI: 10.1371/journal.ppat.1003322] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
68 Hatano K, Kojima M, Tanokura M, Takahashi K. Nuclear Magnetic Resonance Studies on the pKa Values and Interaction of Ionizable Groups in Bromelain Inhibitor VI from Pineapple Stem. Biological Chemistry 2003;384. [DOI: 10.1515/bc.2003.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
69 Sigel RKO, Pyle AM. Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry. Chem Rev 2007;107:97-113. [DOI: 10.1021/cr0502605] [Cited by in Crossref: 212] [Cited by in F6Publishing: 193] [Article Influence: 13.3] [Reference Citation Analysis]
70 Hillier IH. Chemical reactivity studied by hybrid QM/MM methods. Journal of Molecular Structure: THEOCHEM 1999;463:45-52. [DOI: 10.1016/s0166-1280(98)00391-1] [Cited by in Crossref: 72] [Article Influence: 3.1] [Reference Citation Analysis]
71 Mao F, Lin Y, He Z, Li J, Xiang Z, Zhang Y, Yu Z. Dual roles of cystatin A in the immune defense of the pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 2018;75:190-7. [PMID: 29407615 DOI: 10.1016/j.fsi.2018.01.041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
72 Keceli G, Moore CD, Labonte JW, Toscano JP. NMR detection and study of hydrolysis of HNO-derived sulfinamides. Biochemistry 2013;52:7387-96. [PMID: 24073927 DOI: 10.1021/bi401110f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
73 Falcone FH, Tetteh KK, Hunt P, Blaxter ML, Loukas A, Maizels RM. The new subfamily of cathepsin-Z-like protease genes includes Tc-cpz-1, a cysteine protease gene expressed in Toxocara canis adults and infective stage larvae. Exp Parasitol 2000;94:201-7. [PMID: 10831387 DOI: 10.1006/expr.2000.4489] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.5] [Reference Citation Analysis]
74 Connolly KM, Smith BT, Pilpa R, Ilangovan U, Jung ME, Clubb RT. Sortase from Staphylococcus aureus Does Not Contain a Thiolate-Imidazolium Ion Pair in Its Active Site. Journal of Biological Chemistry 2003;278:34061-5. [DOI: 10.1074/jbc.m305245200] [Cited by in Crossref: 60] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
75 Lecaille F, Serveau C, Gauthier F, Lalmanach G. Revisiting the S2 specificity of papain by structural analogs of Phe. FEBS Letters 1999;445:311-4. [DOI: 10.1016/s0014-5793(99)00143-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
76 Zhou X, Zhang N, Liu L, Walters KJ, Hanna PE, Wagner CR. Probing the catalytic potential of the hamster arylamine N-acetyltransferase 2 catalytic triad by site-directed mutagenesis of the proximal conserved residue, Tyr190. FEBS J 2009;276:6928-41. [PMID: 19860825 DOI: 10.1111/j.1742-4658.2009.07389.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
77 Chiang CY, Lee CC, Lo SY, Wang AH, Tsai HJ. Chromophore Deprotonation State Alters the Optical Properties of Blue Chromoprotein. PLoS One 2015;10:e0134108. [PMID: 26218063 DOI: 10.1371/journal.pone.0134108] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
78 Xu Q, Mengin-Lecreulx D, Patin D, Grant JC, Chiu HJ, Jaroszewski L, Knuth MW, Godzik A, Lesley SA, Elsliger MA, Deacon AM, Wilson IA. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family. Structure 2014;22:1799-809. [PMID: 25465128 DOI: 10.1016/j.str.2014.09.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
79 Xu Q, Sudek S, McMullan D, Miller MD, Geierstanger B, Jones DH, Krishna SS, Spraggon G, Bursalay B, Abdubek P, Acosta C, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Trout CV, van den Bedem H, Weekes D, White A, Wolf G, Zubieta C, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structural basis of murein peptide specificity of a gamma-D-glutamyl-l-diamino acid endopeptidase. Structure 2009;17:303-13. [PMID: 19217401 DOI: 10.1016/j.str.2008.12.008] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 4.2] [Reference Citation Analysis]
80 Boudreaux DA, Maiti TK, Davies CW, Das C. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Proc Natl Acad Sci U S A 2010;107:9117-22. [PMID: 20439756 DOI: 10.1073/pnas.0910870107] [Cited by in Crossref: 75] [Cited by in F6Publishing: 67] [Article Influence: 6.3] [Reference Citation Analysis]
81 García Arteaga V, Apéstegui Guardia M, Muranyi I, Eisner P, Schweiggert-weisz U. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science & Emerging Technologies 2020;65:102449. [DOI: 10.1016/j.ifset.2020.102449] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
82 Francoleon NE, Carrington SJ, Fukuto JM. The reaction of H(2)S with oxidized thiols: generation of persulfides and implications to H(2)S biology. Arch Biochem Biophys 2011;516:146-53. [PMID: 22001739 DOI: 10.1016/j.abb.2011.09.015] [Cited by in Crossref: 137] [Cited by in F6Publishing: 137] [Article Influence: 12.5] [Reference Citation Analysis]
83 Wei D, Huang X, Liu J, Tang M, Zhan CG. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide. Biochemistry 2013;52:5145-54. [PMID: 23862626 DOI: 10.1021/bi400629r] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
84 Melo RL, Barbosa Pozzo RC, Alves LC, Perissutti E, Caliendo G, Santagada V, Juliano L, Juliano MA. Synthesis and hydrolysis by cathepsin B of fluorogenic substrates with the general structure benzoyl-X-ARG-MCA containing non-natural basic amino acids at position X. Biochim Biophys Acta 2001;1547:82-94. [PMID: 11343794 DOI: 10.1016/s0167-4838(01)00171-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
85 D'Ordine RL, Linger RS, Thai CJ, Davisson VJ. Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase. Biochemistry 2012;51:5791-803. [PMID: 22741521 DOI: 10.1021/bi300391m] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
86 Shokhen M, Khazanov N, Albeck A. Challenging a paradigm: theoretical calculations of the protonation state of the Cys25-His159 catalytic diad in free papain. Proteins 2009;77:916-26. [PMID: 19688822 DOI: 10.1002/prot.22516] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
87 Bergmann EM, James MN. Proteolytic Enzymes of the Viruses of the Family Picornaviridae. Proteases of Infectious Agents. Elsevier; 1999. pp. 139-63. [DOI: 10.1016/b978-012420510-9/50032-6] [Cited by in Crossref: 3] [Article Influence: 0.1] [Reference Citation Analysis]
88 Pozhidaeva A, Bezsonova I. USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst) 2019;76:30-9. [PMID: 30807924 DOI: 10.1016/j.dnarep.2019.02.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
89 Schirmeister T. New Peptidic Cysteine Protease Inhibitors Derived from the Electrophilic α-Amino Acid Aziridine-2,3-dicarboxylic Acid. J Med Chem 1999;42:560-72. [DOI: 10.1021/jm981061z] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 2.3] [Reference Citation Analysis]
90 Bekhit AA, Hopkins DL, Geesink G, Bekhit AA, Franks P. Exogenous Proteases for Meat Tenderization. Critical Reviews in Food Science and Nutrition 2014;54:1012-31. [DOI: 10.1080/10408398.2011.623247] [Cited by in Crossref: 93] [Cited by in F6Publishing: 57] [Article Influence: 11.6] [Reference Citation Analysis]
91 Filipek R, Potempa J, Bochtler M. A comparison of staphostatin B with standard mechanism serine protease inhibitors. J Biol Chem 2005;280:14669-74. [PMID: 15644332 DOI: 10.1074/jbc.M411792200] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
92 Del Nery E, Alves LC, Melo RL, Cesari MH, Juliano L, Juliano MA. Specificity of cathepsin B to fluorescent substrates containing benzyl side-chain-substituted amino acids at P1 subsite. J Protein Chem 2000;19:33-8. [PMID: 10882170 DOI: 10.1023/a:1007090708945] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
93 Visessanguan W, An H. Effects of Proteolysis and Mechanism of Gel Weakening in Heat-Induced Gelation of Fish Myosin. J Agric Food Chem 2000;48:1024-32. [DOI: 10.1021/jf990847i] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
94 Du J, Fu L, Sui Y, Zhang L. The function and regulation of OTU deubiquitinases. Front Med 2020;14:542-63. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
95 Grzonka Z, Kasprzykowski F, Wiczk W. Cysteine Proteases. In: Polaina J, Maccabe AP, editors. Industrial Enzymes. Dordrecht: Springer Netherlands; 2007. pp. 181-95. [DOI: 10.1007/1-4020-5377-0_11] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
96 Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550-563. [PMID: 19626045 DOI: 10.1038/nrm2731] [Cited by in Crossref: 1252] [Cited by in F6Publishing: 1191] [Article Influence: 96.3] [Reference Citation Analysis]
97 Benz J, Sendlmeier C, Barends TR, Meinhart A. Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One 2012;7:e40453. [PMID: 22792331 DOI: 10.1371/journal.pone.0040453] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
98 Fyfe PK, Rao VA, Zemla A, Cameron S, Hunter WN. Specificity and mechanism of Acinetobacter baumanii nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. Angew Chem Int Ed Engl 2009;48:9176-9. [PMID: 19859929 DOI: 10.1002/anie.200903407] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
99 Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J 1997;16:3787-96. [PMID: 9233788 DOI: 10.1093/emboj/16.13.3787] [Cited by in Crossref: 185] [Cited by in F6Publishing: 184] [Article Influence: 7.4] [Reference Citation Analysis]
100 Villamil MA, Chen J, Liang Q, Zhuang Z. A Noncanonical Cysteine Protease USP1 Is Activated through Active Site Modulation by USP1-Associated Factor 1. Biochemistry 2012;51:2829-39. [DOI: 10.1021/bi3000512] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
101 Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013;93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Cited by in Crossref: 266] [Cited by in F6Publishing: 262] [Article Influence: 29.6] [Reference Citation Analysis]
102 Štrajbl M, Florián J, Warshel A. Ab Initio Evaluation of the Free Energy Surfaces for the General Base/Acid Catalyzed Thiolysis of Formamide and the Hydrolysis of Methyl Thiolformate:  A Reference Solution Reaction for Studies of Cysteine Proteases. J Phys Chem B 2001;105:4471-84. [DOI: 10.1021/jp010279l] [Cited by in Crossref: 58] [Cited by in F6Publishing: 40] [Article Influence: 2.8] [Reference Citation Analysis]
103 Benz J, Reinstein J, Meinhart A. Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One 2013;8:e67362. [PMID: 23826277 DOI: 10.1371/journal.pone.0067362] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
104 Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol 1998;72:145-98. [PMID: 9559053 DOI: 10.1002/9780470123188.ch5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 37] [Article Influence: 0.5] [Reference Citation Analysis]
105 Real Hernandez LM, Gonzalez de Mejia E. Enzymatic Production, Bioactivity, and Bitterness of Chickpea ( Cicer arietinum ) Peptides. Comprehensive Reviews in Food Science and Food Safety 2019;18:1913-46. [DOI: 10.1111/1541-4337.12504] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
106 Brömme NC, Wex T, Wex H, Levy B, Lipyansky A, Brömme D. Cloning, Characterization, and Expression of the Human TIN-ag-RP Gene Encoding a Novel Putative Extracellular Matrix Protein. Biochemical and Biophysical Research Communications 2000;271:474-80. [DOI: 10.1006/bbrc.2000.2639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
107 Gallego-Páramo C, Hernández-Ortiz N, Buey RM, Rico-Lastres P, García G, Díaz JF, García P, Menéndez M. Structural and Functional Insights Into Skl and Pal Endolysins, Two Cysteine-Amidases With Anti-pneumococcal Activity. Dithiothreitol (DTT) Effect on Lytic Activity. Front Microbiol 2021;12:740914. [PMID: 34777288 DOI: 10.3389/fmicb.2021.740914] [Reference Citation Analysis]
108 Barreiro G, Bicca De Alencastro R, Da Motta Neto JD. A semiempirical study on leupeptin: An inhibitor of cysteine proteases. Int J Quant Chem 1997;65:1125-34. [DOI: 10.1002/(sici)1097-461x(1997)65:6<1125::aid-qua11>3.0.co;2-4] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
109 Pai CH, Wu HJ, Lin CH, Wang AH. Structure and mechanism of Escherichia coli glutathionylspermidine amidase belonging to the family of cysteine; histidine-dependent amidohydrolases/peptidases. Protein Sci 2011;20:557-66. [PMID: 21226054 DOI: 10.1002/pro.589] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
110 Guan X, Fierke CA. Understanding Protein Palmitoylation: Biological Significance and Enzymology. Sci China Chem 2011;54:1888-97. [PMID: 25419213 DOI: 10.1007/s11426-011-4428-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
111 Liu S, de Boeck M, van Dam H, ten Dijke P. Regulation of the TGF-β pathway by deubiquitinases in cancer. The International Journal of Biochemistry & Cell Biology 2016;76:135-45. [DOI: 10.1016/j.biocel.2016.05.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
112 Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort A, Lauritzen C, Łȩgowska M, Lesner A, Marchand-adam S, Mckaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacology & Therapeutics 2018;190:202-36. [DOI: 10.1016/j.pharmthera.2018.05.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 11.3] [Reference Citation Analysis]
113 Welsh WJ, Lin Y. Discussion of the catalytic pathway of cysteine proteases based on AM1 calculations. Journal of Molecular Structure: THEOCHEM 1997;401:315-26. [DOI: 10.1016/s0166-1280(97)00025-0] [Cited by in Crossref: 9] [Article Influence: 0.4] [Reference Citation Analysis]
114 Cherney LT, Cherney MM, Garen CR, Niu C, Moradian F, James MN. Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+). J Mol Biol 2007;367:1357-69. [PMID: 17316682 DOI: 10.1016/j.jmb.2007.01.033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
115 Balasubramanian N, Varatharaju G, Shanmugaiah V, Balakrishnan K, Thirunarayan MA. Molecular Cloning and Docking of speB Gene Encoding Cysteine Protease With Antibiotic Interaction in Streptococcus pyogenes NBMKU12 From the Clinical Isolates. Front Microbiol 2018;9:1658. [PMID: 30131773 DOI: 10.3389/fmicb.2018.01658] [Reference Citation Analysis]
116 Blanco J, Moore RA, Viola RE. Capture of an intermediate in the catalytic cycle of L-aspartate-beta-semialdehyde dehydrogenase. Proc Natl Acad Sci U S A 2003;100:12613-7. [PMID: 14559965 DOI: 10.1073/pnas.1634958100] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 1.7] [Reference Citation Analysis]
117 Rawat R, Starczynowski DT, Ntziachristos P. Nuclear deubiquitination in the spotlight: the multifaceted nature of USP7 biology in disease. Curr Opin Cell Biol 2019;58:85-94. [PMID: 30897496 DOI: 10.1016/j.ceb.2019.02.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
118 Lalmanach G, Saidi A, Bigot P, Chazeirat T, Lecaille F, Wartenberg M. Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. Int J Mol Sci 2020;21:E1944. [PMID: 32178437 DOI: 10.3390/ijms21061944] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
119 Fyfe PK, Oza SL, Fairlamb AH, Hunter WN. Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J Biol Chem 2008;283:17672-80. [PMID: 18420578 DOI: 10.1074/jbc.M801850200] [Cited by in Crossref: 61] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
120 Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014;23:344-53. [PMID: 24403057 DOI: 10.1002/pro.2415] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
121 Han WG, Tajkhorshid E, Suhai S. QM/MM study of the active site of free papain and of the NMA-papain complex. J Biomol Struct Dyn 1999;16:1019-32. [PMID: 10333172 DOI: 10.1080/07391102.1999.10508311] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 1.0] [Reference Citation Analysis]
122 Gawlik K, Gutowicz J. Inhibitory activity against papain, a CA1 cysteine peptidase, in Saccharomycetaceae. Microbiol Res 2008;163:545-55. [PMID: 16971099 DOI: 10.1016/j.micres.2006.08.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
123 Storer AC, Ménard R. Recent insights into cysteine protease specificity: Lessons for drug design. Perspectives in Drug Discovery and Design 1996;6:33-46. [DOI: 10.1007/bf02174044] [Cited by in Crossref: 30] [Article Influence: 1.2] [Reference Citation Analysis]
124 Gimenez-dejoz J, Tsuchiya K, Numata K. Insights into the Stereospecificity in Papain-Mediated Chemoenzymatic Polymerization from Quantum Mechanics/Molecular Mechanics Simulations. ACS Chem Biol 2019;14:1280-92. [DOI: 10.1021/acschembio.9b00259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
125 Patterson AW, Wood WJ, Hornsby M, Lesley S, Spraggon G, Ellman JA. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin s using the substrate activity screening method. J Med Chem 2006;49:6298-307. [PMID: 17034136 DOI: 10.1021/jm060701s] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 4.3] [Reference Citation Analysis]
126 Zheng YJ, Bruice TC. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain? Proc Natl Acad Sci U S A 1997;94:4285-8. [PMID: 9113981 DOI: 10.1073/pnas.94.9.4285] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.4] [Reference Citation Analysis]
127 Lockwood TD. The Transfer of Reductive Energy and Pace of Proteome Turnover: A Theory of Integrated Catabolic Control. Antioxidants & Redox Signaling 2005;7:982-98. [DOI: 10.1089/ars.2005.7.982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
128 Bergmann EM, Mosimann SC, Chernaia MM, Malcolm BA, James MN. The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 1997;71:2436-48. [PMID: 9032381 DOI: 10.1128/JVI.71.3.2436-2448.1997] [Cited by in Crossref: 119] [Cited by in F6Publishing: 59] [Article Influence: 4.8] [Reference Citation Analysis]
129 Wex T, Levy B, Smeekens S, Ansorge S, Desnick R, Bromme D. Genomic Structure, Chromosomal Localization, and Expression of Human Cathepsin W. Biochemical and Biophysical Research Communications 1998;248:255-61. [DOI: 10.1006/bbrc.1998.8954] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 1.1] [Reference Citation Analysis]
130 Fredenhagen A, Molleyres L, Böhlendorf B, Laue G. Structure Determination of Neoefrapeptins A to N: Peptides with Insecticidal Activity Produced by the Fungus Geotrichum candidum. J Antibiot 2006;59:267-80. [DOI: 10.1038/ja.2006.38] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
131 Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, Spangfort MD, Gajhede M, Lund K. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J Immunol 2005;175:3835-45. [PMID: 16148130 DOI: 10.4049/jimmunol.175.6.3835] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 3.5] [Reference Citation Analysis]
132 Ganesan R, Mittl PR, Jelakovic S, Grütter MG. Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis. J Mol Biol 2006;359:1378-88. [PMID: 16787777 DOI: 10.1016/j.jmb.2006.04.051] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 2.9] [Reference Citation Analysis]
133 Park HB, Kim JW, Baek KH. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020;21:E3904. [PMID: 32486158 DOI: 10.3390/ijms21113904] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
134 Lee KY, Lee BJ. Structural and Biochemical Properties of Novel Self-Cleaving Ribozymes. Molecules 2017;22:E678. [PMID: 28441772 DOI: 10.3390/molecules22040678] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
135 Wang F, Krai P, Deu E, Bibb B, Lauritzen C, Pedersen J, Bogyo M, Klemba M. Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem Parasitol 2011;175:10-20. [PMID: 20833209 DOI: 10.1016/j.molbiopara.2010.08.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
136 Jez JM, Noel JP. Mechanism of Chalcone Synthase. Journal of Biological Chemistry 2000;275:39640-6. [DOI: 10.1074/jbc.m008569200] [Cited by in Crossref: 98] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
137 Ilangovan U, Ton-That H, Iwahara J, Schneewind O, Clubb RT. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 2001;98:6056-61. [PMID: 11371637 DOI: 10.1073/pnas.101064198] [Cited by in Crossref: 227] [Cited by in F6Publishing: 205] [Article Influence: 10.8] [Reference Citation Analysis]
138 Rümenapf T, Stark R, Heimann M, Thiel H. N-Terminal Protease of Pestiviruses: Identification of Putative Catalytic Residues by Site-Directed Mutagenesis. J Virol 1998;72:2544-7. [DOI: 10.1128/jvi.72.3.2544-2547.1998] [Cited by in Crossref: 71] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
139 Reddy SY, Kahn K, Zheng YJ, Bruice TC. Protein engineering of nitrile hydratase activity of papain: molecular dynamics study of a mutant and wild-type enzyme. J Am Chem Soc 2002;124:12979-90. [PMID: 12405824 DOI: 10.1021/ja020918l] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
140 Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021:S1097-2765(21)00947-3. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Reference Citation Analysis]
141 Chang G. Quaternary Structure of the SARS Coronavirus Main Protease. In: Lal SK, editor. Molecular Biology of the SARS-Coronavirus. Berlin: Springer Berlin Heidelberg; 2010. pp. 115-28. [DOI: 10.1007/978-3-642-03683-5_8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
142 Schnizer HG, Boehlein SK, Stewart JD, Richards NG, Schuster SM. gamma-Glutamyl thioester intermediate in glutaminase reaction catalyzed by Escherichia coli asparagine synthetase B. Methods Enzymol 2002;354:260-71. [PMID: 12418233 DOI: 10.1016/s0076-6879(02)54022-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
143 Hernández González JE, Hernández Alvarez L, Pascutti PG, Leite VBP. Prediction of Noncompetitive Inhibitor Binding Mode Reveals Promising Site for Allosteric Modulation of Falcipain-2. J Phys Chem B 2019;123:7327-42. [DOI: 10.1021/acs.jpcb.9b05021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
144 Selzer PM, Chen X, Chan VJ, Cheng M, Kenyon GL, Kuntz I, Sakanari JA, Cohen FE, Mckerrow JH. Leishmania major:Molecular Modeling of Cysteine Proteases and Prediction of New Nonpeptide Inhibitors. Experimental Parasitology 1997;87:212-21. [DOI: 10.1006/expr.1997.4220] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 3.1] [Reference Citation Analysis]
145 Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H, Atzmon R, Elgavish S, Peretz T, Vlodavsky I. Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 2005;280:13568-75. [PMID: 15659389 DOI: 10.1074/jbc.M413370200] [Cited by in Crossref: 79] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
146 Guerrero C, de la Calle M, Reid MS, Valpuesta V. Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Mol Biol 1998;36:565-71. [PMID: 9484451 DOI: 10.1023/a:1005952005739] [Cited by in Crossref: 87] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
147 Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2005;79:15189-98. [PMID: 16306590 DOI: 10.1128/JVI.79.24.15189-15198.2005] [Cited by in Crossref: 326] [Cited by in F6Publishing: 255] [Article Influence: 20.4] [Reference Citation Analysis]
148 Jeong J, Yoon C, Jeong C, Lee Y, Chang Y, Kim C. Inhibitory Activity of Drynariae rhizoma Extracts on Cathepsin Having Bone Resorption Activity. Immunopharmacology and Immunotoxicology 2004;26:373-85. [DOI: 10.1081/iph-200026879] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
149 Vivares D, Arnoux P, Pignol D. A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci U S A 2005;102:18848-53. [PMID: 16339904 DOI: 10.1073/pnas.0505833102] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 3.9] [Reference Citation Analysis]
150 Kelley GO, Adkison MA, Leutenegger CM, Hedrick RP. Myxobolus cerebralis: identification of a cathepsin Z-like protease gene (MyxCP-1) expressed during parasite development in rainbow trout, Oncorhynchus mykiss. Experimental Parasitology 2003;105:201-10. [DOI: 10.1016/j.exppara.2003.12.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 1.2] [Reference Citation Analysis]
151 Mangel WF, Toledo DL, Ding J, Sweet RM, McGrath WJ. Temporal and spatial control of the adenovirus proteinase by both a peptide and the viral DNA. Trends Biochem Sci 1997;22:393-8. [PMID: 9357315 DOI: 10.1016/s0968-0004(97)01123-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
152 Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S, Kroemer M. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 2006;14:1293-302. [PMID: 16905103 DOI: 10.1016/j.str.2006.06.012] [Cited by in Crossref: 151] [Cited by in F6Publishing: 151] [Article Influence: 9.4] [Reference Citation Analysis]
153 Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. Int Rev Cytol. 2004;241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
154 Velez G, Sun YJ, Khan S, Yang J, Herrmann J, Chemudupati T, MacLaren RE, Gakhar L, Wakatsuki S, Bassuk AG, Mahajan VB. Structural Insights into the Unique Activation Mechanisms of a Non-classical Calpain and Its Disease-Causing Variants. Cell Rep 2020;30:881-892.e5. [PMID: 31968260 DOI: 10.1016/j.celrep.2019.12.077] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
155 Ma S, Devi-Kesavan LS, Gao J. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K. J Am Chem Soc 2007;129:13633-45. [PMID: 17935329 DOI: 10.1021/ja074222+] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 4.3] [Reference Citation Analysis]
156 Gutierrez-Diaz BT, Gu W, Ntziachristos P. Deubiquitinases: Pro-oncogenic Activity and Therapeutic Targeting in Blood Malignancies. Trends Immunol 2020;41:327-40. [PMID: 32139316 DOI: 10.1016/j.it.2020.02.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
157 Arora A, Singh VP. Cysteine Protease Gene Expression and Proteolytic Activity During Floral Development and Senescence in Ethylene-insensitive Gladiolus grandiflora. J Plant Biochem Biotechnol 2004;13:123-6. [DOI: 10.1007/bf03263206] [Cited by in Crossref: 17] [Article Influence: 1.7] [Reference Citation Analysis]
158 Elsässer B, Zauner FB, Messner J, Soh WT, Dall E, Brandstetter H. Distinct Roles of Catalytic Cysteine and Histidine in the Protease and Ligase Mechanisms of Human Legumain As Revealed by DFT-Based QM/MM Simulations. ACS Catal 2017;7:5585-93. [PMID: 28932620 DOI: 10.1021/acscatal.7b01505] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
159 Wittenborn EC, Jost M, Wei Y, Stubbe J, Drennan CL. Structure of the Catalytic Domain of the Class I Polyhydroxybutyrate Synthase from Cupriavidus necator. J Biol Chem 2016;291:25264-77. [PMID: 27742839 DOI: 10.1074/jbc.M116.756833] [Cited by in Crossref: 50] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
160 Hu X, Compton JR, Leary DH, Olson MA, Lee MS, Cheung J, Ye W, Ferrer M, Southall N, Jadhav A, Morazzani EM, Glass PJ, Marugan J, Legler PM. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease. Biochemistry 2016;55:3007-19. [PMID: 27030368 DOI: 10.1021/acs.biochem.5b00992] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
161 Choi KH, Laursen RA. Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale: Primary structure of ginger proteases. European Journal of Biochemistry 2000;267:1516-26. [DOI: 10.1046/j.1432-1327.2000.01152.x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 2.0] [Reference Citation Analysis]
162 Barrett AJ, Rawlings ND. Families and clans of cysteine peptidases. Perspectives in Drug Discovery and Design 1996;6:1-11. [DOI: 10.1007/bf02174042] [Cited by in Crossref: 26] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
163 Mladenovic M, Fink RF, Thiel W, Schirmeister T, Engels B. On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study. J Am Chem Soc 2008;130:8696-705. [PMID: 18557615 DOI: 10.1021/ja711043x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 3.4] [Reference Citation Analysis]
164 Otto H, Schirmeister T. Cysteine Proteases and Their Inhibitors. Chem Rev 1997;97:133-72. [DOI: 10.1021/cr950025u] [Cited by in Crossref: 522] [Cited by in F6Publishing: 464] [Article Influence: 20.9] [Reference Citation Analysis]
165 Strieter ER, Andrew TL. Restricting the ψ Torsion Angle Has Stereoelectronic Consequences on a Scissile Bond: An Electronic Structure Analysis. Biochemistry 2015;54:5748-56. [PMID: 26332921 DOI: 10.1021/acs.biochem.5b00845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
166 Wagstaff C, Leverentz MK, Griffiths G, Thomas B, Chanasut U, Stead AD, Rogers HJ. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. J Exp Bot 2002;53:233-40. [PMID: 11807127 DOI: 10.1093/jexbot/53.367.233] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 4.1] [Reference Citation Analysis]
167 Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Chiu M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Yeh A, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010;66:1354-64. [PMID: 20944232 DOI: 10.1107/S1744309110021214] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
168 Gottipati K, Ruggli N, Gerber M, Tratschin JD, Benning M, Bellamy H, Choi KH. The structure of classical swine fever virus N(pro): a novel cysteine Autoprotease and zinc-binding protein involved in subversion of type I interferon induction. PLoS Pathog 2013;9:e1003704. [PMID: 24146623 DOI: 10.1371/journal.ppat.1003704] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
169 Patel BK, Jagannadham MV. A high cysteine containing thiol proteinase from the latex of Ervatamia heyneana: purification and comparison with ervatamin B and C from Ervatamia coronaria. J Agric Food Chem 2003;51:6326-34. [PMID: 14518963 DOI: 10.1021/jf026184d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
170 Squeglia F, Ruggiero A, Romano M, Vitagliano L, Berisio R. Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: evidence for the L-to-D inversion of configuration of the catalytic cysteine. Acta Crystallogr D Biol Crystallogr 2014;70:2295-300. [PMID: 25195744 DOI: 10.1107/S1399004714013674] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]