BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211:67-77. [PMID: 7225844 DOI: 10.1016/0006-8993(81)90067-6] [Cited by in Crossref: 488] [Cited by in F6Publishing: 455] [Article Influence: 12.2] [Reference Citation Analysis]
Number Citing Articles
1 Jiang R, Liu Q, Zhu H, Dai Y, Yao J, Liu Y, Gong PP, Shi W. The expression of TRIAD1 and DISC1 after traumatic brain injury and its influence on NSCs. Stem Cell Res Ther 2018;9:297. [PMID: 30409224 DOI: 10.1186/s13287-018-1024-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Chen X, Yin J, Wu X, Li R, Fang J, Chen R, Zhang B, Zhang W. Effects of magnetically labeled exogenous endothelial progenitor cells on cerebral blood perfusion and microvasculature alterations after traumatic brain injury in rat model. Acta Radiol 2013;54:313-23. [PMID: 23528570 DOI: 10.1258/ar.2012.120605] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
3 Scremin OU, Li MG, Roch M, Booth R, Jenden DJ. Acetylcholine and choline dynamics provide early and late markers of traumatic brain injury. Brain Res 2006;1124:155-66. [PMID: 17084821 DOI: 10.1016/j.brainres.2006.09.062] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
4 Silachev DN, Plotnikov EY, Babenko VA, Danilina TI, Zorov LD, Pevzner IB, Zorov DB, Sukhikh GT. Intra-Arterial Administration of Multipotent Mesenchymal Stromal Cells Promotes Functional Recovery of the Brain After Traumatic Brain Injury. Bull Exp Biol Med 2015;159:528-33. [DOI: 10.1007/s10517-015-3009-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
5 Xue Y, Ding J, Liu Y, Pan Y, Zhao P, Ren Z, Xu J, Ye L, Xu Y. Preparation and Evaluation of Recombinant Human Erythropoietin Loaded Tween 80-Albumin Nanoparticle for Traumatic Brain Injury Treatment. Int J Nanomedicine 2020;15:8495-506. [PMID: 33154639 DOI: 10.2147/IJN.S264025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST. One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 1999;16:109-22. [PMID: 10098956 DOI: 10.1089/neu.1999.16.109] [Cited by in Crossref: 213] [Cited by in F6Publishing: 197] [Article Influence: 9.7] [Reference Citation Analysis]
7 Lang Y, Fu F, Sun D, Xi C, Chen F. Labetalol Prevents Intestinal Dysfunction Induced by Traumatic Brain Injury. PLoS One 2015;10:e0133215. [PMID: 26186619 DOI: 10.1371/journal.pone.0133215] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
8 Chen G, Shi J, Ding Y, Yin H, Hang C. Progesterone prevents traumatic brain injury-induced intestinal nuclear factor kappa B activation and proinflammatory cytokines expression in male rats. Mediators Inflamm 2007;2007:93431. [PMID: 18274644 DOI: 10.1155/2007/93431] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.7] [Reference Citation Analysis]
9 Chen G, Shi JX, Qi M, Wang HX, Hang CH. Effects of progesterone on intestinal inflammatory response, mucosa structure alterations, and apoptosis following traumatic brain injury in male rats. J Surg Res 2008;147:92-8. [PMID: 17868700 DOI: 10.1016/j.jss.2007.05.029] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.2] [Reference Citation Analysis]
10 Kaur I, Kumar A, Jaggi AS, Singh N. Evidence for the role of histaminergic pathways in neuroprotective mechanism of ischemic postconditioning in mice. Fundam Clin Pharmacol 2017;31:456-70. [DOI: 10.1111/fcp.12275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
11 Prins ML, Hovda DA. Developing experimental models to address traumatic brain injury in children. J Neurotrauma 2003;20:123-37. [PMID: 12675967 DOI: 10.1089/08977150360547053] [Cited by in Crossref: 98] [Cited by in F6Publishing: 84] [Article Influence: 5.4] [Reference Citation Analysis]
12 Bie X, Chen Y, Zheng X, Dai H. The role of crocetin in protection following cerebral contusion and in the enhancement of angiogenesis in rats. Fitoterapia 2011;82:997-1002. [PMID: 21741458 DOI: 10.1016/j.fitote.2011.06.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
13 Zhang L, Hu R, Li M, Li F, Meng H, Zhu G, Lin J, Feng H. Deferoxamine attenuates iron-induced long-term neurotoxicity in rats with traumatic brain injury. Neurol Sci 2013;34:639-45. [DOI: 10.1007/s10072-012-1090-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
14 Uckun OM, Alagoz F, Secer M, Karakoyun O, Ocakcioglu A, Yildirim AE, Yımaz F, Sahinoglu M, Divanlioglu D, Dalgic A, Daglioglu E, Belen AD. Neuroprotective effects of tetracyclines on blunt head trauma: An experimental study on rats. J Neurosci Rural Pract 2015;6:27-32. [PMID: 25552848 DOI: 10.4103/0976-3147.143186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
15 Marklund N, Lewander T, Clausen F, Hillered L. Effects of the Nitrone Radical Scavengers PBN and S-PBN on In vivo Trapping of Reactive Oxygen Species after Traumatic Brain Injury in Rats. J Cereb Blood Flow Metab 2001;21:1259-67. [DOI: 10.1097/00004647-200111000-00002] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 10.4] [Reference Citation Analysis]
16 Clond MA, Lee BS, Yu JJ, Singer MB, Amano T, Lamb AW, Drazin D, Kateb B, Ley EJ, Yu JS. Reactive oxygen species-activated nanoprodrug of Ibuprofen for targeting traumatic brain injury in mice. PLoS One 2013;8:e61819. [PMID: 23637912 DOI: 10.1371/journal.pone.0061819] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
17 Tian L, Guo R, Yue X, Lv Q, Ye X, Wang Z, Chen Z, Wu B, Xu G, Liu X. Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats. Brain Res 2012;1440:47-55. [PMID: 22284619 DOI: 10.1016/j.brainres.2011.12.059] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
18 Iaubasarova IR, Khailova LS, Nazarov PA, Rokitskaya TI, Silachev DN, Danilina TI, Plotnikov EY, Denisov SS, Kirsanov RS, Korshunova GA, Kotova EA, Zorov DB, Antonenko YN. Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent. Biochemistry (Mosc) 2020;85:1578-90. [PMID: 33705296 DOI: 10.1134/S000629792012010X] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Tan L, Ge H, Tang J, Fu C, Duanmu W, Chen Y, Hu R, Sui J, Liu X, Feng H. Amantadine preserves dopamine level and attenuates depression-like behavior induced by traumatic brain injury in rats. Behav Brain Res 2015;279:274-82. [PMID: 25447294 DOI: 10.1016/j.bbr.2014.10.037] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
20 Zhang HM, Liu P, Jiang C, Jin XQ, Liu RN, Li SQ, Zhao Y. Notch signaling inhibitor DAPT provides protection against acute craniocerebral injury. PLoS One 2018;13:e0193037. [PMID: 29447233 DOI: 10.1371/journal.pone.0193037] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
21 Li H, McDonald W, Parada I, Faria L, Graber K, Takahashi DK, Ma Y, Prince D. Targets for preventing epilepsy following cortical injury. Neurosci Lett 2011;497:172-6. [PMID: 21354270 DOI: 10.1016/j.neulet.2011.02.042] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
22 Paterno R, Folweiler KA, Cohen AS. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2017;17:52. [PMID: 28500417 DOI: 10.1007/s11910-017-0762-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
23 Whalen MJ, Clark RSB, Dixon CE, Robichaud P, Marion DW, Vagni V, Graham SH, Virag L, Hasko G, Stachlewitz R, Szabo C, Kochanek PM. Reduction of Cognitive and Motor Deficits after Traumatic Brain Injury in Mice Deficient in Poly(ADP-Ribose) Polymerase. J Cereb Blood Flow Metab 1999;19:835-42. [DOI: 10.1097/00004647-199908000-00002] [Cited by in Crossref: 128] [Cited by in F6Publishing: 115] [Article Influence: 25.6] [Reference Citation Analysis]
24 Gahm C, Holmin S, Wiklund PN, Brundin L, Mathiesen T. Neuroprotection by selective inhibition of inducible nitric oxide synthase after experimental brain contusion. J Neurotrauma 2006;23:1343-54. [PMID: 16958586 DOI: 10.1089/neu.2006.23.1343] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 3.3] [Reference Citation Analysis]
25 Underhill HR, Yuan C, Hayes CE. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner. Magn Reson Med 2010;64:883-92. [PMID: 20535812 DOI: 10.1002/mrm.22466] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
26 Meaney D, Ross D, Winkelstein B, Brasko J, Goldstein D, Bilston L, Thibault L, Gennarelli T. Modification of the Cortical Impact Model To Produce Axonal Injury in the Rat Cerebral Cortex. Journal of Neurotrauma 1994;11:599-612. [DOI: 10.1089/neu.1994.11.599] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 2.3] [Reference Citation Analysis]
27 Zhang M, Shan H, Wang T, Liu W, Wang Y, Wang L, Zhang L, Chang P, Dong W, Chen X, Tao L. Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice. Neurochem Res 2013;38:714-25. [DOI: 10.1007/s11064-013-0969-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
28 Stelmashook EV, Genrikhs EE, Novikova SV, Barskov IV, Gudasheva TA, Seredenin SB, Khaspekov LG, Isaev NK. Behavioral effect of dipeptide NGF mimetic GK-2 in an in vivo model of rat traumatic brain injury and its neuroprotective and regenerative properties in vitro. Int J Neurosci 2015;125:375-9. [PMID: 24950445 DOI: 10.3109/00207454.2014.935376] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
29 Zhao J, Chen N, Shen N, Zhao H, Wang D, Shi J, Wang Y, Cui X, Yan Z, Xue H. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury. Neural Regen Res 2012;7:741-8. [PMID: 25737696 DOI: 10.3969/j.issn.1673-5374.2012.10.004] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
30 Al Nimer F, Lindblom R, Ström M, Guerreiro-Cacais AO, Parsa R, Aeinehband S, Mathiesen T, Lidman O, Piehl F. Strain influences on inflammatory pathway activation, cell infiltration and complement cascade after traumatic brain injury in the rat. Brain Behav Immun 2013;27:109-22. [PMID: 23044177 DOI: 10.1016/j.bbi.2012.10.002] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
31 Li H, Sun J, Wang F, Ding G, Chen W, Fang R, Yao Y, Pang M, Lu ZQ, Liu J. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice. Brain Res 2016;1642:70-8. [PMID: 27017959 DOI: 10.1016/j.brainres.2016.03.031] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 9.2] [Reference Citation Analysis]
32 Wang P, Pan B, Tian J, Yang L, Chen Z, Yang L, Fan Z. Ac-FLTD-CMK inhibits pyroptosis and exerts neuroprotective effect in a mice model of traumatic brain injury. Neuroreport 2021;32:188-97. [PMID: 33470761 DOI: 10.1097/WNR.0000000000001580] [Reference Citation Analysis]
33 Genrikhs EE, Stelmashook EV, Voronkov DN, Novikova SV, Alexandrova OP, Fedorov AV, Isaev NK. The single intravenous administration of methylene blue after traumatic brain injury diminishes neurological deficit, blood-brain barrier disruption and decrease in the expression of S100 protein in rats. Brain Res 2020;1740:146854. [PMID: 32339501 DOI: 10.1016/j.brainres.2020.146854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
34 Yuan J, Wang D, Liu Y, Chen X, Zhang H, Shen F, Liu X, Fu J. Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. Journal of Surgical Research 2018;228:238-46. [DOI: 10.1016/j.jss.2018.03.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
35 Liliang PC, Liang CL, Lu K, Wang KW, Weng HC, Hsieh CH, Tsai YD, Chen HJ. Relationship between injury severity and serum tau protein levels in traumatic brain injured rats. Resuscitation 2010;81:1205-8. [PMID: 20598429 DOI: 10.1016/j.resuscitation.2010.05.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
36 Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 2005;136:971-89. [PMID: 16242846 DOI: 10.1016/j.neuroscience.2005.08.030] [Cited by in Crossref: 219] [Cited by in F6Publishing: 203] [Article Influence: 13.7] [Reference Citation Analysis]
37 Kanbak G, Kartkaya K, Ozcelik E, Guvenal AB, Kabay SC, Arslan G, Durmaz R. The neuroprotective effect of acute moderate alcohol consumption on caspase-3 mediated neuroapoptosis in traumatic brain injury: the role of lysosomal cathepsin L and nitric oxide. Gene 2013;512:492-5. [PMID: 23099040 DOI: 10.1016/j.gene.2012.10.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
38 Goldman H, Hodgson V, Morehead M, Hazlett J, Murphy S. Cerebrovascular Changes in a Rat Model of Moderate Closed-Head Injury. Journal of Neurotrauma 1991;8:129-44. [DOI: 10.1089/neu.1991.8.129] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 1.5] [Reference Citation Analysis]
39 Mao SS, Hua R, Zhao XP, Qin X, Sun ZQ, Zhang Y, Wu YQ, Jia MX, Cao JL, Zhang YM. Exogenous administration of PACAP alleviates traumatic brain injury in rats through a mechanism involving the TLR4/MyD88/NF-κB pathway. J Neurotrauma 2012;29:1941-59. [PMID: 22583372 DOI: 10.1089/neu.2011.2244] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 7.5] [Reference Citation Analysis]
40 Shtein L, Toker L, Bersudsky Y, Belmaker RH, Agam G. The inositol monophosphatase inhibitor L-690,330 affects pilocarpine-behavior and the forced swim test. Psychopharmacology (Berl) 2013;227:503-8. [PMID: 23344554 DOI: 10.1007/s00213-013-2969-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
41 Bao HJ, Zhang L, Han WC, Dai DK. Apelin-13 attenuates traumatic brain injury-induced damage by suppressing autophagy. Neurochem Res 2015;40:89-97. [PMID: 25362565 DOI: 10.1007/s11064-014-1469-x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
42 Yu KP, Yoon YS, Lee JG, Oh JS, Lee JS, Seog T, Lee HY. Effects of Electric Cortical Stimulation (ECS) and Transcranial Direct Current Stimulation (tDCS) on Rats With a Traumatic Brain Injury. Ann Rehabil Med 2018;42:502-13. [PMID: 30180518 DOI: 10.5535/arm.2018.42.4.502] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Wen J, Qian S, Yang Q, Deng L, Mo Y, Yu Y. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp Ther Med 2014;8:881-6. [PMID: 25120618 DOI: 10.3892/etm.2014.1818] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
44 Zhang Z, Artelt M, Burnet M, Trautmann K, Schluesener HJ. Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury. Neuroscience 2006;141:637-44. [PMID: 16725271 DOI: 10.1016/j.neuroscience.2006.04.027] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
45 Marklund N, Salci K, Ronquist G, Hillered L. Energy metabolic changes in the early post-injury period following traumatic brain injury in rats. Neurochem Res 2006;31:1085-93. [PMID: 16909313 DOI: 10.1007/s11064-006-9120-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
46 Wang J, Wang H, Zhong W, Li N, Cong Z. Expression and cell distribution of metabotropic glutamate receptor 5 in the rat cortex following traumatic brain injury. Brain Research 2012;1464:73-81. [DOI: 10.1016/j.brainres.2012.05.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
47 Wang Y, Huang X, Liang Q, Fan R, Qin F, Guo Y, Yan K, Liu W, Luo J, Li Y, Mao X, Liu Z, Zhou H. A strategy for detecting absorbed bioactive compounds for quality control in the water extract of rhubarb by ultra performance liquid chromatography with photodiode array detector. Chin J Integr Med 2012;18:690-8. [DOI: 10.1007/s11655-012-1053-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
48 Zhai X, Li J, Li L, Sun Y, Zhang X, Xue Y, Lv J, Gao Y, Li S, Yan W, Yin S, Xiao Z. L-lactate preconditioning promotes plasticity-related proteins expression and reduces neurological deficits by potentiating GPR81 signaling in rat traumatic brain injury model. Brain Res 2020;1746:146945. [PMID: 32531223 DOI: 10.1016/j.brainres.2020.146945] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Jiang L, Xia Q, Dong X, Hu Y, Chen Z, Chen K, Wang K, Liu J, Wang T. Neuroprotective effect of breviscapine on traumatic brain injury in rats associated with the inhibition of GSK3β signaling pathway. Brain Research 2017;1660:1-9. [DOI: 10.1016/j.brainres.2017.01.031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
50 Biagas KV, Grundl PD, Kochanek PM, Schiding JK, Nemoto EM. Posttraumatic Hyperemia in Immature, Mature, and Aged Rats: Autoradiographic Determination of Cerebral Blood Flow. Journal of Neurotrauma 1996;13:189-200. [DOI: 10.1089/neu.1996.13.189] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 2.2] [Reference Citation Analysis]
51 Kunz T, Marklund N, Hillered L, Oliw EH. Cyclooxygenase-2, Prostaglandin Synthases, and Prostaglandin H 2 Metabolism in Traumatic Brain Injury in the Rat. Journal of Neurotrauma 2002;19:1051-64. [DOI: 10.1089/089771502760341965] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 3.1] [Reference Citation Analysis]
52 Wang H, Zhu X, Liao Z, Xiang H, Ren M, Xu M, Zhao H. Novel-graded traumatic brain injury model in rats induced by closed head impacts: A graded traumatic brain injury model in rats. Neuropathology 2018;38:484-92. [DOI: 10.1111/neup.12509] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
53 Meaney DF, Smith DH, Shreiber DI, Bain AC, Miller RT, Ross DT, Gennarelli TA. Biomechanical analysis of experimental diffuse axonal injury. J Neurotrauma 1995;12:689-94. [PMID: 8683620 DOI: 10.1089/neu.1995.12.689] [Cited by in Crossref: 169] [Cited by in F6Publishing: 134] [Article Influence: 6.8] [Reference Citation Analysis]
54 Prieto R, Gutiérrez-gonzález R, Barcia J, Pascual J, Roda J, Cerdán S, Matias-guiu J. Modelos experimentales de traumatismo craneoencefálico. Neurocirugía 2009;20:225-44. [DOI: 10.1016/s1130-1473(09)70162-9] [Cited by in Crossref: 4] [Article Influence: 0.3] [Reference Citation Analysis]
55 Lewén A, Skoglösa Y, Clausen F, Marklund N, Chan PH, Lindholm D, Hillered L. Paradoxical Increase in Neuronal DNA Fragmentation after Neuroprotective Free Radical Scavenger Treatment in Experimental Traumatic Brain Injury. J Cereb Blood Flow Metab 2001;21:344-50. [DOI: 10.1097/00004647-200104000-00003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 6.4] [Reference Citation Analysis]
56 Mcintosh TK, Smith DH, Garde E. Therapeutic approaches for the prevention of secondary brain injury: . European Journal of Anaesthesiology 1996;13:291-309. [DOI: 10.1097/00003643-199605000-00007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 1.1] [Reference Citation Analysis]
57 Hang CH, Shi JX, Li JS, Li WQ, Yin HX. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol 2005;11:1149-54. [PMID: 15754395 DOI: 10.3748/wjg.v11.i8.1149] [Cited by in CrossRef: 28] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
58 Samini F, Samarghandian S, Borji A, Mohammadi G, bakaian M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacol Biochem Behav 2013;110:238-44. [PMID: 23932920 DOI: 10.1016/j.pbb.2013.07.019] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
59 Sun KJ, Zhu L, Wang HD, Ji XJ, Pan H, Chen M, Lu TJ, Fan YW, Cheng HL, Hang CH, Shi JX. Zinc as mediator of ubiquitin conjugation following traumatic brain injury. Brain Res 2013;1506:132-41. [PMID: 23419896 DOI: 10.1016/j.brainres.2013.02.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
60 Nilsson P, Hillered L, Pontén U, Ungerstedt U. Changes in Cortical Extracellular Levels of Energy-Related Metabolites and Amino Acids following Concussive Brain Injury in Rats. J Cereb Blood Flow Metab 1990;10:631-7. [DOI: 10.1038/jcbfm.1990.115] [Cited by in Crossref: 415] [Cited by in F6Publishing: 380] [Article Influence: 83.0] [Reference Citation Analysis]
61 Gilchrist MD. Experimental Device for Simulating Traumatic Brain Injury Resulting from Linear Accelerations. Strain 2004;40:180-92. [DOI: 10.1111/j.1475-1305.2004.00168.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
62 Si D, Li J, Liu J, Wang X, Wei Z, Tian Q, Wang H, Liu G. Progesterone protects blood-brain barrier function and improves neurological outcome following traumatic brain injury in rats. Exp Ther Med 2014;8:1010-4. [PMID: 25120639 DOI: 10.3892/etm.2014.1840] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
63 Blixt J, Gunnarson E, Wanecek M. Erythropoietin Attenuates the Brain Edema Response after Experimental Traumatic Brain Injury. J Neurotrauma 2018;35:671-80. [PMID: 29179621 DOI: 10.1089/neu.2017.5015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
64 Lighthall JW. Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 1988;5:1-15. [PMID: 3193461 DOI: 10.1089/neu.1988.5.1] [Cited by in Crossref: 324] [Cited by in F6Publishing: 296] [Article Influence: 10.1] [Reference Citation Analysis]
65 Gasparovic C, King D, Feeney DM. Metabolism in single rat brain slices measured by magnetic resonance spectroscopy. Brain Res Brain Res Protoc 1999;4:97-102. [PMID: 10234457 DOI: 10.1016/s1385-299x(99)00010-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
66 Weisend MP, Feeney DM. The relationship between traumatic brain injury-induced changes in brain temperature and behavioral and anatomical outcome. Journal of Neurosurgery 1994;80:120-32. [DOI: 10.3171/jns.1994.80.1.0120] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 0.9] [Reference Citation Analysis]
67 Holschneider DP, Guo Y, Roch M, Norman KM, Scremin OU. Acetylcholinesterase Inhibition and Locomotor Function after Motor-Sensory Cortex Impact Injury. Journal of Neurotrauma 2011;28:1909-19. [DOI: 10.1089/neu.2011.1978] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
68 Wang KW, Wang HK, Chen HJ, Liliang PC, Liang CL, Tsai YD, Cho CL, Lu K. Simvastatin combined with antioxidant attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. Biomed Res Int 2014;2014:910260. [PMID: 25013810 DOI: 10.1155/2014/910260] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
69 Gulati P, Singh N. Tadalafil enhances the neuroprotective effects of ischemic postconditioning in mice, probably in a nitric oxide associated manner. Can J Physiol Pharmacol 2014;92:418-26. [DOI: 10.1139/cjpp-2013-0428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
70 Su X, Wang H, Zhao J, Pan H, Mao L. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-κB pathway after traumatic brain injury in the rat. Mediators Inflamm. 2011;2011:807142. [PMID: 21772666 DOI: 10.1155/2011/807142] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 7.5] [Reference Citation Analysis]
71 Isaev NK, Stelmashook EV, Genrikhs EE, Korshunova GA, Sumbatyan NV, Kapkaeva MR, Skulachev VP. Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type. Reviews in the Neurosciences 2016;27:849-55. [DOI: 10.1515/revneuro-2016-0036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
72 Yunoki M, Kawauchi M, Ukita N, Sugiura T, Ohmoto T. Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surgical Neurology 2003;59:156-60. [DOI: 10.1016/s0090-3019(02)01040-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
73 Matias I, Elias-filho DH, Garcia CAB, Silva GH, Mejia J, Cabral FR, Miranda ACC, Gomes da Silva S, da Silva Lopes L, Coimbra NC, Machado HR. A new model of experimental hemispherotomy in young adult Rattus norvegicus: a neural tract tracing and SPECT in vivo study. Journal of Neurosurgery 2018. [DOI: 10.3171/2017.12.jns171150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Levi I, Eskira Y, Eisenstein M, Gilon C, Hoffman A, Tal-Gan Y, Fanous J, Bersudsky Y, Belmaker RH, Agam G, Almog O. Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects. Eur Neuropsychopharmacol 2013;23:1806-15. [PMID: 23619164 DOI: 10.1016/j.euroneuro.2013.02.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
75 Zhang Z, Zhang Z, Artelt M, Burnet M, Schluesener HJ. Dexamethasone attenuates early expression of three molecules associated with microglia/macrophages activation following rat traumatic brain injury. Acta Neuropathol 2007;113:675-82. [DOI: 10.1007/s00401-007-0195-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
76 Liao ZB, Zhi XG, Shi QH, He ZH. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur J Neurol 2008;15:140-9. [PMID: 18093155 DOI: 10.1111/j.1468-1331.2007.02013.x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 3.4] [Reference Citation Analysis]
77 Yunoki M, Kawauchi M, Ukita N, Noguchi Y, Nishio S, Ono Y, Asari S, Ohmoto T, Asanuma M, Ogawa N. Effects of Lecithinized Superoxide Dismutase on Traumatic Brain Injury in Rats. Journal of Neurotrauma 1997;14:739-46. [DOI: 10.1089/neu.1997.14.739] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 1.3] [Reference Citation Analysis]
78 Wang JY, Huang YN, Chiu CC, Tweedie D, Luo W, Pick CG, Chou SY, Luo Y, Hoffer BJ, Greig NH, Wang JY. Pomalidomide mitigates neuronal loss, neuroinflammation, and behavioral impairments induced by traumatic brain injury in rat. J Neuroinflammation 2016;13:168. [PMID: 27353053 DOI: 10.1186/s12974-016-0631-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
79 Harch PG, Kriedt C, Van Meter KW, Sutherland RJ. Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res 2007;1174:120-9. [PMID: 17869230 DOI: 10.1016/j.brainres.2007.06.105] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 2.6] [Reference Citation Analysis]
80 Lu H, Zhan Y, Ai L, Chen H, Chen J. AQP4-siRNA alleviates traumatic brain edema by altering post-traumatic AQP4 polarity reversal in TBI rats. J Clin Neurosci 2020;81:113-9. [PMID: 33222898 DOI: 10.1016/j.jocn.2020.09.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Queen SA, Chen MJ, Feeney DM. d-Amphetamine attenuates decreased cerebral glucose utilization after unilateral sensorimotor cortex contusion in rats. Brain Research 1997;777:42-50. [DOI: 10.1016/s0006-8993(97)00717-8] [Cited by in Crossref: 34] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
82 Li D, Ji JX, Xu YT, Ni HB, Rui Q, Liu HX, Jiang F, Gao R, Chen G. Inhibition of Lats1/p-YAP1 pathway mitigates neuronal apoptosis and neurological deficits in a rat model of traumatic brain injury. CNS Neurosci Ther 2018;24:906-16. [PMID: 29488331 DOI: 10.1111/cns.12833] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
83 Mi Z, Liu H, Rose ME, Ma X, Reay DP, Ma J, Henchir J, Dixon CE, Graham SH. Abolishing UCHL1's hydrolase activity exacerbates TBI-induced axonal injury and neuronal death in mice. Exp Neurol 2021;336:113524. [PMID: 33159930 DOI: 10.1016/j.expneurol.2020.113524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
84 Levchakov A, Linder-ganz E, Raghupathi R, Margulies SS, Gefen A. Computational Studies of Strain Exposures in Neonate and Mature Rat Brains during Closed Head Impact. Journal of Neurotrauma 2006;23:1570-80. [DOI: 10.1089/neu.2006.23.1570] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
85 Rostami E. Traumatic Brain Injury Models in Animals. Methods Mol Biol 2016;1462:47-59. [PMID: 27604712 DOI: 10.1007/978-1-4939-3816-2_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Sun MC, Honey CR, Berk C, Wong NL, Tsui JK. Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg 2003;98:565-9. [PMID: 12650429 DOI: 10.3171/jns.2003.98.3.0565] [Cited by in Crossref: 92] [Cited by in F6Publishing: 92] [Article Influence: 5.1] [Reference Citation Analysis]
87 Beyer F, Samper Agrelo I, Küry P. Do Neural Stem Cells Have a Choice? Heterogenic Outcome of Cell Fate Acquisition in Different Injury Models. Int J Mol Sci 2019;20:E455. [PMID: 30669690 DOI: 10.3390/ijms20020455] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
88 Zhu KJ, Huang H, Chu H, Yu H, Zhang SM. Alterations in enterocyte mitochondrial respiratory function and enzyme activities in gastrointestinal dysfunction following brain injury. World J Gastroenterol 2014;20:9585-91. [PMID: 25071356 DOI: 10.3748/wjg.v20.i28.9585] [Cited by in CrossRef: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
89 Genrikhs EE, Stelmashook EV, Popova OV, Kapay NA, Korshunova GA, Sumbatyan NV, Skrebitsky VG, Skulachev VP, Isaev NK. Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. J Drug Target 2015;23:347-52. [PMID: 25585580 DOI: 10.3109/1061186X.2014.997736] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
90 von Gertten C, Holmin S, Mathiesen T, Nordqvist AC. Increases in matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 mRNA after cerebral contusion and depolarisation. J Neurosci Res 2003;73:803-10. [PMID: 12949906 DOI: 10.1002/jnr.10729] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 1.8] [Reference Citation Analysis]
91 Ates O, Cayli S, Gurses I, Yucel N, Iraz M, Altinoz E, Kocak A, Yologlu S. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int j dev neurosci 2006;24:357-63. [DOI: 10.1016/j.ijdevneu.2006.08.003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
92 Bora KS, Arora S, Shri R. Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. Journal of Ethnopharmacology 2011;137:1360-5. [DOI: 10.1016/j.jep.2011.07.066] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
93 Liu S, Zhang L, Wu Q, Wu Q, Wang T. Chemokine CCL2 induces apoptosis in cortex following traumatic brain injury. J Mol Neurosci 2013;51:1021-9. [PMID: 23934512 DOI: 10.1007/s12031-013-0091-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
94 Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: Possible involvement of TLR4/NF-κB pathway. Experimental Neurology 2009;216:398-406. [DOI: 10.1016/j.expneurol.2008.12.019] [Cited by in Crossref: 98] [Cited by in F6Publishing: 94] [Article Influence: 8.2] [Reference Citation Analysis]
95 Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015;32:1861-82. [PMID: 25490251 DOI: 10.1089/neu.2014.3680] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
96 Maas AI. Assessment of Agents for the Treatment of Head Injury: Problems and Pitfalls in Trial Design. CNS Drugs 2000;13:139-54. [DOI: 10.2165/00023210-200013020-00007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
97 Haranishi Y, Kawata R, Fukuda S, Kiyoshima T, Morimoto Y, Matsumoto M, Sakabe T. Moderate hypothermia, but not calpain inhibitor 2, attenuates the proteolysis of microtubule-associated protein 2 in the hippocampus following traumatic brain injury in rats. Eur J Anaesthesiol 2005;22:140-7. [PMID: 15816594 DOI: 10.1017/s0265021505000268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
98 Turkoglu OF, Eroglu H, Gurcan O, Bodur E, Sargon MF, Oner L, Beskonakli E. Local administration of chitosan microspheres after traumatic brain injury in rats: a new challenge for cyclosporine--a delivery. Br J Neurosurg 2010;24:578-83. [PMID: 20868245 DOI: 10.3109/02688697.2010.487126] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
99 Dong XQ, Yu WH, Hu YY, Zhang ZY, Huang M. Oxymatrine reduces neuronal cell apoptosis by inhibiting Toll-like receptor 4/nuclear factor kappa-B-dependent inflammatory responses in traumatic rat brain injury. Inflamm Res. 2011;60:533-539. [PMID: 21190123 DOI: 10.1007/s00011-010-0300-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
100 Holschneider DP, Guo Y, Wang Z, Roch M, Scremin OU. Remote brain network changes after unilateral cortical impact injury and their modulation by acetylcholinesterase inhibition. J Neurotrauma 2013;30:907-19. [PMID: 23343118 DOI: 10.1089/neu.2012.2657] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
101 Brady RD, Casillas-Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, Shultz SR. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis 2019;123:8-19. [PMID: 30121231 DOI: 10.1016/j.nbd.2018.08.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
102 Lundberg J, Le Blanc K, Söderman M, Andersson T, Holmin S. Endovascular transplantation of stem cells to the injured rat CNS. Neuroradiology 2009;51:661-7. [PMID: 19562330 DOI: 10.1007/s00234-009-0551-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
103 Bindra CS, Jaggi AS, Singh N. Role of P2X7 purinoceptors in neuroprotective mechanism of ischemic postconditioning in mice. Mol Cell Biochem 2014;390:161-73. [DOI: 10.1007/s11010-014-1967-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
104 Scremin O, Li M, Jenden D. Cholinergic Modulation of Cerebral Cortical Blood Flow Changes Induced by Trauma. Journal of Neurotrauma 1997;14:573-86. [DOI: 10.1089/neu.1997.14.573] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 0.9] [Reference Citation Analysis]
105 Xu T, Fan X, Tan Y, Yue Y, Chen W, Gu X. Expression of PHB2 in rat brain cortex following traumatic brain injury. Int J Mol Sci 2014;15:3299-318. [PMID: 24566151 DOI: 10.3390/ijms15023299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
106 Nilsson P, Laursen H, Hillered L, Hansen AJ. Calcium Movements in Traumatic Brain Injury: The Role of Glutamate Receptor-Operated Ion Channels. J Cereb Blood Flow Metab 1996;16:262-70. [DOI: 10.1097/00004647-199603000-00011] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 16.6] [Reference Citation Analysis]
107 Chu W, Li M, Li F, Hu R, Chen Z, Lin J, Feng H. Immediate splenectomy down-regulates the MAPK-NF-κB signaling pathway in rat brain after severe traumatic brain injury. J Trauma Acute Care Surg 2013;74:1446-53. [PMID: 23694871 DOI: 10.1097/TA.0b013e31829246ad] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
108 Gahm C, Holmin S, Rudehill S, Mathiesen T. Neuronal degeneration and iNOS expression in experimental brain contusion following treatment with colchicine, dexamethasone, tirilazad mesylate and nimodipine. Acta Neurochir (Wien) 2005;147:1071-84. [DOI: 10.1007/s00701-005-0590-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
109 Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, Kocak A, Yologlu S. Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 2007;294:137-44. [DOI: 10.1007/s11010-006-9253-0] [Cited by in Crossref: 134] [Cited by in F6Publishing: 125] [Article Influence: 8.9] [Reference Citation Analysis]
110 Jiang LJ, Xu ZX, Wu MF, Dong GQ, Zhang LL, Gao JY, Feng CX, Feng X. Resatorvid protects against hypoxic-ischemic brain damage in neonatal rats. Neural Regen Res 2020;15:1316-25. [PMID: 31960818 DOI: 10.4103/1673-5374.272615] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
111 McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J Neurotrauma 1993;10:215-61. [PMID: 8258838 DOI: 10.1089/neu.1993.10.215] [Cited by in Crossref: 200] [Cited by in F6Publishing: 191] [Article Influence: 7.4] [Reference Citation Analysis]
112 Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y, Xu G, Dai J, Guo R, Liu X. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. Journal of the Neurological Sciences 2014;345:48-55. [DOI: 10.1016/j.jns.2014.06.037] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
113 Zhao JJ, Liu ZW, Wang B, Huang TQ, Guo D, Zhao YL, Song JN. Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury. Neural Regen Res 2020;15:667-75. [PMID: 31638090 DOI: 10.4103/1673-5374.266914] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
114 Pál J, Tóth Z, Farkas O, Kellényi L, Dóczi T, Gallyas F. Selective induction of ultrastructural (neurofilament) compaction in axons by means of a new head-injury apparatus. Journal of Neuroscience Methods 2006;153:283-9. [DOI: 10.1016/j.jneumeth.2005.11.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
115 Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, Zhu G, Lin J, Feng H. Immediate splenectomy decreases mortality and improves cognitive function of rats after severe traumatic brain injury. J Trauma 2011;71:141-7. [PMID: 21248654 DOI: 10.1097/TA.0b013e3181f30fc9] [Cited by in Crossref: 48] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
116 Petraglia AL, Dashnaw ML, Turner RC, Bailes JE. Models of Mild Traumatic Brain Injury: Translation of Physiological and Anatomic Injury. Neurosurgery 2014;75:S34-49. [DOI: 10.1227/neu.0000000000000472] [Cited by in Crossref: 39] [Cited by in F6Publishing: 15] [Article Influence: 5.6] [Reference Citation Analysis]
117 Genrikhs EE, Voronkov DN, Kapkaeva MR, Gudasheva TA, Glibka YA, Isaev NK, Stelmashook EV. The delayed protective effect of GK-2, а dipeptide mimetic of Nerve Growth Factor, in a model of rat traumatic brain injury. Brain Res Bull 2018;140:148-53. [PMID: 29730416 DOI: 10.1016/j.brainresbull.2018.05.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
118 Bernert H, Turski L. Traumatic brain damage prevented by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline. Proc Natl Acad Sci U S A 1996;93:5235-40. [PMID: 8643559 DOI: 10.1073/pnas.93.11.5235] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 1.7] [Reference Citation Analysis]
119 Li W, Dai S, An J, Xiong R, Li P, Chen X, Zhao Y, Liu P, Wang H, Zhu P, Chen J, Zhou Y. Genetic inactivation of adenosine A2A receptors attenuates acute traumatic brain injury in the mouse cortical impact model. Exp Neurol 2009;215:69-76. [PMID: 18938161 DOI: 10.1016/j.expneurol.2008.09.012] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 3.1] [Reference Citation Analysis]
120 Lythgoe MF, Sibson NR, Harris NG. Neuroimaging of animal models of brain disease. British Medical Bulletin 2003;65:235-57. [DOI: 10.1093/bmb/65.1.235] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
121 Liu H, Jia L, Chen X, Shi L, Xie J. The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Res Bull 2018;137:132-9. [PMID: 29174294 DOI: 10.1016/j.brainresbull.2017.11.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
122 Chen KH, Shao PL, Li YC, Chiang JY, Sung PH, Chien HW, Shih FY, Lee MS, Chen WF, Yip HK. Human Umbilical Cord-Derived Mesenchymal Stem Cell Therapy Effectively Protected the Brain Architecture and Neurological Function in Rat After Acute Traumatic Brain Injury. Cell Transplant 2020;29:963689720929313. [PMID: 33169616 DOI: 10.1177/0963689720929313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Liu H, Qiu Gp, Zhuo F, Yu Wh, Sun Sq, Li Fh, Yang M. Lost Polarization of Aquaporin4 and Dystroglycan in the Core Lesion after Traumatic Brain Injury Suggests Functional Divergence in Evolution. Biomed Res Int 2015;2015:471631. [PMID: 26583111 DOI: 10.1155/2015/471631] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
124 Liu Q, Zhang H, Xu J, Zhao D. Neuritin provides neuroprotection against experimental traumatic brain injury in rats. Int J Neurosci 2018;128:811-20. [PMID: 29334295 DOI: 10.1080/00207454.2018.1424155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
125 Holmin S, Mathiesen T, Shetye J, Biberfeld P. Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir (Wien) 1995;132:110-9. [PMID: 7754844 DOI: 10.1007/BF01404857] [Cited by in Crossref: 128] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
126 Liu W, Jiang X, Fu X, Cui S, Du M, Cai Y, Xu R. Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits. Neuroscience Letters 2008;434:160-4. [DOI: 10.1016/j.neulet.2007.12.067] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
127 Zhang Z, Artelt M, Burnet M, Trautmann K, Schluesener HJ. Lesional accumulation of P2X4 receptor+ monocytes following experimental traumatic brain injury. Exp Neurol 2006;197:252-7. [PMID: 16259982 DOI: 10.1016/j.expneurol.2005.09.015] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 1.9] [Reference Citation Analysis]
128 Zhu L, Jin W, Pan H, Hu Z, Zhou J, Hang C, Shi J. Erythropoietin inhibits the increase of intestinal labile zinc and the expression of inflammatory mediators after traumatic brain injury in rats. J Trauma 2009;66:730-6. [PMID: 19276746 DOI: 10.1097/TA.0b013e318184b4db] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
129 Vallès A, Grijpink-ongering L, de Bree FM, Tuinstra T, Ronken E. Differential regulation of the CXCR2 chemokine network in rat brain trauma: Implications for neuroimmune interactions and neuronal survival. Neurobiology of Disease 2006;22:312-22. [DOI: 10.1016/j.nbd.2005.11.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 4.3] [Reference Citation Analysis]
130 Parker TM, Nguyen AH, Rabang JR, Patil AA, Agrawal DK. The danger zone: Systematic review of the role of HMGB1 danger signalling in traumatic brain injury. Brain Inj 2017;31:2-8. [PMID: 27819487 DOI: 10.1080/02699052.2016.1217045] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
131 Feeney DM, Sutton RL. Catecholamines and Recovery of Function after Brain Damage. In: Stein DG, Sabel BA, editors. Pharmacological Approaches to the Treatment of Brain and Spinal Cord Injury. Boston: Springer US; 1988. pp. 121-42. [DOI: 10.1007/978-1-4613-0927-7_7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 0.7] [Reference Citation Analysis]
132 Su X, Li Z, Wang M, Li Z, Wang Q, Lu W, Li X, Zhou Y, Xu H. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A). Gene 2016;577:89-95. [PMID: 26611525 DOI: 10.1016/j.gene.2015.11.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
133 Bittigau P, Sifringer M, Felderhoff-Mueser U, Ikonomidou C. Apoptotic neurodegeneration in the context of traumatic injury to the developing brain. Exp Toxicol Pathol 2004;56:83-9. [PMID: 15581279 DOI: 10.1016/j.etp.2004.04.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 2.4] [Reference Citation Analysis]
134 Xue S, Zhang HT, Zhang P, Luo J, Chen ZZ, Jang XD, Xu RX. Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury. Neurosci Lett 2010;473:186-91. [PMID: 20178832 DOI: 10.1016/j.neulet.2010.02.035] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
135 Andersson B, Wu X, Bjelke B, Syková E. Temporal profile of ultrastructural changes in cortical neurons after a photochemical lesion: Ultrastructure in Lesion. J Neurosci Res 2004;77:901-12. [DOI: 10.1002/jnr.20217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
136 Soblosky JS, Matthews MA, Davidson JF, Tabor SL, Carey ME. Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates. Behavioural Brain Research 1996;79:79-92. [DOI: 10.1016/0166-4328(95)00264-2] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 2.3] [Reference Citation Analysis]
137 Sutton RL, Lescaudron L, Stein DG. Unilateral Cortical Contusion Injury in the Rat: Vascular Disruption and Temporal Development of Cortical Necrosis. Journal of Neurotrauma 1993;10:135-49. [DOI: 10.1089/neu.1993.10.135] [Cited by in Crossref: 148] [Cited by in F6Publishing: 136] [Article Influence: 5.3] [Reference Citation Analysis]
138 Hillered L, Nilsson P, Ungerstedt U, Pontén U. Trauma-induced increase of extracellular ascorbate in rat cerebral cortex. Neuroscience Letters 1990;113:328-32. [DOI: 10.1016/0304-3940(90)90606-a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
139 Scremin O, Li M, Scremin A. Cortical contusion induces trans-hemispheric reorganization of blood flow maps. Brain Research 2007;1141:235-41. [DOI: 10.1016/j.brainres.2007.01.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
140 Long J, He C, Dai H, Kang X, Zou J, Ye S, Yu Q. Effects of transection of cervical sympathetic trunk on cognitive function of traumatic brain injury rats. Neuropsychiatr Dis Treat 2019;15:1121-31. [PMID: 31118645 DOI: 10.2147/NDT.S199450] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
141 Madsen FF, Reske-nielsen E. A simple mechanical model using a piston to produce localized cerebral contusions in pigs. Acta neurochir 1987;88:65-72. [DOI: 10.1007/bf01400517] [Cited by in Crossref: 17] [Article Influence: 0.5] [Reference Citation Analysis]
142 Duan H, Hao C, Fan Y, Wang H, Liu Y, Hao J, Xu C, Liu X, Zhang H. The role of neuropeptide Y and aquaporin 4 in the pathogenesis of intestinal dysfunction caused by traumatic brain injury. J Surg Res 2013;184:1006-12. [PMID: 23622727 DOI: 10.1016/j.jss.2013.03.096] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
143 Nilsson P, Gazelius B, Carlson H, Hillered1 L. Continuous Measurement of Changes in Regional Cerebral Blood Flow following Cortical Compression Contusion Trauma in the Rat. Journal of Neurotrauma 1996;13:201-7. [DOI: 10.1089/neu.1996.13.201] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 1.8] [Reference Citation Analysis]
144 Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE, Schnermann J, Jackson EK. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 2006;26:565-75. [PMID: 16121125 DOI: 10.1038/sj.jcbfm.9600218] [Cited by in Crossref: 116] [Cited by in F6Publishing: 115] [Article Influence: 7.7] [Reference Citation Analysis]
145 Gulati P, Muthuraman A, Jaggi AS, Singh N. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2013;386:255-64. [PMID: 23229582 DOI: 10.1007/s00210-012-0819-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
146 Dewitt DS, Perez-polo R, Hulsebosch CE, Dash PK, Robertson CS. Challenges in the Development of Rodent Models of Mild Traumatic Brain Injury. Journal of Neurotrauma 2013;30:688-701. [DOI: 10.1089/neu.2012.2349] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 8.5] [Reference Citation Analysis]
147 Zhang YM, Dai QF, Chen WH, Jiang ST, Chen SX, Zhang YJ, Tang CZ, Cheng SB. Effects of acupuncture on cortical expression of Wnt3a, β-catenin and Sox2 in a rat model of traumatic brain injury. Acupunct Med 2016;34:48-54. [PMID: 26296359 DOI: 10.1136/acupmed-2014-010742] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
148 Kozlowski DA, Leasure JL, Schallert T. The Control of Movement Following Traumatic Brain Injury. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 121-39. [DOI: 10.1002/cphy.c110005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
149 Zhao H, Wang Y, Chen L, Shi J, Ma K, Tang L, Xu D, Yao J, Feng H, Chen T. High-sensitivity terahertz imaging of traumatic brain injury in a rat model. J Biomed Opt 2018;23:1-7. [PMID: 29595016 DOI: 10.1117/1.JBO.23.3.036015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
150 Yan ZJ, Zhang P, Hu YQ, Zhang HT, Hong SQ, Zhou HL, Zhang MY, Xu RX. Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res 2013;38:1022-33. [PMID: 23475428 DOI: 10.1007/s11064-013-1012-5] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
151 Sandberg Nordqvist AC, von Holst H, Holmin S, Sara VR, Bellander BM, Schalling M. Increase of insulin-like growth factor (IGF)-1, IGF binding protein-2 and -4 mRNAs following cerebral contusion. Brain Res Mol Brain Res 1996;38:285-93. [PMID: 8793117 DOI: 10.1016/0169-328x(95)00346-t] [Cited by in Crossref: 69] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
152 O'connor WT, Smyth A, Gilchrist MD. Animal models of traumatic brain injury: A critical evaluation. Pharmacology & Therapeutics 2011;130:106-13. [DOI: 10.1016/j.pharmthera.2011.01.001] [Cited by in Crossref: 108] [Cited by in F6Publishing: 101] [Article Influence: 10.8] [Reference Citation Analysis]
153 Tao L, Zhang L, Gao R, Jiang F, Cao J, Liu H. Andrographolide Alleviates Acute Brain Injury in a Rat Model of Traumatic Brain Injury: Possible Involvement of Inflammatory Signaling. Front Neurosci 2018;12:657. [PMID: 30294256 DOI: 10.3389/fnins.2018.00657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
154 Luo C, Li Q, Chen X, Zhang X, Li L, Li B, Zhao Z, Tao L. Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Research 2013;1502:1-10. [DOI: 10.1016/j.brainres.2013.01.037] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
155 Li QX, Shen YX, Ahmad A, Shen YJ, Zhang YQ, Xu PK, Chen WW, Yu YQ. Mesencephalic Astrocyte-Derived Neurotrophic Factor Prevents Traumatic Brain Injury in Rats by Inhibiting Inflammatory Activation and Protecting the Blood-Brain Barrier. World Neurosurg 2018;117:e117-29. [PMID: 29883817 DOI: 10.1016/j.wneu.2018.05.202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
156 Sköld MK, Risling M, Holmin S. Inhibition of vascular endothelial growth factor receptor 2 activity in experimental brain contusions aggravates injury outcome and leads to early increased neuronal and glial degeneration. European Journal of Neuroscience 2006;23:21-34. [DOI: 10.1111/j.1460-9568.2005.04527.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 2.9] [Reference Citation Analysis]
157 Gao TL, Yuan XT, Yang D, Dai HL, Wang WJ, Peng X, Shao HJ, Jin ZF, Fu ZJ. Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. J Trauma Acute Care Surg 2012;72:643-9. [PMID: 22491548 DOI: 10.1097/TA.0b013e31823c54a6] [Cited by in Crossref: 59] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
158 Xiong A, Xiong R, Yu J, Liu Y, Liu K, Jin G, Xu J, Yan J. Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema. Burns Trauma 2021;9:tkaa050. [PMID: 33748293 DOI: 10.1093/burnst/tkaa050] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Sun Y, Dai D, Liu R, Wang T, Luo C, Bao H, Yang R, Feng X, Qin Z, Chen X, Tao L. Therapeutic effect of SN50, an inhibitor of nuclear factor-κB, in treatment of TBI in mice. Neurol Sci 2013;34:345-55. [DOI: 10.1007/s10072-012-1007-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
160 Feng D, Xu W, Chen G, Hang C, Gao H, Yin H. Influence of glutamine on intestinal inflammatory response, mucosa structure alterations and apoptosis following traumatic brain injury in rats. J Int Med Res 2007;35:644-56. [PMID: 17900404 DOI: 10.1177/147323000703500509] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
161 Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, Wang L, Zhang L, Gao YZ, Qin ZH, Chen XP, Tao LY. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res 2012;37:2856-67. [PMID: 23011204 DOI: 10.1007/s11064-012-0880-4] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
162 Xue S, Wu G, Zhang H, Guo Y, Zou Y, Zhou Z, Jiang X, Ke Y, Xu R. Transplantation of Adipocyte-Derived Stem Cells in a Hydrogel Scaffold for the Repair of Cortical Contusion Injury in Rats. Journal of Neurotrauma 2015;32:506-15. [DOI: 10.1089/neu.2014.3480] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
163 Petronilho F, Feier G, de Souza B, Guglielmi C, Constantino LS, Walz R, Quevedo J, Dal-Pizzol F. Oxidative stress in brain according to traumatic brain injury intensity. J Surg Res 2010;164:316-20. [PMID: 19691993 DOI: 10.1016/j.jss.2009.04.031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
164 Wiegand TLT, Sollmann N, Bonke EM, Umeasalugo KE, Sobolewski KR, Plesnila N, Shenton ME, Lin AP, Koerte IK. Translational neuroimaging in mild traumatic brain injury. J Neurosci Res 2021. [PMID: 33789358 DOI: 10.1002/jnr.24840] [Reference Citation Analysis]
165 Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation. 2013;10:106. [PMID: 23971414 DOI: 10.1186/1742-2094-10-106] [Cited by in Crossref: 183] [Cited by in F6Publishing: 203] [Article Influence: 22.9] [Reference Citation Analysis]
166 Holmin S, Almqvist P, Lendahl U, Mathiesen T. Adult Nestin-expressing Subependymal Cells Differentiate to Astrocytes in Response to Brain Injury. European Journal of Neuroscience 1997;9:65-75. [DOI: 10.1111/j.1460-9568.1997.tb01354.x] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 7.9] [Reference Citation Analysis]
167 Gahm C, Danilov A, Holmin S, Wiklund PN, Brundin L, Mathiesen T. Reduced neuronal injury after treatment with NG-nitro-L-arginine methyl ester (L-NAME) or 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) following experimental brain contusion. Neurosurgery 2005;57:1272-81; discussion 1272-81. [PMID: 16331176 DOI: 10.1227/01.neu.0000187317.32529.06] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
168 Yosunkaya A, Ak A, Bari??kaner H, ??st??n ME, Tuncer S, G??rbilek M. Effect of Gamma-Hydroxybutyric Acid on Lipid Peroxidation and Tissue Lactate Level in Experimental Head Trauma: . The Journal of Trauma: Injury, Infection, and Critical Care 2004;56:585-90. [DOI: 10.1097/01.ta.0000058119.60074.25] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
169 Rudehill S, Muhallab S, Wennersten A, von Gertten C, Al Nimer F, Sandberg-Nordqvist AC, Holmin S, Mathiesen T. Autoreactive antibodies against neurons and basal lamina found in serum following experimental brain contusion in rats. Acta Neurochir (Wien) 2006;148:199-205; discussion 205. [PMID: 16362182 DOI: 10.1007/s00701-005-0673-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
170 Yu W, Dong X, Hu Y, Huang M, Zhang Z. Ginkgolide B Reduces Neuronal Cell Apoptosis in the Traumatic Rat Brain: Possible Involvement of Toll-like Receptor 4 and Nuclear Factor Kappa B Pathway: THE EFFECT OF GINKGOLIDE B ON TRAUMATIC BRAIN INJURY. Phytother Res 2012;26:1838-44. [DOI: 10.1002/ptr.4662] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
171 Huang B, Wang H, Zhong D, Meng J, Li M, Yang B, Ran J. Expression of Urea Transporter B in Normal and Injured Brain. Front Neuroanat 2021;15:591726. [PMID: 34122018 DOI: 10.3389/fnana.2021.591726] [Reference Citation Analysis]
172 Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther. 2017;8:198. [PMID: 28962585 DOI: 10.1186/s13287-017-0648-5] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 17.0] [Reference Citation Analysis]
173 Marklund N. Rodent Models of Traumatic Brain Injury: Methods and Challenges. Methods Mol Biol 2016;1462:29-46. [PMID: 27604711 DOI: 10.1007/978-1-4939-3816-2_3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
174 Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Experimental Neurology 2019;322:113060. [DOI: 10.1016/j.expneurol.2019.113060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
175 Al Nimer F, Beyeen AD, Lindblom R, Ström M, Aeinehband S, Lidman O, Piehl F. Both MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury. Brain, Behavior, and Immunity 2011;25:981-90. [DOI: 10.1016/j.bbi.2010.10.017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
176 Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW. Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res. 2012;37:1849-1858. [PMID: 22736198 DOI: 10.1007/s11064-012-0791-4] [Cited by in Crossref: 81] [Cited by in F6Publishing: 74] [Article Influence: 9.0] [Reference Citation Analysis]
177 Evran S, Calis F, Akkaya E, Baran O, Cevik S, Katar S, Gurevin EG, Hanimoglu H, Hatiboglu MA, Armutak EI, Karatas E, Kocyigit A, Kaynar MY. The effect of high mobility group box-1 protein on cerebral edema, blood-brain barrier, oxidative stress and apoptosis in an experimental traumatic brain injury model. Brain Res Bull 2020;154:68-80. [PMID: 31715313 DOI: 10.1016/j.brainresbull.2019.10.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
178 Feng Z, Zhong YJ, Wang L, Wei TQ. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation. Neural Regen Res 2015;10:594-8. [PMID: 26170820 DOI: 10.4103/1673-5374.155433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
179 Gulati P, Singh N. Neuroprotective effect of tadalafil, a PDE-5 inhibitor, and its modulation by L-NAME in mouse model of ischemia-reperfusion injury. J Surg Res 2014;186:475-83. [PMID: 24011921 DOI: 10.1016/j.jss.2013.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
180 Yang J, Han Y, Ye W, Liu F, Zhuang K, Wu G. Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. J Surg Res 2013;182:e69-77. [PMID: 23207171 DOI: 10.1016/j.jss.2012.11.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
181 von Gertten C, Flores Morales A, Holmin S, Mathiesen T, Nordqvist AC. Genomic responses in rat cerebral cortex after traumatic brain injury. BMC Neurosci 2005;6:69. [PMID: 16318630 DOI: 10.1186/1471-2202-6-69] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 3.5] [Reference Citation Analysis]
182 Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury. Brain Res 2015;1611:18-28. [PMID: 25770057 DOI: 10.1016/j.brainres.2015.03.004] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
183 Kalish BT, Whalen MJ. Weight Drop Models in Traumatic Brain Injury. In: Kobeissy FH, Dixon CE, Hayes RL, Mondello S, editors. Injury Models of the Central Nervous System. New York: Springer; 2016. pp. 193-209. [DOI: 10.1007/978-1-4939-3816-2_12] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
184 Yan W, Wang HD, Feng XM, Ding YS, Jin W, Tang K. The expression of NF-E2-related factor 2 in the rat brain after traumatic brain injury. J Trauma 2009;66:1431-5. [PMID: 19430250 DOI: 10.1097/TA.0b013e318180f5c7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
185 Yan W, Wang HD, Hu ZG, Wang QF, Yin HX. Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett 2008;431:150-4. [PMID: 18162315 DOI: 10.1016/j.neulet.2007.11.060] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 4.2] [Reference Citation Analysis]
186 Filev AD, Silachev DN, Ryzhkov IA, Lapin KN, Babkina AS, Grebenchikov OA, Pisarev VM. Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sci 2021;11:889. [PMID: 34356124 DOI: 10.3390/brainsci11070889] [Reference Citation Analysis]
187 Johnson VE, Meaney DF, Cullen DK, Smith DH. Animal models of traumatic brain injury. Handb Clin Neurol 2015;127:115-28. [PMID: 25702213 DOI: 10.1016/B978-0-444-52892-6.00008-8] [Cited by in Crossref: 87] [Cited by in F6Publishing: 56] [Article Influence: 17.4] [Reference Citation Analysis]
188 Ampo K, Suzuki A, Konishi H, Kiyama H. Induction of pancreatitis-associated protein (PAP) family members in neurons after traumatic brain injury. J Neurotrauma 2009;26:1683-93. [PMID: 19351265 DOI: 10.1089/neu.2008.0847] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
189 Najem D, Rennie K, Ribecco-Lutkiewicz M, Ly D, Haukenfrers J, Liu Q, Nzau M, Fraser DD, Bani-Yaghoub M. Traumatic brain injury: classification, models, and markers. Biochem Cell Biol 2018;96:391-406. [PMID: 29370536 DOI: 10.1139/bcb-2016-0160] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
190 Namjoshi DR, Good C, Cheng WH, Panenka W, Richards D, Cripton PA, Wellington CL. Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech 2013;6:1325-38. [PMID: 24046354 DOI: 10.1242/dmm.011320] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
191 Whalen MJ, Clark RS, Dixon CE, Robichaud P, Marion DW, Vagni V, Graham S, Virag L, Hasko G, Stachlewitz R, Szabo C, Kochanek PM. Traumatic brain injury in mice deficient in poly-ADP(ribose) polymerase: a preliminary report. Acta Neurochir Suppl 2000;76:61-4. [PMID: 11450092 DOI: 10.1007/978-3-7091-6346-7_12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
192 Dai W, Cheng HL, Huang RQ, Zhuang Z, Shi JX. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury. Brain Res. 2009;1251:287-295. [PMID: 19063873 DOI: 10.1016/j.brainres.2008.11.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
193 Holmin S, Mathiesen T. Biphasic edema development after experimental brain contusion in rat. Neurosci Lett 1995;194:97-100. [PMID: 7478224 DOI: 10.1016/0304-3940(95)11737-h] [Cited by in Crossref: 30] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
194 Zhang B, Wang B, Cao S, Wang Y. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress. Korean J Physiol Pharmacol 2015;19:491-7. [PMID: 26557015 DOI: 10.4196/kjpp.2015.19.6.491] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
195 Chen Y, Mao H, Yang KH, Abel T, Meaney DF. A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice. Front Neurol 2014;5:100. [PMID: 24994996 DOI: 10.3389/fneur.2014.00100] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
196 Guo Y, Chen T, Wang S, Zhou X, Zhang H, Li D, Mu N, Tang M, Hu M, Tang D, Yang Z, Zhong J, Tang Y, Feng H, Zhang X, Wang H. Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices. ACS Omega 2020;5:29698-705. [PMID: 33251405 DOI: 10.1021/acsomega.0c03285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Huang X, Lu Y, Li L, Sun T, Jiang X, Li M, Zhang T, Yu A. Protective effect of acute splenic irradiation in rats with traumatic brain injury. Neuroreport 2021;32:711-20. [PMID: 33876783 DOI: 10.1097/WNR.0000000000001650] [Reference Citation Analysis]
198 Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides 2012;36:39-45. [PMID: 22561242 DOI: 10.1016/j.peptides.2012.04.014] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 6.9] [Reference Citation Analysis]
199 Peeling J, Corbett D, Del Bigio MR, Hudzik TJ, Campbell T, Palmer GC. Rat middle cerebral artery occlusion: Correlations between histopathology, T2-weighted magnetic resonance imaging, and behavioral indices. Journal of Stroke and Cerebrovascular Diseases 2001;10:166-77. [DOI: 10.1053/jscd.2001.26865] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 0.8] [Reference Citation Analysis]
200 Hillered L, Persson L. Microdialysis for metabolic monitoring in cerebral ischemia and trauma: Experimental and clinical studies. Microdialysis in the Neurosciences. Elsevier; 1991. pp. 389-405. [DOI: 10.1016/b978-0-444-81194-3.50022-8] [Cited by in Crossref: 6] [Article Influence: 0.2] [Reference Citation Analysis]
201 Pinchi E, Frati P, Arcangeli M, Volonnino G, Tomassi R, Santoro P, Cipolloni L. MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis. Curr Neuropharmacol 2020;18:319-31. [PMID: 31729300 DOI: 10.2174/1570159X17666191113100808] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
202 Bellander B, Holst HV, Fredman P, Svensson M. Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. Journal of Neurosurgery 1996;85:468-75. [DOI: 10.3171/jns.1996.85.3.0468] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 3.2] [Reference Citation Analysis]
203 Holmin S, Schalling M, Höjeberg B, Nordqvist AC, Skeftruna AK, Mathiesen T. Delayed cytokine expression in rat brain following experimental contusion. J Neurosurg 1997;86:493-504. [PMID: 9046307 DOI: 10.3171/jns.1997.86.3.0493] [Cited by in Crossref: 130] [Cited by in F6Publishing: 125] [Article Influence: 5.4] [Reference Citation Analysis]
204 Boyeson MG, Feeney DM, Dail WG. Cortical Microstimulation Thresholds Adjacent to Sensorimotor Cortex Injury. Journal of Neurotrauma 1991;8:205-17. [DOI: 10.1089/neu.1991.8.205] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 0.7] [Reference Citation Analysis]
205 Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma 2013;30:30-8. [PMID: 23025820 DOI: 10.1089/neu.2012.2399] [Cited by in Crossref: 202] [Cited by in F6Publishing: 177] [Article Influence: 25.3] [Reference Citation Analysis]
206 Adelson PD, Robichaud P, Hamilton RL, Kochanek PM. A model of diffuse traumatic brain injury in the immature rat. Journal of Neurosurgery 1996;85:877-84. [DOI: 10.3171/jns.1996.85.5.0877] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 3.3] [Reference Citation Analysis]
207 He XZ, Ma JJ, Wang HQ, Hu TM, Sun B, Gao YF, Liu SB, Wang W, Wang P. Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves. Neural Regen Res 2017;12:987-94. [PMID: 28761434 DOI: 10.4103/1673-5374.208595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
208 Lu X, Bao X, Li J, Zhang G, Guan J, Gao Y, Wu P, Zhu Z, Huo X, Wang R. High-frequency repetitive transcranial magnetic stimulation for treating moderate traumatic brain injury in rats: A pilot study. Exp Ther Med 2017;13:2247-54. [PMID: 28565833 DOI: 10.3892/etm.2017.4283] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
209 Xiao Y, Fu Y, Zhou Y, Xia J, Wang L, Hu C. Proton Magnetic Resonance Spectroscopy (¹H-MRS) Study of Early Traumatic Brain Injury in Rabbits. Med Sci Monit 2017;23:2365-72. [PMID: 28524120 DOI: 10.12659/msm.904788] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
210 Floyd CL, Golden KM, Black RT, Hamm RJ, Lyeth BG. Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J Neurotrauma 2002;19:303-16. [PMID: 11939498 DOI: 10.1089/089771502753594873] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 4.5] [Reference Citation Analysis]
211 Lewén A, Li GL, Olsson Y, Hillered L. Changes in microtubule-associated protein 2 and amyloid precursor protein immunoreactivity following traumatic brain injury in rat: influence of MK-801 treatment. Brain Res 1996;719:161-71. [PMID: 8782876 DOI: 10.1016/0006-8993(96)00081-9] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 2.8] [Reference Citation Analysis]
212 Chan P, Epstein C, Li Y, Huang T, Carlson E, Kinouchi H, Yang G, Kamii H, Mikawa S, Kondo T, Copin J, Chen S, Chan T, Gafni J, Gobbel G, Reola E. Transgenic Mice and Knockout Mutants in the Study of Oxidative Stress in Brain Injury. Journal of Neurotrauma 1995;12:815-24. [DOI: 10.1089/neu.1995.12.815] [Cited by in Crossref: 82] [Cited by in F6Publishing: 79] [Article Influence: 3.2] [Reference Citation Analysis]
213 Bittigau P, Sifringer M, Felderhoff-Mueser U, Hansen HH, Ikonomidou C. Neuropathological and biochemical features of traumatic injury in the developing brain. Neurotox Res 2003;5:475-90. [PMID: 14715432 DOI: 10.1007/BF03033158] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
214 Marklund N, Clausen F, Lewander T, Hillered L. Monitoring of Reactive Oxygen Species Production after Traumatic Brain Injury in Rats with Microdialysis and the 4-Hydroxybenzoic Acid Trapping Method. Journal of Neurotrauma 2001;18:1217-27. [DOI: 10.1089/089771501317095250] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 2.9] [Reference Citation Analysis]
215 Piot-grosjean O, Wahl F, Gobbo O, Stutzmann J. Assessment of Sensorimotor and Cognitive Deficits Induced by a Moderate Traumatic Injury in the Right Parietal Cortex of the Rat. Neurobiology of Disease 2001;8:1082-93. [DOI: 10.1006/nbdi.2001.0450] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 2.2] [Reference Citation Analysis]
216 Gulati P, Singh N, Muthuraman A. Pharmacologic evidence for role of endothelial nitric oxide synthase in neuroprotective mechanism of ischemic postconditioning in mice. Journal of Surgical Research 2014;188:349-60. [DOI: 10.1016/j.jss.2013.12.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
217 Zhao JB, Zhang Y, Li GZ, Su XF, Hang CH. Activation of JAK2/STAT pathway in cerebral cortex after experimental traumatic brain injury of rats. Neurosci Lett 2011;498:147-52. [PMID: 21596098 DOI: 10.1016/j.neulet.2011.05.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 4.4] [Reference Citation Analysis]
218 Kumar A, Jaggi AS, Singh N. Pharmacological investigations on possible role of Src kinases in neuroprotective mechanism of ischemic postconditioning in mice. International Journal of Neuroscience 2014;124:777-86. [DOI: 10.3109/00207454.2013.879869] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
219 Niu LJ, Xu RX, Zhang P, Du MX, Jiang XD. Suppression of Frizzled-2-mediated Wnt/Ca²⁺ signaling significantly attenuates intracellular calcium accumulation in vitro and in a rat model of traumatic brain injury. Neuroscience 2012;213:19-28. [PMID: 22521824 DOI: 10.1016/j.neuroscience.2012.03.057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
220 Wang J, Wang H, Cong Z, Zhou X, Xu J, Jia Y, Ding Y. Puerarin ameliorates oxidative stress in a rodent model of traumatic brain injury. Journal of Surgical Research 2014;186:328-37. [DOI: 10.1016/j.jss.2013.08.027] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
221 Bora KS, Shri R, Monga J. Cerebroprotective effect of Ocimum gratissimum against focal ischemia and reperfusion-induced cerebral injury. Pharm Biol 2011;49:175-81. [PMID: 20969537 DOI: 10.3109/13880209.2010.506489] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
222 Gülşen İ, Ak H, Çölçimen N, Alp HH, Akyol ME, Demir İ, Atalay T, Balahroğlu R, Rağbetli MÇ. Neuroprotective Effects of Thymoquinone on the Hippocampus in a Rat Model of Traumatic Brain Injury. World Neurosurg 2016;86:243-9. [PMID: 26428323 DOI: 10.1016/j.wneu.2015.09.052] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
223 Feng Z, Du Q. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation. Neural Regen Res 2016;11:951-6. [PMID: 27482224 DOI: 10.4103/1673-5374.184494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
224 Pitkänen A, McIntosh TK. Animal models of post-traumatic epilepsy. J Neurotrauma 2006;23:241-61. [PMID: 16503807 DOI: 10.1089/neu.2006.23.241] [Cited by in Crossref: 117] [Cited by in F6Publishing: 107] [Article Influence: 7.8] [Reference Citation Analysis]
225 Wei W, Wang H, Wu Y, Ding K, Li T, Cong Z, Xu J, Zhou M, Huang L, Ding H, Wu H. Alpha lipoic acid inhibits neural apoptosis via a mitochondrial pathway in rats following traumatic brain injury. Neurochem Int 2015;87:85-91. [PMID: 26055972 DOI: 10.1016/j.neuint.2015.06.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
226 Ustün ME, Duman A, Oğun CO, Vatansev H, Ak A. Effects of nimodipine and magnesium sulfate on endogenous antioxidant levels in brain tissue after experimental head trauma. J Neurosurg Anesthesiol 2001;13:227-32. [PMID: 11426097 DOI: 10.1097/00008506-200107000-00008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.1] [Reference Citation Analysis]
227 Mikawa S, Sharp FR, Kamii H, Kinouchi H, Epstein CJ, Chan PH. Expression of c-fos and hsp70 mRNA after traumatic brain injury in transgenic mice overexpressing CuZn-superoxide dismutase. Molecular Brain Research 1995;33:288-94. [DOI: 10.1016/0169-328x(95)00146-j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
228 Chen R, Wang J, Jiang B, Wan X, Liu H, Liu H, Yang X, Wu X, Zou Q, Yang W. Study of cell apoptosis in the hippocampus and thalamencephalon in a ventricular fluid impact model. Exp Ther Med 2013;6:1463-8. [PMID: 24255676 DOI: 10.3892/etm.2013.1342] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
229 Hang C, Shi J, Tian J, Li J, Wu W, Yin H. Effect of systemic LPS injection on cortical NF-κB activity and inflammatory response following traumatic brain injury in rats. Brain Research 2004;1026:23-32. [DOI: 10.1016/j.brainres.2004.07.090] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 4.7] [Reference Citation Analysis]
230 Wang YX, You Q, Su WL, Li Q, Hu ZQ, Wang ZG, Sun YP, Zhu WX, Ruan CP. A study on inhibition of inflammation via p75TNFR signaling pathway activation in mice with traumatic brain injury. J Surg Res 2013;182:127-33. [PMID: 22935315 DOI: 10.1016/j.jss.2012.07.071] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
231 Liu S, Shen G, Deng S, Wang X, Wu Q, Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen Res 2013;8:3334-43. [PMID: 25206655 DOI: 10.3969/j.issn.1673-5374.2013.35.008] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
232 Silachev DN, Kondakov AK, Znamenskii IA, Kurashvili YB, Abolenskaya AV, Antipkin NR, Danilina TI, Manskikh VN, Gulyaev MV, Pirogov YA, Plotnikov EY, Zorov DB, Sukhikh GT. The Use of Technetium-99m for Intravital Tracing of Transplanted Multipotent Stromal Cells. Bull Exp Biol Med 2016;162:153-9. [PMID: 27882463 DOI: 10.1007/s10517-016-3565-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
233 Lindh C, Wennersten A, Arnberg F, Holmin S, Mathiesen T. Differences in cell death between high and low energy brain injury in adult rats. Acta Neurochir (Wien) 2008;150:1269-75;discussion 1275. [PMID: 19015811 DOI: 10.1007/s00701-008-0147-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
234 He Y, Qu S, Wang J, He X, Lin W, Zhen H, Zhang X. Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats. Brain Res 2012;1433:127-36. [PMID: 22153917 DOI: 10.1016/j.brainres.2011.11.027] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
235 Zhang HM, Chen W, Liu RN, Zhao Y. Notch inhibitor can attenuate apparent diffusion coefficient and improve neurological function through downregulating NOX2-ROS in severe traumatic brain injury. Drug Des Devel Ther 2018;12:3847-54. [PMID: 30510400 DOI: 10.2147/DDDT.S174037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
236 Iino M, Nakatome M, Ogura Y, Fujimura H, Kuroki H, Inoue H, Ino Y, Fujii T, Terao T, Matoba R. Real-time PCR quantitation of FE65 a beta-amyloid precursor protein-binding protein after traumatic brain injury in rats. Int J Legal Med 2003;117:153-9. [PMID: 12707777 DOI: 10.1007/s00414-003-0370-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 1.5] [Reference Citation Analysis]
237 Wada K, Chatzipanteli K, Busto R, Dietrich WD. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg. 1998;89:807-818. [PMID: 9817419 DOI: 10.3171/jns.1998.89.5.0807] [Cited by in Crossref: 136] [Cited by in F6Publishing: 128] [Article Influence: 5.9] [Reference Citation Analysis]
238 Li W, Dai S, An J, Li P, Chen X, Xiong R, Liu P, Wang H, Zhao Y, Zhu M, Liu X, Zhu P, Chen JF, Zhou Y. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 2008;151:1198-207. [PMID: 18207647 DOI: 10.1016/j.neuroscience.2007.11.020] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 4.8] [Reference Citation Analysis]
239 Qian F, Han Y, Han Z, Zhang D, Zhang L, Zhao G, Li S, Jin G, Yu R, Liu H. In Situ implantable, post-trauma microenvironment-responsive, ROS Depletion Hydrogels for the treatment of Traumatic brain injury. Biomaterials 2021;270:120675. [PMID: 33548799 DOI: 10.1016/j.biomaterials.2021.120675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
240 Tang H, Sha H, Sun H, Wu X, Xie L, Wang P, Xu C, Larsen C, Zhang HL, Gong Y, Mao Y, Chen X, Zhou L, Feng X, Zhu J. Tracking induced pluripotent stem cells-derived neural stem cells in the central nervous system of rats and monkeys. Cell Reprogram 2013;15:435-42. [PMID: 24020696 DOI: 10.1089/cell.2012.0081] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
241 Chen G, Shi J, Hu Z, Hang C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008;2008:716458. [PMID: 18483565 DOI: 10.1155/2008/716458] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 7.5] [Reference Citation Analysis]
242 Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and p38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol 2014;41:134-8. [DOI: 10.1111/1440-1681.12186] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
243 Scheff SW, Ansari MA. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. J Neurotrauma 2017;34:1491-510. [PMID: 27846772 DOI: 10.1089/neu.2016.4718] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
244 Myserlis P, Radmanesh F, Anderson CD. Translational Genomics in Neurocritical Care: a Review. Neurotherapeutics 2020;17:563-80. [PMID: 32080794 DOI: 10.1007/s13311-020-00838-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
245 Wang HK, Lee YC, Huang CY, Liliang PC, Lu K, Chen HJ, Li YC, Tsai KJ. Traumatic brain injury causes frontotemporal dementia and TDP-43 proteolysis. Neuroscience 2015;300:94-103. [PMID: 25982564 DOI: 10.1016/j.neuroscience.2015.05.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
246 Holmin S, Mathiesen T. Dexamethasone and colchicine reduce inflammation and delayed oedema following experimental brain contusion. Acta neurochir 1996;138:418-24. [DOI: 10.1007/bf01420304] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
247 Dail WG, Fenney DM, Murray HM, Linn RT, Boyeson MG. Responses to cortical injury: II. Widespread depression of the activity of an enzyme in cortex remote from a focal injury. Brain Research 1981;211:79-89. [DOI: 10.1016/0006-8993(81)90068-8] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 1.4] [Reference Citation Analysis]
248 Felderhoff-Mueser U, Ikonomidou C. Mechanisms of neurodegeneration after paediatric brain injury. Curr Opin Neurol. 2000;13:141-145. [PMID: 10987570 DOI: 10.1097/00019052-200004000-00005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 0.6] [Reference Citation Analysis]
249 Sun J, Wang L, Shen J, Wang Z, Qian Y. Effect of propofol on mucous permeability and inflammatory mediators expression in the intestine following traumatic brain injury in rats. Cytokine 2007;40:151-6. [DOI: 10.1016/j.cyto.2007.09.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
250 Liu G, Wang T, Wang T, Song J, Zhou Z. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed Rep 2013;1:861-7. [PMID: 24649043 DOI: 10.3892/br.2013.153] [Cited by in Crossref: 76] [Cited by in F6Publishing: 63] [Article Influence: 9.5] [Reference Citation Analysis]
251 Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, Xue C, Han Q, Wei J, Zhao RC. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY) 2020;12:18274-96. [PMID: 32966240 DOI: 10.18632/aging.103692] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
252 Yamaki T, Murakami N, Iwamoto Y, Yoshino E, Nakagawa Y, Ueda S, Horikawa J, Tsujii T. A Modified Fluid Percussion Device. Journal of Neurotrauma 1994;11:613-22. [DOI: 10.1089/neu.1994.11.613] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
253 Xiong LL, Hu Y, Zhang P, Zhang Z, Li LH, Gao GD, Zhou XF, Wang TH. Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity. Mol Neurobiol 2018;55:2696-711. [PMID: 28421542 DOI: 10.1007/s12035-017-0551-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
254 Feeney DM, Hovda DA. Amphetamine and apomorphine restore tactile placing after motor cortex injury in the cat. Psychopharmacology 1983;79:67-71. [DOI: 10.1007/bf00433018] [Cited by in Crossref: 65] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
255 Alfasi AM, Shulyakov AV, Del Bigio MR. Intracranial biomechanics following cortical contusion in live rats: Laboratory investigation. JNS 2013;119:1255-62. [DOI: 10.3171/2013.7.jns121973] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
256 Isaev NK, Novikova SV, Stelmashook EV, Barskov IV, Silachev DN, Khaspekov LG, Skulachev VP, Zorov DB. Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biochemistry (Mosc) 2012;77:996-9. [PMID: 23157258 DOI: 10.1134/S0006297912090052] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
257 Shi WZ, Ju JY, Xiao HJ, Xue F, Wu J, Pan MM, Ni WF. Dynamics of MMP‑9, MMP‑2 and TIMP‑1 in a rat model of brain injury combined with traumatic heterotopic ossification. Mol Med Rep 2017;15:2129-35. [PMID: 28259914 DOI: 10.3892/mmr.2017.6275] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
258 Gasparovic C, Arfai N, Smid N, Feeney DM. Decrease and recovery of N-acetylaspartate/creatine in rat brain remote from focal injury. J Neurotrauma 2001;18:241-6. [PMID: 11284545 DOI: 10.1089/08977150151070856] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 2.4] [Reference Citation Analysis]
259 Hu Y, Wu Y, Tian K, Lan D, Chen X, Xue M, Liu L, Li T. Identification of ideal resuscitation pressure with concurrent traumatic brain injury in a rat model of hemorrhagic shock. J Surg Res 2015;195:284-93. [PMID: 25703162 DOI: 10.1016/j.jss.2015.01.038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
260 Hang CH, Shi JX, Li JS, Li WQ, Wu W. Expressions of intestinal NF-kappaB, TNF-alpha, and IL-6 following traumatic brain injury in rats. J Surg Res 2005;123:188-93. [PMID: 15680377 DOI: 10.1016/j.jss.2004.08.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 4.3] [Reference Citation Analysis]
261 Li H, Sun J, Du J, Wang F, Fang R, Yu C, Xiong J, Chen W, Lu Z, Liu J. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil 2018;30:e13260. [DOI: 10.1111/nmo.13260] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 11.5] [Reference Citation Analysis]
262 Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69:1177-1190. [PMID: 21107131 DOI: 10.1097/nen.0b013e3181fbf6d6] [Cited by in Crossref: 96] [Cited by in F6Publishing: 52] [Article Influence: 8.7] [Reference Citation Analysis]
263 Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21:801-807. [PMID: 2160142 DOI: 10.1161/01.str.21.5.801] [Cited by in Crossref: 379] [Cited by in F6Publishing: 153] [Article Influence: 12.2] [Reference Citation Analysis]
264 Queen SA, Feeney DM. Temporally changing patterns of hippocampal cerebral glucose utilization following sensorimotor cortical contusion in rats. Brain Research 1996;724:246-50. [DOI: 10.1016/0006-8993(96)00308-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
265 Adelson PD, Dixon CE, Kochanek PM. Long-Term Dysfunction Following Diffuse Traumatic Brain Injury in the Immature Rat. Journal of Neurotrauma 2000;17:273-82. [DOI: 10.1089/neu.2000.17.273] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 2.9] [Reference Citation Analysis]
266 Shah EJ, Gurdziel K, Ruden DM. Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research. Front Neurosci 2019;13:409. [PMID: 31105519 DOI: 10.3389/fnins.2019.00409] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
267 Lv Q, Fan X, Xu G, Liu Q, Tian L, Cai X, Sun W, Wang X, Cai Q, Bao Y, Zhou L, Zhang Y, Ge L, Guo R, Liu X. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Research 2013;1493:80-9. [DOI: 10.1016/j.brainres.2012.11.028] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
268 Jia J, Yan M, Lu Z, Sun M, He J, Xia C. Regulated expression of pancreatic triglyceride lipase after rat traumatic brain injury. Mol Cell Biochem 2010;335:127-36. [DOI: 10.1007/s11010-009-0249-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
269 Huang Y, Long X, Tang J, Li X, Zhang X, Luo C, Zhou Y, Zhang P. The Attenuation of Traumatic Brain Injury via Inhibition of Oxidative Stress and Apoptosis by Tanshinone IIA. Oxid Med Cell Longev 2020;2020:4170156. [PMID: 32454938 DOI: 10.1155/2020/4170156] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
270 Xu F, Yu ZY, Ding L, Zheng SY. Experimental studies of erythropoietin protection following traumatic brain injury in rats. Exp Ther Med 2012;4:977-82. [PMID: 23226759 DOI: 10.3892/etm.2012.723] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
271 Biros MH. Experimental head trauma models: a clinical perspective. Resuscitation 1991;22:283-93. [DOI: 10.1016/0300-9572(91)90036-x] [Cited by in Crossref: 8] [Article Influence: 0.3] [Reference Citation Analysis]
272 Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, Dai DK, Shen YW, Xu HF, Ni H, Wan L, Qin ZH, Tao LY, Zhao ZQ. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 2011;184:54-63. [PMID: 21463664 DOI: 10.1016/j.neuroscience.2011.03.021] [Cited by in Crossref: 131] [Cited by in F6Publishing: 127] [Article Influence: 13.1] [Reference Citation Analysis]
273 Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019;56:5332-45. [DOI: 10.1007/s12035-018-1454-5] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 27.0] [Reference Citation Analysis]
274 Aggarwal A, Gaur V, Kumar A. Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sciences 2010;86:928-35. [DOI: 10.1016/j.lfs.2010.04.011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
275 Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, Gao R, Chen G. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Res Bull 2018;140:154-61. [PMID: 29698747 DOI: 10.1016/j.brainresbull.2018.04.008] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 17.3] [Reference Citation Analysis]
276 Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020;328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
277 Sempere L, Rodríguez-rodríguez A, Boyero L, Egea-guerrero J. Principales modelos experimentales de traumatismo craneoencefálico: de la preclínica a los modelos in vitro. Medicina Intensiva 2019;43:362-72. [DOI: 10.1016/j.medin.2018.04.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
278 Yosunkaya A, Ustun ME, Bariskaner H, Tavlan A, Gurbilek M. Effect of gamma-hydroxybutyric acid on tissue Na+,K+-ATPase levels after experimental head trauma. Acta Anaesthesiol Scand 2004;48:631-6. [DOI: 10.1111/j.1399-6576.2004.00384.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
279 Zhang Z, Zhang Z, Fauser U, Artelt M, Burnet M, Schluesener HJ. FTY720 attenuates accumulation of EMAP-II+ and MHC-II+ monocytes in early lesions of rat traumatic brain injury. J Cell Mol Med 2007;11:307-14. [PMID: 17488479 DOI: 10.1111/j.1582-4934.2007.00019.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.0] [Reference Citation Analysis]
280 Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy. Progress in Neurobiology 1997;51:39-87. [DOI: 10.1016/s0301-0082(96)00049-4] [Cited by in Crossref: 222] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
281 Clausen F, Lundqvist H, Ekmark S, Lewén A, Ebendal T, Hillered L. Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J Neurotrauma 2004;21:1168-82. [PMID: 15453987 DOI: 10.1089/neu.2004.21.1168] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 3.4] [Reference Citation Analysis]
282 Adelson PD, Fellows-Mayle W, Kochanek PM, Dixon CE. Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Childs Nerv Syst 2013;29:43-53. [PMID: 23089934 DOI: 10.1007/s00381-012-1932-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
283 Prins ML, Lee SM, Cheng CL, Becker DP, Hovda DA. Fluid percussion brain injury in the developing and adult rat: a comparative study of mortality, morphology, intracranial pressure and mean arterial blood pressure. Brain Res Dev Brain Res 1996;95:272-82. [PMID: 8874903 DOI: 10.1016/0165-3806(96)00098-3] [Cited by in Crossref: 140] [Cited by in F6Publishing: 119] [Article Influence: 5.8] [Reference Citation Analysis]
284 Wang Z, Pan Z, Xu C, Li Z. Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury. Biochemical and Biophysical Research Communications 2017;482:948-53. [DOI: 10.1016/j.bbrc.2016.11.138] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
285 Wu X, Wang C, Wang J, Zhu M, Yao Y, Liu J. Hypoxia preconditioning protects neuronal cells against traumatic brain injury through stimulation of glucose transport mediated by HIF-1α/GLUTs signaling pathway in rat. Neurosurg Rev 2021;44:411-22. [PMID: 31897883 DOI: 10.1007/s10143-019-01228-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
286 Pan M, Li J, Ma C, Fu K, Li Z, Wang Z. Sex-dependent effects of GPER activation on neuroinflammation in a rat model of traumatic brain injury. Brain, Behavior, and Immunity 2020;88:421-31. [DOI: 10.1016/j.bbi.2020.04.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
287 Sacho RH, Childs C. The significance of altered temperature after traumatic brain injury: an analysis of investigations in experimental and human studies: part 2. Br J Neurosurg 2008;22:497-507. [PMID: 18649161 DOI: 10.1080/02688690802245558] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
288 Soblosky JS, Colgin LL, Chorney-lane D, Davidson JF, Carey ME. Some functional recovery and behavioral sparing occurs independent of task-specific practice after injury to the rat's sensorimotor cortex. Behavioural Brain Research 1997;89:51-9. [DOI: 10.1016/s0166-4328(97)00049-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
289 Erkan ??st??n M, Md AD, ??ztin ??????n C, S??mer F, G??rbilek M. Effects of Deferoxamine on Tissue Superoxide Dismutase and Glutathione Peroxidase Levels in Experimental Head Trauma: . The Journal of Trauma: Injury, Infection and Critical Care 2001;51:22-5. [DOI: 10.1097/00005373-200107000-00004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
290 Laplaca MC, Lee VM, Thibault LE. An In Vitro Model of Traumatic Neuronal Injury: Loading Rate-Dependent Changes in Acute Cytosolic Calcium and Lactate Dehydrogenase Release. Journal of Neurotrauma 1997;14:355-68. [DOI: 10.1089/neu.1997.14.355] [Cited by in Crossref: 99] [Cited by in F6Publishing: 77] [Article Influence: 4.1] [Reference Citation Analysis]
291 Huang RQ, Cheng HL, Zhao XD, Dai W, Zhuang Z, Wu Y, Liu Y, Shi JX. Preliminary study on the effect of trauma-induced secondary cellular hypoxia in brain injury. Neurosci Lett 2010;473:22-7. [PMID: 20152885 DOI: 10.1016/j.neulet.2010.02.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
292 Bora KS, Sharma A. Evaluation of Antioxidant and Cerebroprotective Effect of Medicago sativa Linn. against Ischemia and Reperfusion Insult. Evid Based Complement Alternat Med 2011;2011:792167. [PMID: 21785631 DOI: 10.1093/ecam/neq019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
293 Zhao J, Li G, Zhang Y, Su X, Hang C. The potential role of JAK2/STAT3 pathway on the anti-apoptotic effect of recombinant human erythropoietin (rhEPO) after experimental traumatic brain injury of rats. Cytokine 2011;56:343-50. [PMID: 21843949 DOI: 10.1016/j.cyto.2011.07.018] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
294 Zhang Z, Zhang Z, Fauser U, Artelt M, Burnet M, Schluesener H. Dexamethasone transiently attenuates up-regulation of endostatin/collagen XVIII following traumatic brain injury. Neuroscience 2007;147:720-6. [DOI: 10.1016/j.neuroscience.2007.04.052] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
295 Kochanek PM, Wallisch JS, Bayır H, Clark RSB. Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. Childs Nerv Syst 2017;33:1693-701. [PMID: 29149385 DOI: 10.1007/s00381-017-3474-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
296 Shi J, Wang Y, Chen T, Xu D, Zhao H, Chen L, Yan C, Tang L, He Y, Feng H, Yao J. Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning. Opt Express 2018;26:6371-81. [PMID: 29529829 DOI: 10.1364/OE.26.006371] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 9.3] [Reference Citation Analysis]
297 Törnqvist E, Liu L, Aldskogius H, Holst HV, Svensson M. Complement and clusterin in the injured nervous system. Neurobiol Aging 1996;17:695-705. [PMID: 8892342 DOI: 10.1016/0197-4580(96)00120-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 0.9] [Reference Citation Analysis]
298 Bellander BM, Lidman O, Ohlsson M, Meijer B, Piehl F, Svensson M. Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury. Exp Brain Res 2010;205:103-14. [PMID: 20602094 DOI: 10.1007/s00221-010-2342-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
299 Dong X, Ye W, Tang Y, Wang J, Zhong L, Xiong J, Liu H, Lu G, Feng Z. Wakefulness-Promoting Effects of Lateral Hypothalamic Area-Deep Brain Stimulation in Traumatic Brain Injury-Induced Comatose Rats: Upregulation of α1-Adrenoceptor Subtypes and Downregulation of Gamma-Aminobutyric Acid β Receptor Expression Via the Orexins Pathway. World Neurosurg 2021;152:e321-31. [PMID: 34062300 DOI: 10.1016/j.wneu.2021.05.089] [Reference Citation Analysis]
300 Huang SX, Qiu G, Cheng FR, Pei Z, Yang Z, Deng XH, Zhu JH, Chen L, Chen CC, Lin WF, Liu Y, Liu Z, Zhu FQ. Berberine Protects Secondary Injury in Mice with Traumatic Brain Injury Through Anti-oxidative and Anti-inflammatory Modulation. Neurochem Res 2018;43:1814-25. [PMID: 30027364 DOI: 10.1007/s11064-018-2597-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
301 Hu BY, Liu XJ, Qiang R, Jiang ZL, Xu LH, Wang GH, Li X, Peng B. Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury. J Ethnopharmacol 2014;155:1243-55. [PMID: 25046825 DOI: 10.1016/j.jep.2014.07.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.1] [Reference Citation Analysis]
302 Chodobski A, Chung I, Koźniewska E, Ivanenko T, Chang W, Harrington JF, Duncan JA, Szmydynger-Chodobska J. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury. Neuroscience 2003;122:853-67. [PMID: 14643756 DOI: 10.1016/j.neuroscience.2003.08.055] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 3.8] [Reference Citation Analysis]
303 Ma D, Wang N, Fan X, Zhang L, Luo Y, Huang R, Zhang L, Li Y, Zhao G, Li L. Protective Effects of Cornel Iridoid Glycoside in Rats After Traumatic Brain Injury. Neurochem Res 2018;43:959-71. [PMID: 29492766 DOI: 10.1007/s11064-018-2501-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
304 Hang CH, Shi JX, Li JS, Wu W, Yin HX. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J Gastroenterol 2003;9:2776-81. [PMID: 14669332 DOI: 10.3748/wjg.v9.i12.2776] [Cited by in CrossRef: 104] [Cited by in F6Publishing: 99] [Article Influence: 6.1] [Reference Citation Analysis]
305 Liu S, Liu Y, Deng S, Guo A, Wang X, Shen G. Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury. Exp Brain Res 2015;233:3359-65. [PMID: 26267487 DOI: 10.1007/s00221-015-4405-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
306 Jiang WW, Wang QH, Liao YJ, Peng P, Xu M, Yin LX. Effects of dexmedetomidine on TNF-α and interleukin-2 in serum of rats with severe craniocerebral injury. BMC Anesthesiol 2017;17:130. [PMID: 28931374 DOI: 10.1186/s12871-017-0410-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
307 Guley NH, Rogers JT, Del Mar NA, Deng Y, Islam RM, D'Surney L, Ferrell J, Deng B, Hines-Beard J, Bu W, Ren H, Elberger AJ, Marchetta JG, Rex TS, Honig MG, Reiner A. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice. J Neurotrauma 2016;33:403-22. [PMID: 26414413 DOI: 10.1089/neu.2015.3886] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
308 Mahi N, Kumar A, Jaggi AS, Singh N, Dhawan R. Possible role of pannexin 1/P2x7 purinoceptor in neuroprotective mechanism of ischemic postconditioning in mice. Journal of Surgical Research 2015;196:190-9. [DOI: 10.1016/j.jss.2015.02.050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
309 Fukuhara T, Nishio S, Ono Y, Kawauchi M, Asari S, Ohmoto T. Induction of Cu,Zn-superoxide dismutase after cortical contusion injury during hypothermia. Brain Research 1994;657:333-6. [DOI: 10.1016/0006-8993(94)90987-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 0.9] [Reference Citation Analysis]
310 Long J, Cai L, Li J, Zhang L, Yang H, Wang T. JNK3 involvement in nerve cell apoptosis and neurofunctional recovery after traumatic brain injury. Neural Regen Res 2013;8:1491-9. [PMID: 25206445 DOI: 10.3969/j.issn.1673-5374.2013.16.006] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
311 Viano DC, Hamberger A, Bolouri H, Säljö A. Evaluation of three animal models for concussion and serious brain injury. Ann Biomed Eng 2012;40:213-26. [PMID: 22012080 DOI: 10.1007/s10439-011-0386-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
312 Saklani R, Jaggi A, Singh N. Pharmacological preconditioning by milrinone: Memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice. Arch Pharm Res 2010;33:1049-57. [DOI: 10.1007/s12272-010-0711-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
313 Hong SQ, Zhang HT, You J, Zhang MY, Cai YQ, Jiang XD, Xu RX. Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem Res. 2011;36:2391-2400. [PMID: 21877237 DOI: 10.1007/s11064-011-0567-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
314 Durmaz R, Kanbak G, Akyüz F, Isiksoy S, Yücel F, Inal M, Tel E. Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can J Neurol Sci 2003;30:143-9. [PMID: 12774954 DOI: 10.1017/s0317167100053415] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
315 Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci Biobehav Rev 2017;76:396-414. [PMID: 27659125 DOI: 10.1016/j.neubiorev.2016.09.014] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 14.6] [Reference Citation Analysis]
316 Adelson PD, Dixon CE, Robichaud P, Kochanek PM. Motor and Cognitive Functional Deficits Following Diffuse Traumatic Brain Injury in the Immature Rat. Journal of Neurotrauma 1997;14:99-108. [DOI: 10.1089/neu.1997.14.99] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 3.8] [Reference Citation Analysis]
317 Tornheim PA, Liwnicz BH, Hirsch CS, Brown DL, Mclaurin RL. Acute responses to blunt head trauma: Experimental model and gross pathology. Journal of Neurosurgery 1983;59:431-8. [DOI: 10.3171/jns.1983.59.3.0431] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 0.7] [Reference Citation Analysis]
318 Ikonomidou C, Turski L. Prevention of trauma-induced neurodegeneration in infant and adult rat brain: Glutamate antagonists. Metab Brain Dis 1996;11:125-41. [DOI: 10.1007/bf02069500] [Cited by in Crossref: 47] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
319 Albert-Weißenberger C, Várrallyay C, Raslan F, Kleinschnitz C, Sirén AL. An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice. Exp Transl Stroke Med 2012;4:1. [PMID: 22300472 DOI: 10.1186/2040-7378-4-1] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
320 Yan W, Wang HD, Zhu L, Feng XM, Qiao L, Jin W, Tang K. Traumatic brain injury induces the activation of the Nrf2-ARE pathway in the lung in rats. Brain Inj 2008;22:802-10. [PMID: 18787991 DOI: 10.1080/02699050802372174] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
321 Kazanis I. CNS injury research; reviewing the last decade: methodological errors and a proposal for a new strategy. Brain Res Brain Res Rev 2005;50:377-86. [PMID: 16274749 DOI: 10.1016/j.brainresrev.2005.09.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
322 Bittigau P, Sifringer M, Pohl D, Stadthaus D, Ishimaru M, Shimizu H, Ikeda M, Lang D, Speer A, Olney JW, Ikonomidou C. Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 1999;45:724-35. [DOI: 10.1002/1531-8249(199906)45:6<724::aid-ana6>3.0.co;2-p] [Cited by in Crossref: 181] [Cited by in F6Publishing: 63] [Article Influence: 9.1] [Reference Citation Analysis]
323 Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020;22:E11. [PMID: 33374952 DOI: 10.3390/ijms22010011] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
324 Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, Wang CS, Feng H, Lin JK. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation 2014;11:59. [PMID: 24669820 DOI: 10.1186/1742-2094-11-59] [Cited by in Crossref: 184] [Cited by in F6Publishing: 174] [Article Influence: 26.3] [Reference Citation Analysis]
325 Liu R, Liao XY, Tang JC, Pan MX, Chen SF, Lu PX, Lu LJ, Zhang ZF, Zou YY, Bu LH, Qin XP, Wan Q. BpV(pic) confers neuroprotection by inhibiting M1 microglial polarization and MCP-1 expression in rat traumatic brain injury. Mol Immunol 2019;112:30-9. [PMID: 31075560 DOI: 10.1016/j.molimm.2019.04.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
326 Salci K, Enblad P, Piper I, Contant C, Nilsson P. A model for studies of intracranial volume pressure dynamics in traumatic brain injury. J Neurotrauma 2004;21:317-27. [PMID: 15115606 DOI: 10.1089/089771504322972103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
327 Kaur H, Kumar A, Jaggi AS, Singh N. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice. Journal of Surgical Research 2015;197:191-200. [DOI: 10.1016/j.jss.2015.03.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
328 Jørgensen OS, Hansen LI, Hoffman SW, Fülöp Z, Stein DG. Synaptic remodeling and free radical formation after brain contusion injury in the rat. Exp Neurol 1997;144:326-38. [PMID: 9168833 DOI: 10.1006/exnr.1996.6372] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 0.8] [Reference Citation Analysis]
329 Chen MM, Zhao GW, He P, Jiang ZL, Xi X, Xu SH, Ma DM, Wang Y, Li YC, Wang GH. Improvement in the neural stem cell proliferation in rats treated with modified "Shengyu" decoction may contribute to the neurorestoration. J Ethnopharmacol 2015;165:9-19. [PMID: 25704929 DOI: 10.1016/j.jep.2015.02.037] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
330 Sköld MK, von Gertten C, Sandberg-Nordqvist AC, Mathiesen T, Holmin S. VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 2005;22:353-67. [PMID: 15785231 DOI: 10.1089/neu.2005.22.353] [Cited by in Crossref: 98] [Cited by in F6Publishing: 90] [Article Influence: 6.1] [Reference Citation Analysis]
331 Lighthall JW, Dixon CE, Anderson TE. Experimental Models of Brain Injury. Journal of Neurotrauma 1989;6:83-97. [DOI: 10.1089/neu.1989.6.83] [Cited by in Crossref: 117] [Cited by in F6Publishing: 107] [Article Influence: 3.7] [Reference Citation Analysis]
332 Jiang L, Li R, Tang H, Zhong J, Sun H, Tang W, Wang H, Zhu J. MRI Tracking of iPS Cells-Induced Neural Stem Cells in Traumatic Brain Injury Rats. Cell Transplant 2019;28:747-55. [PMID: 30574806 DOI: 10.1177/0963689718819994] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
333 Ma J, Ni H, Rui Q, Liu H, Jiang F, Gao R, Gao Y, Li D, Chen G. Potential Roles of NIX/BNIP3L Pathway in Rat Traumatic Brain Injury. Cell Transplant 2019;28:585-95. [PMID: 30961359 DOI: 10.1177/0963689719840353] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
334 Cui QJ, Wang LY, Wei ZX, Qu WS. Continual naringin treatment benefits the recovery of traumatic brain injury in rats through reducing oxidative and inflammatory alterations. Neurochem Res. 2014;39:1254-1262. [PMID: 24728904 DOI: 10.1007/s11064-014-1306-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
335 Berkner J, Mannix R, Qiu J. Clinical Traumatic Brain Injury in the Preclinical Setting. Methods Mol Biol 2016;1462:11-28. [PMID: 27604710 DOI: 10.1007/978-1-4939-3816-2_2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
336 Malik ZA, Singh M, Sharma PL. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol 2011;133:729-34. [PMID: 21056650 DOI: 10.1016/j.jep.2010.10.061] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
337 Paradells S, Zipancic I, Martínez-Losa MM, García Esparza MÁ, Bosch-Morell F, Alvarez-Dolado M, Soria JM. Lipoic acid and bone marrow derived cells therapy induce angiogenesis and cell proliferation after focal brain injury. Brain Inj 2015;29:380-95. [PMID: 25384090 DOI: 10.3109/02699052.2014.973448] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
338 Liu H, Yang M, Qiu GP, Zhuo F, Yu WH, Sun SQ, Xiu Y. Aquaporin 9 in rat brain after severe traumatic brain injury. Arq Neuropsiquiatr 2012;70:214-20. [PMID: 22392116 DOI: 10.1590/s0004-282x2012000300012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
339 Yi M, Dai X, Li Q, Xu X, Chen Y, Wang D. Downregulated lncRNA CRNDE contributes to the enhancement of nerve repair after traumatic brain injury in rats. Cell Cycle 2019;18:2332-43. [PMID: 31345079 DOI: 10.1080/15384101.2019.1647024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
340 Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neuroscience 2000;99:93-105. [PMID: 10924955 DOI: 10.1016/s0306-4522(00)00185-8] [Cited by in Crossref: 58] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
341 Shamloo A, Manuchehrfar F, Rafii-tabar H. A viscoelastic model for axonal microtubule rupture. Journal of Biomechanics 2015;48:1241-7. [DOI: 10.1016/j.jbiomech.2015.03.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
342 Gulati P, Singh N. Neuroprotective mechanism of ischemic postconditioning in mice: a possible relationship between protein kinase C and nitric oxide pathways. Journal of Surgical Research 2014;189:174-83. [DOI: 10.1016/j.jss.2014.02.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
343 Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep 2015;12:7351-7. [PMID: 26459070 DOI: 10.3892/mmr.2015.4372] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
344 Holmin S, Höjeberg B. In situ detection of intracerebral cytokine expression after human brain contusion. Neuroscience Letters 2004;369:108-14. [DOI: 10.1016/j.neulet.2004.07.044] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 3.1] [Reference Citation Analysis]
345 Bush PC, Prince DA, Miller KD. Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model. J Neurophysiol 1999;82:1748-58. [PMID: 10515964 DOI: 10.1152/jn.1999.82.4.1748] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 1.9] [Reference Citation Analysis]
346 Zhang Z, Trautmann K, Artelt M, Burnet M, Schluesener HJ. Bone morphogenetic protein-6 is expressed early by activated astrocytes in lesions of rat traumatic brain injury. Neuroscience 2006;138:47-53. [PMID: 16388909 DOI: 10.1016/j.neuroscience.2005.11.036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
347 Semple BD, Carlson J, Noble-Haeusslein LJ. Pediatric Rodent Models of Traumatic Brain Injury. Methods Mol Biol 2016;1462:325-43. [PMID: 27604726 DOI: 10.1007/978-1-4939-3816-2_18] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
348 Gulati P, Muthuraman A, Kaur P. Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Pharmacol Biochem Behav 2015;131:26-32. [PMID: 25636603 DOI: 10.1016/j.pbb.2015.01.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
349 Lundberg J, Södersten E, Sundström E, Le Blanc K, Andersson T, Hermanson O, Holmin S. Targeted Intra-arterial Transplantation of Stem Cells to the Injured CNS is more Effective than Intravenous Administration: Engraftment is Dependent on Cell Type and Adhesion Molecule Expression. Cell Transplant 2012;21:333-43. [DOI: 10.3727/096368911x576036] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
350 McAllister TW, Flashman LA, McDonald BC, Saykin AJ. Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma 2006;23:1450-67. [PMID: 17020482 DOI: 10.1089/neu.2006.23.1450] [Cited by in Crossref: 174] [Cited by in F6Publishing: 156] [Article Influence: 11.6] [Reference Citation Analysis]
351 Hårdemark HG, Ericsson N, Kotwica Z, Rundström G, Mendel-Hartvig I, Olsson Y, Påhlman S, Persson L. S-100 protein and neuron-specific enolase in CSF after experimental traumatic or focal ischemic brain damage. J Neurosurg 1989;71:727-31. [PMID: 2809727 DOI: 10.3171/jns.1989.71.5.0727] [Cited by in F6Publishing: 117] [Reference Citation Analysis]
352 Bora KS, Sharma A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. Journal of Ethnopharmacology 2010;129:403-9. [DOI: 10.1016/j.jep.2010.04.030] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
353 Liu X, Zhao Z, Ji R, Zhu J, Sui QQ, Knight GE, Burnstock G, He C, Yuan H, Xiang Z. Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats. Purinergic Signal 2017;13:529-44. [PMID: 28823092 DOI: 10.1007/s11302-017-9579-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
354 Zhu L, Wang HD, Yu XG, Jin W, Qiao L, Lu TJ, Hu ZL, Zhou J. Erythropoietin prevents zinc accumulation and neuronal death after traumatic brain injury in rat hippocampus: in vitro and in vivo studies. Brain Res 2009;1289:96-105. [PMID: 19615349 DOI: 10.1016/j.brainres.2009.07.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
355 Xia L, Jiang ZL, Wang GH, Hu BY, Ke KF. Treatment with ginseng total saponins reduces the secondary brain injury in rat after cortical impact. J Neurosci Res 2012;90:1424-36. [PMID: 22434648 DOI: 10.1002/jnr.22811] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
356 Kerman M, Cirak B, Ozguner MF, Dagtekin A, Sutcu R, Altuntas I, Delibas N. Does melatonin protect or treat brain damage from traumatic oxidative stress? Exp Brain Res 2005;163:406-10. [PMID: 15856200 DOI: 10.1007/s00221-005-2338-2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
357 Wahab RA, Neuberger EJ, Lyeth BG, Santhakumar V, Pfister BJ. Fluid percussion injury device for the precise control of injury parameters. Journal of Neuroscience Methods 2015;248:16-26. [DOI: 10.1016/j.jneumeth.2015.03.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
358 Tang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, Chyung A, Chiasseu M, Strittmatter SM. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun 2020;8:96. [PMID: 32611392 DOI: 10.1186/s40478-020-00976-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
359 Günther M, Al Nimer F, Gahm C, Piehl F, Mathiesen T. iNOS-mediated secondary inflammatory response differs between rat strains following experimental brain contusion. Acta Neurochir 2012;154:689-97. [DOI: 10.1007/s00701-012-1297-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
360 Clark RSB, Kochanek PM, Schwarz MA, Schiding JK, Turner DS, Chen M, Carlos TM, Watkins SC. Inducible Nitric Oxide Synthase Expression in Cerebrovascular Smooth Muscle and Neutrophils after Traumatic Brain Injury in Immature Rats1. Pediatr Res 1996;39:784-90. [DOI: 10.1203/00006450-199605000-00007] [Cited by in Crossref: 134] [Cited by in F6Publishing: 131] [Article Influence: 5.4] [Reference Citation Analysis]
361 Shri R, Singh Bora K. Neuroprotective effect of methanolic extracts of Allium cepa on ischemia and reperfusion-induced cerebral injury. Fitoterapia 2008;79:86-96. [PMID: 17900821 DOI: 10.1016/j.fitote.2007.06.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
362 Tsai YD, Liliang PC, Cho CL, Chen JS, Lu K, Liang CL, Wang KW. Delayed neurovascular inflammation after mild traumatic brain injury in rats. Brain Inj 2013;27:361-5. [PMID: 23438356 DOI: 10.3109/02699052.2012.750738] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
363 Stibick DL, Feeney DM. Enduring Vulnerability to Transient Reinstatement of Hemiplegia by Prazosin After Traumatic Brain Injury. Journal of Neurotrauma 2001;18:303-12. [DOI: 10.1089/08977150151070955] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 0.8] [Reference Citation Analysis]
364 Zhao GW, Wang Y, Li YC, Jiang ZL, Sun L, Xi X, He P, Wang GH, Xu SH, Ma DM, Ke KF. The neuroprotective effect of modified "Shengyu" decoction is mediated through an anti-inflammatory mechanism in the rat after traumatic brain injury. J Ethnopharmacol 2014;151:694-703. [PMID: 24296086 DOI: 10.1016/j.jep.2013.11.041] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
365 Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-queralt A, Shah SB, Duckworth JL, Head BP. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cell Mol Neurobiol 2017;37:571-85. [DOI: 10.1007/s10571-016-0400-1] [Cited by in Crossref: 118] [Cited by in F6Publishing: 102] [Article Influence: 23.6] [Reference Citation Analysis]
366 Tweedie D, Rachmany L, Rubovitch V, Lehrmann E, Zhang Y, Becker KG, Perez E, Miller J, Hoffer BJ, Greig NH, Pick CG. Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice. Exp Neurol 2013;239:170-82. [PMID: 23059457 DOI: 10.1016/j.expneurol.2012.10.001] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 7.6] [Reference Citation Analysis]
367 Pan MX, Tang JC, Liu R, Feng YG, Wan Q. Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats. Chin J Traumatol 2018;21:224-8. [PMID: 30017543 DOI: 10.1016/j.cjtee.2018.04.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
368 Nilsson P, Ronne-engström E, Flink R, Ungerstedt U, Carlson H, Hillered L. Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Research 1994;637:227-32. [DOI: 10.1016/0006-8993(94)91237-8] [Cited by in Crossref: 102] [Cited by in F6Publishing: 94] [Article Influence: 3.8] [Reference Citation Analysis]
369 Dong XY, Feng Z. Wake-promoting effects of vagus nerve stimulation after traumatic brain injury: upregulation of orexin-A and orexin receptor type 1 expression in the prefrontal cortex. Neural Regen Res 2018;13:244-51. [PMID: 29557373 DOI: 10.4103/1673-5374.226395] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
370 Zhang M, Wu J, Ding H, Wu W, Xiao G. Progesterone Provides the Pleiotropic Neuroprotective Effect on Traumatic Brain Injury Through the Nrf2/ARE Signaling Pathway. Neurocrit Care 2017;26:292-300. [PMID: 27995513 DOI: 10.1007/s12028-016-0342-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
371 Antonenko YN, Denisov SS, Silachev DN, Khailova LS, Jankauskas SS, Rokitskaya TI, Danilina TI, Kotova EA, Korshunova GA, Plotnikov EY, Zorov DB. A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochim Biophys Acta 2016;1860:2463-73. [PMID: 27450891 DOI: 10.1016/j.bbagen.2016.07.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
372 Beier CP, Kölbl M, Beier D, Woertgen C, Bogdahn U, Brawanski A. CD95/Fas mediates cognitive improvement after traumatic brain injury. Cell Res 2007;17:732-4. [PMID: 17646846 DOI: 10.1038/cr.2007.60] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
373 Öğün CÖ, Üstün ME, Duman A, Gürb˙ilek M, Genç BO. Correlation between tissue lactate levels and electroencephalogram in evaluating the severity of experimental head trauma: . Critical Care Medicine 2002;30:2123-8. [DOI: 10.1097/00003246-200209000-00028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
374 Krobert KA, Sutton RL, Feeney DM. Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. J Neurochem 1994;62:2233-40. [PMID: 8189231 DOI: 10.1046/j.1471-4159.1994.62062233.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 1.3] [Reference Citation Analysis]
375 Rehman SU, Ahmad A, Yoon G, Khan M, Abid MN, Kim MO. Inhibition of c-Jun N-Terminal Kinase Protects Against Brain Damage and Improves Learning and Memory After Traumatic Brain Injury in Adult Mice. Cerebral Cortex 2018;28:2854-72. [DOI: 10.1093/cercor/bhx164] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
376 Allen GV, Chase T. Induction of heat shock proteins and motor function deficits after focal cerebellar injury. Neuroscience 2001;102:603-14. [PMID: 11226697 DOI: 10.1016/s0306-4522(00)00519-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
377 Hoogenboom WS, Branch CA, Lipton ML. Animal models of closed-skull, repetitive mild traumatic brain injury. Pharmacol Ther 2019;198:109-22. [PMID: 30822463 DOI: 10.1016/j.pharmthera.2019.02.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
378 Santana-gomez CE, Medel-matus JS, Rundle BK. Animal models of post-traumatic epilepsy and their neurobehavioral comorbidities. Seizure 2021;90:9-16. [DOI: 10.1016/j.seizure.2021.05.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
379 Feeney DM, Bailey BY, Boyeson MG, Hovda DA, Sutton RL. The effect of seizures on recovery of function following cortical contusion in the rat. Brain Injury 2009;1:27-32. [DOI: 10.3109/02699058709034441] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
380 Hang CH, Shi JX, Li JS, Wu W, Li WQ, Yin HX. Levels of vasoactive intestinal peptide, cholecystokinin and calcitonin gene-related peptide in plasma and jejunum of rats following traumatic brain injury and underlying significance in gastrointestinal dysfunction. World J Gastroenterol 2004;10:875-80. [PMID: 15040036 DOI: 10.3748/wjg.v10.i6.875] [Cited by in CrossRef: 14] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
381 Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hübner C, Olney JW, Turski L, Ikonomidou C. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A 1999;96:2508-13. [PMID: 10051673 DOI: 10.1073/pnas.96.5.2508] [Cited by in Crossref: 181] [Cited by in F6Publishing: 169] [Article Influence: 8.2] [Reference Citation Analysis]
382 Si D, Yang P, Jiang R, Zhou H, Wang H, Zhang Y. Improved cognitive outcome after progesterone administration is associated with protecting hippocampal neurons from secondary damage studied in vitro and in vivo. Behav Brain Res 2014;264:135-42. [PMID: 24518203 DOI: 10.1016/j.bbr.2014.01.049] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
383 Golarai G, Greenwood AC, Feeney DM, Connor JA. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 2001;21:8523-37. [PMID: 11606641 [PMID: 11606641 DOI: 10.1523/jneurosci.21-21-08523.2001] [Cited by in Crossref: 202] [Article Influence: 10.1] [Reference Citation Analysis]
384 Inci S, Özcan OE, Kilinç K. Time-Level Relationship for Lipid Peroxidation and the Protective Effect of α-Tocopherol in Experimental Mild and Severe Brain Injury. Neurosurgery 1998;43:330-5. [DOI: 10.1097/00006123-199808000-00095] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 2.3] [Reference Citation Analysis]
385 Zheng Y, Wu S, Yang Q, Xu Z, Zhang S, Fan S, Liu C, Li X, Ma C. Trigeminal nerve electrical stimulation: An effective arousal treatment for loss of consciousness. Brain Res Bull 2021;169:81-93. [PMID: 33453332 DOI: 10.1016/j.brainresbull.2021.01.008] [Reference Citation Analysis]
386 Shimizu Y, Kawasaki T. Differential Regenerative Capacity of the Optic Tectum of Adult Medaka and Zebrafish. Front Cell Dev Biol 2021;9:686755. [PMID: 34268310 DOI: 10.3389/fcell.2021.686755] [Reference Citation Analysis]
387 Sharma P, Kulkarni GT, Sharma B. Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain. Brain Res 2020;1748:147116. [PMID: 32919985 DOI: 10.1016/j.brainres.2020.147116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
388 Lundberg J, Karimi M, von Gertten C, Holmin S, Ekström TJ, Sandberg-nordqvist A. Traumatic brain injury induces relocalization of DNA-methyltransferase 1. Neuroscience Letters 2009;457:8-11. [DOI: 10.1016/j.neulet.2009.03.105] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
389 Petersen A, Soderstrom M, Saha B, Sharma P. Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments. Exp Brain Res 2021. [PMID: 34324019 DOI: 10.1007/s00221-021-06178-6] [Reference Citation Analysis]
390 Wennersten A, Holmin S, Mathiesen T. Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol 2003;105:281-8. [PMID: 12557016 DOI: 10.1007/s00401-002-0649-y] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 2.7] [Reference Citation Analysis]
391 Dietrich WD, Alonso O, Halley M. Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 1994;11:289-301. [PMID: 7996583 DOI: 10.1089/neu.1994.11.289] [Cited by in Crossref: 266] [Cited by in F6Publishing: 251] [Article Influence: 10.2] [Reference Citation Analysis]
392 Chandel S, Gupta SK, Medhi B. Epileptogenesis following experimentally induced traumatic brain injury - a systematic review. Rev Neurosci 2016;27:329-46. [PMID: 26581067 DOI: 10.1515/revneuro-2015-0050] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
393 Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci 2013;14:128-42. [PMID: 23329160 DOI: 10.1038/nrn3407] [Cited by in Crossref: 733] [Cited by in F6Publishing: 658] [Article Influence: 91.6] [Reference Citation Analysis]
394 Gaur V, Aggarwal A, Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury: Possible neurobehavioral, biochemical and cellular alterations in rat brain. European Journal of Pharmacology 2009;616:147-54. [DOI: 10.1016/j.ejphar.2009.06.056] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 7.4] [Reference Citation Analysis]
395 Jiang H, Li H, Cao Y, Zhang R, Zhou L, Zhou Y, Zeng X, Wu J, Wu D, Wu D, Guo X, Li X, Wu H, Li P. Effects of cannabinoid (CBD) on blood brain barrier permeability after brain injury in rats. Brain Res 2021;1768:147586. [PMID: 34289379 DOI: 10.1016/j.brainres.2021.147586] [Reference Citation Analysis]
396 Demir I, Kiymaz N, Gudu BO, Turkoz Y, Gul M, Dogan Z, Demirtas S. Study of the neuroprotective effect of ginseng on superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in experimental diffuse head trauma. Acta Neurochir 2013;155:913-22. [DOI: 10.1007/s00701-013-1672-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
397 Hoffman SW, Fülöp Z, Stein DG. Bilateral frontal cortical contusion in rats: behavioral and anatomic consequences. J Neurotrauma 1994;11:417-31. [PMID: 7837282 DOI: 10.1089/neu.1994.11.417] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 2.4] [Reference Citation Analysis]
398 Fehily B, Fitzgerald M. Repeated Mild Traumatic Brain Injury: Potential Mechanisms of Damage. Cell Transplant 2017;26:1131-55. [PMID: 28933213 DOI: 10.1177/0963689717714092] [Cited by in Crossref: 83] [Cited by in F6Publishing: 65] [Article Influence: 27.7] [Reference Citation Analysis]
399 Bree D, Levy D. Strides Toward Better Understanding of Post-Traumatic Headache Pathophysiology Using Animal Models. Curr Pain Headache Rep 2018;22:67. [PMID: 30073545 DOI: 10.1007/s11916-018-0720-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
400 Hua R, Mao SS, Zhang YM, Chen FX, Zhou ZH, Liu JQ. Effects of pituitary adenylate cyclase activating polypeptide on CD4(+)/CD8(+) T cell levels after traumatic brain injury in a rat model. World J Emerg Med 2012;3:294-8. [PMID: 25215080 DOI: 10.5847/wjem.j.issn.1920-8642.2012.04.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
401 Poltavtseva RA, Silachev DN, Pavlovich SV, Kesova MI, Yarygin KN, Lupatov AY, Van'ko LV, Shuvalova MP, Sukhikh GT. Neuroprotective effect of mesenchymal and neural stem and progenitor cells on sensorimotor recovery after brain injury. Bull Exp Biol Med 2012;153:586-90. [PMID: 22977876 DOI: 10.1007/s10517-012-1772-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
402 Dai Y, Jin W, Cheng L, Yu C, Chen C, Ni H. Nur77 is a promoting factor in traumatic brain injury-induced nerve cell apoptosis. Biomed Pharmacother 2018;108:774-82. [PMID: 30248546 DOI: 10.1016/j.biopha.2018.09.091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
403 Jiang Z, Xu H, Wang M, Li Z, Su X, Li X, Li Z, Han X. Effect of infusion speed of 7.5% hypertonic saline on brain edema in patients with craniocerebral injury: An experimental study. Gene 2018;665:201-7. [PMID: 29729380 DOI: 10.1016/j.gene.2018.05.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
404 Genrikhs EE, Stelmashook EV, Alexandrova OP, Novikova SV, Voronkov DN, Glibka YA, Skulachev VP, Isaev NK. The single intravenous administration of mitochondria-targeted antioxidant SkQR1 after traumatic brain injury attenuates neurological deficit in rats. Brain Research Bulletin 2019;148:100-8. [DOI: 10.1016/j.brainresbull.2019.03.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
405 Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 1998;79:2119-48. [PMID: 9535973 DOI: 10.1152/jn.1998.79.4.2119] [Cited by in Crossref: 230] [Cited by in F6Publishing: 201] [Article Influence: 10.0] [Reference Citation Analysis]
406 Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, Keledjian K, Bochicchio G, Gerzanich V. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma 2009;26:2257-67. [PMID: 19604096 DOI: 10.1089/neu.2009.1021] [Cited by in Crossref: 102] [Cited by in F6Publishing: 84] [Article Influence: 9.3] [Reference Citation Analysis]
407 Gupta R, Singh M, Sharma A. Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacological Research 2003;48:209-15. [DOI: 10.1016/s1043-6618(03)00102-6] [Cited by in Crossref: 122] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
408 Babenko VA, Silachev DN, Danilina TI, Goryunov KV, Pevzner IB, Zorova LD, Popkov VA, Chernikov VP, Plotnikov EY, Sukhikh GT, Zorov DB. Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells 2021;10:1273. [PMID: 34063923 DOI: 10.3390/cells10061273] [Reference Citation Analysis]
409 Angoa-Pérez M, Kane MJ, Briggs DI, Herrera-Mundo N, Viano DC, Kuhn DM. Animal models of sports-related head injury: bridging the gap between pre-clinical research and clinical reality. J Neurochem 2014;129:916-31. [PMID: 24673291 DOI: 10.1111/jnc.12690] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
410 Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. Exp Transl Stroke Med 2010;2:16. [PMID: 20707892 DOI: 10.1186/2040-7378-2-16] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 7.0] [Reference Citation Analysis]
411 . The response of the cerebral hemisphere of the rat to injury. I. The mature rat. Phil Trans R Soc Lond B 1990;328:479-500. [DOI: 10.1098/rstb.1990.0121] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 3.3] [Reference Citation Analysis]
412 Turkoglu OF, Eroglu H, Okutan O, Gurcan O, Bodur E, Sargon MF, Oner L, Beskonakl i E. Atorvastatin efficiency after traumatic brain injury in rats. Surg Neurol 2009;72:146-52; discussion 152. [PMID: 18786717 DOI: 10.1016/j.surneu.2008.07.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
413 Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 1991;39:253-62. [PMID: 1787745 DOI: 10.1016/0165-0270(91)90104-8] [Cited by in Crossref: 825] [Cited by in F6Publishing: 791] [Article Influence: 28.4] [Reference Citation Analysis]
414 Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY. Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 2010;88:2847-58. [PMID: 20653046 DOI: 10.1002/jnr.22453] [Cited by in Crossref: 10] [Cited by in F6Publishing: 35] [Article Influence: 0.9] [Reference Citation Analysis]
415 Mathew P, Bullock R, Graham DI, Maxwell WL, Teasdale GM, Mcculloch J. A new experimental model of contusion in the rat: Histopathological analysis and temporal patterns of cerebral blood flow disturbances. Journal of Neurosurgery 1996;85:860-70. [DOI: 10.3171/jns.1996.85.5.0860] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 0.6] [Reference Citation Analysis]
416 Xu T, Wang X, Cao M, Wu X, Yan Y, Fu H, Zhao W, Gong P, Ke K, Gu X. Increased expression of BAG-1 in rat brain cortex after traumatic brain injury. J Mol Hist 2012;43:335-42. [DOI: 10.1007/s10735-012-9408-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
417 Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, Zhou ML, Zhu L, Hang CH. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 2013;38:2072-83. [PMID: 23892989 DOI: 10.1007/s11064-013-1115-z] [Cited by in Crossref: 146] [Cited by in F6Publishing: 137] [Article Influence: 18.3] [Reference Citation Analysis]
418 Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M, Tortella FC, Duhaime AC, Dixon CE. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. J Neurotrauma 2015;32:1725-35. [PMID: 26058402 DOI: 10.1089/neu.2014.3861] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 10.8] [Reference Citation Analysis]
419 Nilsson P, Hillered L, Olsson Y, Sheardown MJ, Hansen AJ. Regional Changes in Interstitial K + and Ca 2+ Levels following Cortical Compression Contusion Trauma in Rats. J Cereb Blood Flow Metab 1993;13:183-92. [DOI: 10.1038/jcbfm.1993.22] [Cited by in Crossref: 220] [Cited by in F6Publishing: 196] [Article Influence: 44.0] [Reference Citation Analysis]
420 Shang A, Liu K, Wang H, Wang J, Hang X, Yang Y, Wang Z, Zhang C, Zhou D. Neuroprotective effects of neuroglobin after mechanical injury. Neurol Sci 2012;33:551-8. [DOI: 10.1007/s10072-011-0772-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
421 Li LZ, Bao YJ, Zhao M. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochem Int 2011;58:126-33. [PMID: 21093516 DOI: 10.1016/j.neuint.2010.11.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
422 Wang W, Li Q, Zou F, Yu Z, Wang Y, Lu T, Hu T, Cui G. Increased expression of AGS3 in rat brain cortex after traumatic brain injury. J Neurosci Res 2013;91:726-36. [DOI: 10.1002/jnr.23195] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
423 Yoon YS, Yu KP, Kim H, Kim HI, Kwak SH, Kim BO. The effect of electric cortical stimulation after focal traumatic brain injury in rats. Ann Rehabil Med 2012;36:596-608. [PMID: 23185723 DOI: 10.5535/arm.2012.36.5.596] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
424 Si D, Wang H, Wang Q, Zhang C, Sun J, Wang Z, Zhang Z, Zhang Y. Progesterone treatment improves cognitive outcome following experimental traumatic brain injury in rats. Neuroscience Letters 2013;553:18-23. [DOI: 10.1016/j.neulet.2013.07.052] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
425 Paveliev M, Kislin M, Molotkov D, Yuryev M, Rauvala H, Khiroug L. Acute brain trauma in mice followed by longitudinal two-photon imaging. J Vis Exp 2014. [PMID: 24748024 DOI: 10.3791/51559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
426 Xie J, Qian Z, Yang T, Li W, Hu G. Minimally invasive assessment of the effect of mannitol and hypertonic saline therapy on traumatic brain edema using measurements of reduced scattering coefficient (μs′). Appl Opt 2010;49:5407. [DOI: 10.1364/ao.49.005407] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
427 Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol 2017;313:L1-L15. [PMID: 28408366 DOI: 10.1152/ajplung.00485.2016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
428 Batsaikhan B, Wang JY, Scerba MT, Tweedie D, Greig NH, Miller JP, Hoffer BJ, Lin CT, Wang JY. Post-Injury Neuroprotective Effects of the Thalidomide Analog 3,6'-Dithiothalidomide on Traumatic Brain Injury. Int J Mol Sci 2019;20:E502. [PMID: 30682785 DOI: 10.3390/ijms20030502] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
429 Fritz HG, Bauer R. Traumatic injury in the developing brain–effects of hypothermia. Experimental and Toxicologic Pathology 2004;56:91-102. [DOI: 10.1016/j.etp.2004.04.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
430 Ren W, Jing G, Shen Q, Yao X, Jing Y, Lin F, Pan W. Occludin and connexin 43 expression contribute to the pathogenesis of traumatic brain edema. Neural Regen Res 2013;8:2703-12. [PMID: 25206581 DOI: 10.3969/j.issn.1673-5374.2013.29.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
431 Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz J. Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY) 2013;42:286-91. [PMID: 23877609 DOI: 10.1038/laban.257] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
432 Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 2004;28:365-78. [PMID: 15341032 DOI: 10.1016/j.neubiorev.2004.06.002] [Cited by in Crossref: 207] [Cited by in F6Publishing: 193] [Article Influence: 12.2] [Reference Citation Analysis]
433 Wennersten A, Meijer X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. Journal of Neurosurgery 2004;100:88-96. [DOI: 10.3171/jns.2004.100.1.0088] [Cited by in Crossref: 96] [Cited by in F6Publishing: 88] [Article Influence: 5.6] [Reference Citation Analysis]
434 Jiang J, Bu X, Liu M, Cheng P. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury. Neural Regen Res 2012;7:46-53. [PMID: 25806058 DOI: 10.3969/j.issn.1673-5374.2012.01.008] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
435 Kline AE, Massucci JL, Ma X, Zafonte RD, Dixon CE. Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma. J Neurotrauma 2004;21:1712-22. [PMID: 15684763 DOI: 10.1089/neu.2004.21.1712] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 4.0] [Reference Citation Analysis]
436 Huang AP, Lai DM, Hsu YH, Kung Y, Lan C, Yeh CS, Tsai HH, Lin CF, Chen WS. Cavitation-induced traumatic cerebral contusion and intracerebral hemorrhage in the rat brain by using an off-the-shelf clinical shockwave device. Sci Rep 2019;9:15614. [PMID: 31666607 DOI: 10.1038/s41598-019-52117-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
437 Wei C, Luo Y, Peng L, Huang Z, Pan Y. Expression of Notch and Wnt/β-catenin signaling pathway in acute phase severe brain injury rats and the effect of exogenous thyroxine on those pathways. Eur J Trauma Emerg Surg 2020. [PMID: 32318748 DOI: 10.1007/s00068-020-01359-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
438 Lee J, Costantini TW, D'Mello R, Eliceiri BP, Coimbra R, Bansal V. Altering leukocyte recruitment following traumatic brain injury with ghrelin therapy. J Trauma Acute Care Surg 2014;77:709-15. [PMID: 25494422 DOI: 10.1097/TA.0000000000000445] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
439 Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc 2009;4:1328-37. [PMID: 19713954 DOI: 10.1038/nprot.2009.148] [Cited by in Crossref: 296] [Cited by in F6Publishing: 277] [Article Influence: 24.7] [Reference Citation Analysis]
440 Lerouet D, Besson VC, Plotkine M. Stroke and Traumatic Brain Injury. In: Vela JM, Maldonado R, Hamon M, editors. In Vivo Models for Drug Discovery. Wiley; 2014. pp. 367-86. [DOI: 10.1002/9783527679348.ch17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
441 Gennarelli TA. Animate Models of Human Head Injury. Journal of Neurotrauma 1994;11:357-68. [DOI: 10.1089/neu.1994.11.357] [Cited by in Crossref: 207] [Cited by in F6Publishing: 186] [Article Influence: 7.7] [Reference Citation Analysis]
442 Mastro-Martínez I, Pérez-Suárez E, Melen G, González-Murillo Á, Casco F, Lozano-Carbonero N, Gutiérrez-Fernández M, Díez-Tejedor E, Casado-Flores J, Ramírez-Orellana M, Serrano-González A. Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Inj 2015;29:1497-510. [PMID: 26287760 DOI: 10.3109/02699052.2015.1053525] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
443 Wei J, Pan X, Pei Z, Wang W, Qiu W, Shi Z, Xiao G. The beta-lactam antibiotic, ceftriaxone, provides neuroprotective potential via anti-excitotoxicity and anti-inflammation response in a rat model of traumatic brain injury. J Trauma Acute Care Surg 2012;73:654-60. [PMID: 22710775 DOI: 10.1097/TA.0b013e31825133c0] [Cited by in Crossref: 55] [Cited by in F6Publishing: 30] [Article Influence: 6.1] [Reference Citation Analysis]
444 Gulati P, Singh N. Evolving possible link between PI3K and NO pathways in neuroprotective mechanism of ischemic postconditioning in mice. Mol Cell Biochem 2014;397:255-65. [DOI: 10.1007/s11010-014-2193-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
445 Liva Cengiz Ş, Fatih Erdi M, Tosun M, Atalik E, Cihat Avunduk M, Cavide Sönmez F, Mehmetoglu İ, Baysefer A. Beneficial effects of levosimendan on cerebral vasospasm induced by subarachnoid haemorrhage: An experimental study. Brain Injury 2010;24:877-85. [DOI: 10.3109/02699051003789260] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
446 Wei XE, Wang D, Li MH, Zhang YZ, Li YH, Li WB. A useful tool for the initial assessment of blood-brain barrier permeability after traumatic brain injury in rabbits: dynamic contrast-enhanced magnetic resonance imaging. J Trauma 2011;71:1645-50; discussion 1650-1. [PMID: 22182873 DOI: 10.1097/TA.0b013e31823498eb] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
447 Yang S, Sun R, Zhou Z, Zhou J, Liang J, Mu H. Expression of amyloid-β protein and amyloid-β precursor protein after primary brain-stem injury in rats. Am J Forensic Med Pathol 2014;35:201-5. [PMID: 24949598 DOI: 10.1097/PAF.0000000000000103] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
448 Laurer HL, Mcintosh TK. Experimental models of brain trauma: . Current Opinion in Neurology 1999;12:715-21. [DOI: 10.1097/00019052-199912000-00010] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 3.9] [Reference Citation Analysis]
449 Huang CY, Lee YC, Li PC, Liliang PC, Lu K, Wang KW, Chang LC, Shiu LY, Chen MF, Sun YT, Wang HK. TDP-43 proteolysis is associated with astrocyte reactivity after traumatic brain injury in rodents. J Neuroimmunol 2017;313:61-8. [PMID: 29153610 DOI: 10.1016/j.jneuroim.2017.10.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
450 Xu B, Chandrasekar A, Olde Heuvel F, Powerski M, Nowak A, Noack L, Omari J, Huber-Lang M, Roselli F, Relja B. Ethanol Intoxication Alleviates the Inflammatory Response of Remote Organs to Experimental Traumatic Brain Injury. Int J Mol Sci 2020;21:E8181. [PMID: 33142949 DOI: 10.3390/ijms21218181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
451 Mikawa S, Kinouchi H, Kamii H, Gobbel GT, Chen SF, Carlson E, Epstein CJ, Chan PH. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc—superoxide dismutase transgenic mice. Journal of Neurosurgery 1996;85:885-91. [DOI: 10.3171/jns.1996.85.5.0885] [Cited by in Crossref: 126] [Cited by in F6Publishing: 119] [Article Influence: 5.0] [Reference Citation Analysis]
452 Liu Y, Guo C, Ding Y, Long X, Li W, Ke D, Wang Q, Liu R, Wang JZ, Zhang H, Wang X. Blockage of AEP attenuates TBI-induced tau hyperphosphorylation and cognitive impairments in rats. Aging (Albany NY) 2020;12:19421-39. [PMID: 33040048 DOI: 10.18632/aging.103841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
453 Steward O, Schauwecker P, Guth L, Zhang Z, Fujiki M, Inman D, Wrathall J, Kempermann G, Gage FH, Saatman KE, Raghupathi R, Mcintosh T. Genetic Approaches to Neurotrauma Research: Opportunities and Potential Pitfalls of Murine Models. Experimental Neurology 1999;157:19-42. [DOI: 10.1006/exnr.1999.7040] [Cited by in Crossref: 114] [Cited by in F6Publishing: 113] [Article Influence: 5.2] [Reference Citation Analysis]
454 Moisenovich MM, Plotnikov EY, Moysenovich AM, Silachev DN, Danilina TI, Savchenko ES, Bobrova MM, Safonova LA, Tatarskiy VV, Kotliarova MS, Agapov II, Zorov DB. Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury. Neurochem Res 2019;44:2261-72. [PMID: 30519983 DOI: 10.1007/s11064-018-2691-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
455 Clausen F, Lewén A, Marklund N, Olsson Y, Mcarthur DL, Hillered L. Correlation of Hippocampal Morphological Changes and Morris Water Maze Performance after Cortical Contusion Injury in Rats. Neurosurgery 2005;57:154-63. [DOI: 10.1227/01.neu.0000163412.07546.57] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]