BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Petronilli V, Nicolli A, Costantini P, Colonna R, Bernardi P. Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta. 1994;1187:255-259. [PMID: 7521212 DOI: 10.1016/0005-2728(94)90122-8] [Cited by in Crossref: 143] [Cited by in F6Publishing: 145] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995;182:367-377. [PMID: 7629499 DOI: 10.1084/jem.182.2.367] [Cited by in Crossref: 1160] [Cited by in F6Publishing: 1143] [Article Influence: 44.6] [Reference Citation Analysis]
2 Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM. Protective effect of carvedilol on chenodeoxycholate induction of the permeability transition pore11Abbreviations: CyA, cyclosporine A; CDCA, chenodeoxycholic acid; PTP, permeability transition pore; TPP+, tetraphenylphosphonium; and δΨ, transmembrane electric potential. Biochemical Pharmacology 2001;61:1449-54. [DOI: 10.1016/s0006-2952(01)00620-7] [Cited by in Crossref: 8] [Article Influence: 0.4] [Reference Citation Analysis]
3 Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d'Azzo A. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 2009;36:500-11. [PMID: 19917257 DOI: 10.1016/j.molcel.2009.10.021] [Cited by in Crossref: 194] [Cited by in F6Publishing: 187] [Article Influence: 17.6] [Reference Citation Analysis]
4 Sohn HW, Choi EY, Kim SH, Lee IS, Chung DH, Sung UA, Hwang DH, Cho SS, Jun BH, Jang JJ, Chi JG, Park SH. Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. Am J Pathol 1998;153:1937-45. [PMID: 9846983 DOI: 10.1016/S0002-9440(10)65707-0] [Cited by in Crossref: 64] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
5 Han YY, Reynolds IJ. Mitochondria in Acute Brain Injury. In: Clark RSB, Kochanek P, editors. Brain Injury. Boston: Springer US; 2001. pp. 145-61. [DOI: 10.1007/978-1-4615-1721-4_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
6 Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996;384:53-57. [PMID: 8797802 DOI: 10.1016/0014-5793(96)00280-3] [Cited by in Crossref: 327] [Cited by in F6Publishing: 302] [Article Influence: 13.1] [Reference Citation Analysis]
7 Huang WY, Jou MJ, Peng TI. Hypoxic preconditioning-induced mitochondrial protection is not disrupted in a cell model of mtDNA T8993G mutation-induced F1F0-ATP synthase defect: the role of mitochondrial permeability transition. Free Radic Biol Med 2014;67:314-29. [PMID: 24291231 DOI: 10.1016/j.freeradbiomed.2013.11.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
8 Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel. Journal of Biological Chemistry 1996;271:2185-92. [DOI: 10.1074/jbc.271.4.2185] [Cited by in Crossref: 334] [Cited by in F6Publishing: 347] [Article Influence: 13.4] [Reference Citation Analysis]
9 Chinopoulos C, Adam-Vizi V. Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase? Mitochondrion 2012;12:41-5. [PMID: 21586346 DOI: 10.1016/j.mito.2011.04.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
10 Bernardi P. Looking Back to the Future of Mitochondrial Research. Front Physiol 2021;12:682467. [PMID: 33995132 DOI: 10.3389/fphys.2021.682467] [Reference Citation Analysis]
11 Yamada H, Chounan R, Higashi Y, Kurihara N, Kido H. Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett 2004;578:331-6. [PMID: 15589841 DOI: 10.1016/j.febslet.2004.11.017] [Cited by in Crossref: 91] [Cited by in F6Publishing: 92] [Article Influence: 5.7] [Reference Citation Analysis]
12 Patel P, Karch J. Regulation of cell death in the cardiovascular system. Int Rev Cell Mol Biol 2020;353:153-209. [PMID: 32381175 DOI: 10.1016/bs.ircmb.2019.11.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
13 Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 2018;70:56-63. [PMID: 28522037 DOI: 10.1016/j.ceca.2017.05.004] [Cited by in Crossref: 93] [Cited by in F6Publishing: 82] [Article Influence: 23.3] [Reference Citation Analysis]
14 Kruman II, Mattson MP. Pivotal Role of Mitochondrial Calcium Uptake in Neural Cell Apoptosis and Necrosis. Journal of Neurochemistry 1999;72:529-40. [DOI: 10.1046/j.1471-4159.1999.0720529.x] [Cited by in Crossref: 245] [Cited by in F6Publishing: 228] [Article Influence: 12.9] [Reference Citation Analysis]
15 Zoratti M, De Marchi U, Biasutto L, Szabò I. Electrophysiology clarifies the megariddles of the mitochondrial permeability transition pore. FEBS Lett. 2010;584:1997-2004. [PMID: 20080089 DOI: 10.1016/j.febslet.2010.01.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
16 Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015;78:100-6. [PMID: 25268651 DOI: 10.1016/j.yjmcc.2014.09.023] [Cited by in Crossref: 284] [Cited by in F6Publishing: 251] [Article Influence: 40.6] [Reference Citation Analysis]
17 He L, Lemasters JJ. Heat shock suppresses the permeability transition in rat liver mitochondria. J Biol Chem 2003;278:16755-60. [PMID: 12611884 DOI: 10.1074/jbc.M300153200] [Cited by in Crossref: 53] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
18 Su K, Bourdette D, Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol 2013;4:169. [PMID: 23898299 DOI: 10.3389/fphys.2013.00169] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
19 Davidson SM, Yellon DM, Murphy MP, Duchen MR. Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 2012;93:445-53. [PMID: 22198507 DOI: 10.1093/cvr/cvr349] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 5.2] [Reference Citation Analysis]
20 Khodorov B, Pinelis V, Vergun O, Storozhevykh T, Vinskaya N. Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett 1996;397:230-4. [PMID: 8955353 DOI: 10.1016/s0014-5793(96)01139-8] [Cited by in Crossref: 66] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
21 Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. J Bioenerg Biomembr 1996;28:131-8. [DOI: 10.1007/bf02110643] [Cited by in Crossref: 336] [Cited by in F6Publishing: 91] [Article Influence: 13.4] [Reference Citation Analysis]
22 Kristal BS, Park BK, Yu BP. 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 1996;271:6033-8. [PMID: 8626387 DOI: 10.1074/jbc.271.11.6033] [Cited by in Crossref: 194] [Cited by in F6Publishing: 179] [Article Influence: 7.8] [Reference Citation Analysis]
23 Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int 2018;117:49-54. [PMID: 28647376 DOI: 10.1016/j.neuint.2017.06.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
24 Steinlechner-maran R, Eberl T, Kunc M, Schr??cksnadel H, Margreiter R, Gnaiger E. RESPIRATORY DEFECT AS AN EARLY EVENT IN PRESERVATION-REOXYGENATION INJURY OF ENDOTHELIAL CELLS1: . Transplantation 1997;63:136-42. [DOI: 10.1097/00007890-199701150-00025] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 1.7] [Reference Citation Analysis]
25 Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. Biochim Biophys Acta 2016;1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 15.6] [Reference Citation Analysis]
26 Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 2002;62:22-9. [PMID: 12065751 DOI: 10.1124/mol.62.1.22] [Cited by in Crossref: 224] [Cited by in F6Publishing: 213] [Article Influence: 11.8] [Reference Citation Analysis]
27 García-Valencia LE, Bravo-Alberto CE, Wu HM, Rodríguez-Sotres R, Cheung AY, Cruz-García F. SIPP, a Novel Mitochondrial Phosphate Carrier, Mediates in Self-Incompatibility. Plant Physiol 2017;175:1105-20. [PMID: 28874520 DOI: 10.1104/pp.16.01884] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
28 . Effect of cyclosporin A on energy coupling in pea stem mitochondria. FEBS Letters 1995;371:258-60. [DOI: 10.1016/0014-5793(95)00897-i] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
29 Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M. Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 2004;279:54783-92. [PMID: 15485857 DOI: 10.1074/jbc.M410938200] [Cited by in Crossref: 74] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
30 Votyakova TV, Reynolds IJ. Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. J Neurochem. 2005;93:526-537. [PMID: 15836612 DOI: 10.1111/j.1471-4159.2005.03042.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 4.8] [Reference Citation Analysis]
31 Bauer G, Dormann S, Engelmann I, Schulz A, Saran M. Reactive Oxygen Species and Apoptosis. In: Cameron RG, Feuer G, editors. Apoptosis and Its Modulation by Drugs. Berlin: Springer Berlin Heidelberg; 2000. pp. 275-318. [DOI: 10.1007/978-3-642-57075-9_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
32 Di Lisa F, Bernardi P. Mitochondrial function as a determinant of recovery or death in cell response to injury. In: Saks VA, Ventura-clapier R, Leverve X, Rossi A, Rigoulet M, editors. Bioenergetics of the Cell: Quantitative Aspects. Boston: Springer US; 1998. pp. 379-91. [DOI: 10.1007/978-1-4615-5653-4_25] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
33 Gao LL, Li FR, Jiao P, Yang MF, Zhou XJ, Si YH, Jiang WJ, Zheng TT. Paris chinensis dioscin induces G2/M cell cycle arrest and apoptosis in human gastric cancer SGC-7901 cells. World J Gastroenterol 2011; 17(39): 4389-4395 [PMID: 22110264 DOI: 10.3748/wjg.v17.i39.4389] [Cited by in CrossRef: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
34 Bernardi P, Bonaldo P. Dysfunction of Mitochondria and Sarcoplasmic Reticulum in the Pathogenesis of Collagen VI Muscular Dystrophies. Annals of the New York Academy of Sciences 2008;1147:303-11. [DOI: 10.1196/annals.1427.009] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
35 Kasimova MA, Lindahl E, Delemotte L. Determining the molecular basis of voltage sensitivity in membrane proteins. J Gen Physiol 2018;150:1444-58. [PMID: 30150239 DOI: 10.1085/jgp.201812086] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Bernardi P, Bonaldo P. Mitochondrial dysfunction and defective autophagy in the pathogenesis of collagen VI muscular dystrophies. Cold Spring Harb Perspect Biol 2013;5:a011387. [PMID: 23580791 DOI: 10.1101/cshperspect.a011387] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
37 Griffiths KK, Wang A, Wang L, Tracey M, Kleiner G, Quinzii CM, Sun L, Yang G, Perez-Zoghbi JF, Licznerski P, Yang M, Jonas EA, Levy RJ. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J 2020;34:7404-26. [PMID: 32307754 DOI: 10.1096/fj.202000283RR] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
38 Bernardi P. The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1996;1275:5-9. [DOI: 10.1016/0005-2728(96)00041-2] [Cited by in Crossref: 299] [Cited by in F6Publishing: 286] [Article Influence: 12.0] [Reference Citation Analysis]
39 Halestrap AP, Kerr PM, Javadov S, Woodfield K. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1998;1366:79-94. [DOI: 10.1016/s0005-2728(98)00122-4] [Cited by in Crossref: 330] [Cited by in F6Publishing: 87] [Article Influence: 14.3] [Reference Citation Analysis]
40 Scholz-starke J, Gambale F, Carpaneto A. Modulation of plant ion channels by oxidizing and reducing agents. Archives of Biochemistry and Biophysics 2005;434:43-50. [DOI: 10.1016/j.abb.2004.06.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 1.8] [Reference Citation Analysis]
41 Kristian T, Balan I, Schuh R, Onken M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J Neurosci Res 2011;89:1946-55. [PMID: 21488086 DOI: 10.1002/jnr.22626] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
42 Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR. Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 2004;287:H841-9. [PMID: 15072953 DOI: 10.1152/ajpheart.00678.2003] [Cited by in Crossref: 149] [Cited by in F6Publishing: 151] [Article Influence: 8.8] [Reference Citation Analysis]
43 Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes —requirement for stored Ca2+ and sustained opening of the permeability transition pore. Journal of Cell Science 2002;115:1175-88. [DOI: 10.1242/jcs.115.6.1175] [Cited by in Crossref: 82] [Cited by in F6Publishing: 60] [Article Influence: 4.3] [Reference Citation Analysis]
44 Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 1999;79:1127-55. [PMID: 10508231 DOI: 10.1152/physrev.1999.79.4.1127] [Cited by in Crossref: 1092] [Cited by in F6Publishing: 1035] [Article Influence: 49.6] [Reference Citation Analysis]
45 Azarashvili T, Krestinina O, Odinokova I, Evtodienko Y, Reiser G. Physiological Ca2+ level and Ca2+-induced Permeability Transition Pore control protein phosphorylation in rat brain mitochondria. Cell Calcium 2003;34:253-9. [PMID: 12887972 DOI: 10.1016/s0143-4160(03)00107-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
46 Penzo D, Tagliapietra C, Colonna R, Petronilli V, Bernardi P. Effects of fatty acids on mitochondria: implications for cell death. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2002;1555:160-5. [DOI: 10.1016/s0005-2728(02)00272-4] [Cited by in Crossref: 85] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
47 Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem 2010;285:741-50. [PMID: 19880514 DOI: 10.1074/jbc.M109.017731] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
48 Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis. 2007;12:815-833. [PMID: 17294078 DOI: 10.1007/s10495-007-0723-y] [Cited by in Crossref: 348] [Cited by in F6Publishing: 342] [Article Influence: 26.8] [Reference Citation Analysis]
49 Kantrow SP, Piantadosi CA. Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun 1997;232:669-71. [PMID: 9126333 DOI: 10.1006/bbrc.1997.6353] [Cited by in Crossref: 150] [Cited by in F6Publishing: 144] [Article Influence: 6.3] [Reference Citation Analysis]
50 Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 1997;272:3346-54. [PMID: 9013575 DOI: 10.1074/jbc.272.6.3346] [Cited by in Crossref: 405] [Cited by in F6Publishing: 412] [Article Influence: 16.9] [Reference Citation Analysis]
51 Pagano A, Donati Y, Métrailler I, Barazzone Argiroffo C. Mitochondrial cytochrome c release is a key event in hyperoxia-induced lung injury: protection by cyclosporin A. American Journal of Physiology-Lung Cellular and Molecular Physiology 2004;286:L275-83. [DOI: 10.1152/ajplung.00181.2003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 1.8] [Reference Citation Analysis]
52 Priault M, Camougrand N, Kinnally K, Vallette F, Manon S. Yeast as a tool to study Bax/mitochondrial interactions in cell death. FEMS Yeast Research 2003;4:15-27. [DOI: 10.1016/s1567-1356(03)00143-0] [Cited by in Crossref: 54] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
53 Custódio JB, Cardoso CM, Almeida LM. Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosis. Chem Biol Interact 2002;140:169-84. [PMID: 12076523 DOI: 10.1016/s0009-2797(02)00020-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
54 Wallace KB. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 2007;7:101-7. [PMID: 17652813 DOI: 10.1007/s12012-007-0008-2] [Cited by in Crossref: 144] [Cited by in F6Publishing: 128] [Article Influence: 10.3] [Reference Citation Analysis]
55 Owens K, Park JH, Schuh R, Kristian T. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 2013;4:618-34. [PMID: 24323416 DOI: 10.1007/s12975-013-0278-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
56 Bianchi K, Rimessi A, Prandini A, Szabadkai G, Rizzuto R. Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta 2004;1742:119-31. [PMID: 15590062 DOI: 10.1016/j.bbamcr.2004.09.015] [Cited by in Crossref: 93] [Cited by in F6Publishing: 87] [Article Influence: 5.8] [Reference Citation Analysis]
57 Bernardi P, Colonna R, Costantini P, Eriksson O, Nicolli A, Petronilli V, Scorrano L. Chemical modification of the mitochondrial permeability transition pore by specific amino acid reagents. Drug Dev Res 1999;46:14-7. [DOI: 10.1002/(sici)1098-2299(199901)46:1<14::aid-ddr3>3.0.co;2-l] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
58 Morota S, Manolopoulos T, Eyjolfsson A, Kimblad PO, Wierup P, Metzsch C, Blomquist S, Hansson MJ. Functional and pharmacological characteristics of permeability transition in isolated human heart mitochondria. PLoS One 2013;8:e67747. [PMID: 23840770 DOI: 10.1371/journal.pone.0067747] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
59 Puntel RL, Roos DH, Folmer V, Nogueira CW, Galina A, Aschner M, Rocha JB. Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening. Toxicol Sci 2010;117:133-43. [PMID: 20573786 DOI: 10.1093/toxsci/kfq185] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
60 Kong JY, Rabkin SW. Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim Biophys Acta 2000;1485:45-55. [PMID: 10802248 DOI: 10.1016/s1388-1981(00)00028-7] [Cited by in Crossref: 75] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
61 Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem. 2001;276:12030-12034. [PMID: 11134038 DOI: 10.1074/jbc.m010604200] [Cited by in Crossref: 341] [Cited by in F6Publishing: 127] [Article Influence: 16.2] [Reference Citation Analysis]
62 Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020;24:7102-14. [PMID: 32490600 DOI: 10.1111/jcmm.15341] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
63 Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, Zhu HB. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev 2011;78:942-50. [PMID: 21919110 DOI: 10.1002/mrd.21389] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
64 Skrzypski M, Kołodziejski PA, Mergler S, Khajavi N, Nowak KW, Strowski MZ. TRPV6 modulates proliferation of human pancreatic neuroendocrine BON-1 tumour cells. Biosci Rep 2016;36:e00372. [PMID: 27450545 DOI: 10.1042/BSR20160106] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Calzolari F, Ceruti S, Pinna L, Tamarozzi R. Aneurysm of the azygos pericallosal artery. One case. J Neuroradiol. 1991;18:277-285. [PMID: 1765813 DOI: 10.3727/000000007783464821] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 2.4] [Reference Citation Analysis]
66 Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, McMillan DGG, Gerle C, Szabò I, Bernardi P. Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 2019;10:4341. [PMID: 31554800 DOI: 10.1038/s41467-019-12331-1] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 37.5] [Reference Citation Analysis]
67 Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998;1366:151-165. [PMID: 9714783 DOI: 10.1016/s0005-2728(98)00110-8] [Cited by in Crossref: 564] [Cited by in F6Publishing: 95] [Article Influence: 24.5] [Reference Citation Analysis]
68 Wieloch T, Mattiasson G, Hansson MJ, Elmér E. 6.4 Mitochondrial Permeability Transition in the CNS—Composition, Regulation, and Pathophysiological Relevance. In: Lajtha A, Gibson GE, Dienel GA, editors. Handbook of Neurochemistry and Molecular Neurobiology. Boston: Springer US; 2007. pp. 667-702. [DOI: 10.1007/978-0-387-30411-3_25] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
69 Broom AJ, Ambroso J, Brunori G, Burns AK, Armitage JR, Francis I, Gandhi M, Peterson RA, Gant TW, Boobis AR, Lyon JJ. Effects of mid-respiratory chain inhibition on mitochondrial function in vitro and in vivo. Toxicol Res (Camb) 2016;5:136-50. [PMID: 29780577 DOI: 10.1039/c5tx00197h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
70 Brozmanová J, Mániková D, Vlčková V, Chovanec M. Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 2010;84:919-38. [PMID: 20871980 DOI: 10.1007/s00204-010-0595-8] [Cited by in Crossref: 212] [Cited by in F6Publishing: 195] [Article Influence: 19.3] [Reference Citation Analysis]
71 Grazia Farrace M, Piredda L, Matarrese P, Ciccosanti F, Falasca L, Rodolfo C, Giammarioli AM, Verderio E, Griffin M, Malorni W; Mauro Piacentini. Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress: ‘Tissue’ transglutaminase and mitochondria. Journal of Neurochemistry 2002;81:1061-72. [DOI: 10.1046/j.1471-4159.2002.00898.x] [Cited by in Crossref: 94] [Cited by in F6Publishing: 95] [Article Influence: 4.9] [Reference Citation Analysis]
72 Li W, Zhang C, Sun X. Mitochondrial Ca2+ Retention Capacity Assay and Ca2+-triggered Mitochondrial Swelling Assay. J Vis Exp 2018. [PMID: 29781984 DOI: 10.3791/56236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
73 De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M. Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta. 2009;1787:1425-1432. [PMID: 19523917 DOI: 10.1016/j.bbabio.2009.06.002] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 6.4] [Reference Citation Analysis]
74 Morimoto S, Tanaka Y, Sasaki K, Tanaka H, Fukamizu T, Shoyama Y, Shoyama Y, Taura F. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J Biol Chem 2007;282:20739-51. [PMID: 17513301 DOI: 10.1074/jbc.M700133200] [Cited by in Crossref: 45] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
75 Qin Z, Wang Y, Kikly KK, Sapp E, Kegel KB, Aronin N, Difiglia M. Pro-caspase-8 Is Predominantly Localized in Mitochondria and Released into Cytoplasm upon Apoptotic Stimulation. Journal of Biological Chemistry 2001;276:8079-86. [DOI: 10.1074/jbc.m007028200] [Cited by in Crossref: 80] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
76 Su K, Bourdette D, Forte M. Genetic inactivation of mitochondria-targeted redox enzyme p66ShcA preserves neuronal viability and mitochondrial integrity in response to oxidative challenges. Front Physiol 2012;3:285. [PMID: 22833725 DOI: 10.3389/fphys.2012.00285] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
77 Zoratti M, Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241:139-176. [PMID: 7640294 DOI: 10.1016/0304-4157(95)00003-a] [Cited by in Crossref: 1661] [Cited by in F6Publishing: 452] [Article Influence: 63.9] [Reference Citation Analysis]
78 Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2021. [PMID: 34710270 DOI: 10.1111/febs.16254] [Reference Citation Analysis]
79 Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015;95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Cited by in Crossref: 340] [Cited by in F6Publishing: 320] [Article Influence: 56.7] [Reference Citation Analysis]
80 Zhang Y, Li J, Liu X, Jiang F, Tian F, Liu Y. Spectroscopic and Microscopic Studies on the Mechanisms of Mitochondrial Toxicity Induced by Different Concentrations of Cadmium. J Membrane Biol 2011;241:39-49. [DOI: 10.1007/s00232-011-9361-y] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
81 Zhou Q, Fu X, Wang X, Wu Q, Lu Y, Shi J, Klaunig JE, Zhou S. Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology 2018;394:45-53. [PMID: 29222055 DOI: 10.1016/j.tox.2017.12.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
82 Kruman II, Nath A, Mattson MP. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 1998;154:276-88. [PMID: 9878167 DOI: 10.1006/exnr.1998.6958] [Cited by in Crossref: 290] [Cited by in F6Publishing: 293] [Article Influence: 13.2] [Reference Citation Analysis]
83 Gadd ME, Broekemeier KM, Crouser ED, Kumar J, Graff G, Pfeiffer DR. Mitochondrial iPLA2 Activity Modulates the Release of Cytochrome c from Mitochondria and Influences the Permeability Transition. Journal of Biological Chemistry 2006;281:6931-9. [DOI: 10.1074/jbc.m510845200] [Cited by in Crossref: 74] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
84 O'Brien TM, Oliveira PJ, Wallace KB. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro. Toxicol Appl Pharmacol 2008;227:184-95. [PMID: 18048072 DOI: 10.1016/j.taap.2007.10.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
85 Jacobson J, Duchen MR. ‘What nourishes me, destroys me’: towards a new mitochondrial biology. Cell Death Differ 2001;8:963-6. [DOI: 10.1038/sj.cdd.4400911] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
86 Ruiz F, Alvarez G, Ramos M, Hernández M, Bogónez E, Satrústegui J. Cyclosporin A targets involved in protection against glutamate excitotoxicity. Eur J Pharmacol 2000;404:29-39. [PMID: 10980260 DOI: 10.1016/s0014-2999(00)00584-7] [Cited by in Crossref: 46] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
87 Sekler I, Kobayashi S, Kopito RR. A cluster of cytoplasmic histidine residues specifies pH dependence of the AE2 plasma membrane anion exchanger. Cell 1996;86:929-35. [PMID: 8808628 DOI: 10.1016/s0092-8674(00)80168-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
88 Bernardi P, Broekemeier KM, Pfeiffer DR. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994;26:509-517. [PMID: 7896766 DOI: 10.1007/bf00762735] [Cited by in Crossref: 426] [Cited by in F6Publishing: 83] [Article Influence: 16.4] [Reference Citation Analysis]
89 Ben-Ari Z, Schmilovotz-Weiss H, Belinki A, Pappo O, Sulkes J, Neuman MG, Kaganovsky E, Kfir B, Tur-Kaspa R, Klein T. Circulating soluble cytochrome c in liver disease as a marker of apoptosis. J Intern Med. 2003;254:168-175. [PMID: 12859698 DOI: 10.1046/j.1365-2796.2003.01171.x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 1.4] [Reference Citation Analysis]
90 Kotnik T, Miklavcic D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 2006;90:480-91. [PMID: 16239325 DOI: 10.1529/biophysj.105.070771] [Cited by in Crossref: 208] [Cited by in F6Publishing: 124] [Article Influence: 13.0] [Reference Citation Analysis]
91 Myhre O, Fonnum F. The effect of aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A11Abbreviations: BIM, bisindolylmaleimide; [Ca2+]i, concentration of intracellular calcium; ChAT, cholin acetyltransferase; CSA, cyclosporin A; DCF, 2′,7′-dichlorofluorescein; H2DCF-DA, 2′,7′-dichlorodihydrofluorescin diacetate; DEDA, dimethyleicosadienoic acid; ERK, extracellular signal-regulated kinases; Fura-2 AM, 5-oxazolecarboxylic acid, 2-(6-(bis(2-((acetyloxy)methoxy)-2-oxoethyl)amino)-5-(2-(bis(2-((acetyloxy)methoxy)-2oxoethyl)amino)-5-methylphenoxy)ethoxy)-2-benzofuranyl)-, (acetyloxy) methyl ester; GABA-T, gamma-aminobutyric acid transaminase; HBSS, Hanks’ balanced salt solution; La3+, lanthanum; MAPK, mitogen-activated protein kinase; MeHg, methyl mercury; MEK, extracellular signal-regulated protein kinase; MeOH, methanol; MTP, mitochondrial permeability transition pore; L-NAME, Nω-nitro-l-arginine methyl ester; NO·, nitrogen oxide; NOS, NO· synthase; O2·−, superoxide; PLA2, phospholipase A2; PKC, protein kinase C; RNS, reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase; TMB, 1,2,4-trimethylbenzene; TMCH, 1,2,4-trimethylcyclohexane; and U73122, 1-(6-[17beta-3-methoxyestra- 1,3,5(10)-trien- 17-yl]-aminohexyl)- 1H-pyrrole-2,5-dione. Biochemical Pharmacology 2001;62:119-28. [DOI: 10.1016/s0006-2952(01)00652-9] [Cited by in Crossref: 58] [Cited by in F6Publishing: 9] [Article Influence: 2.9] [Reference Citation Analysis]
92 Andreani A, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Recanatini M, Lenaz G, Fato R, Bergamini C. Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore. Bioorg Med Chem 2004;12:5525-32. [PMID: 15465329 DOI: 10.1016/j.bmc.2004.08.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
93 Rao KVR, Norenberg MD. Manganese Induces the Mitochondrial Permeability Transition in Cultured Astrocytes. Journal of Biological Chemistry 2004;279:32333-8. [DOI: 10.1074/jbc.m402096200] [Cited by in Crossref: 89] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
94 Azzolin L, Basso E, Argenton F, Bernardi P. Mitochondrial Ca2+ transport and permeability transition in zebrafish (Danio rerio). Biochim Biophys Acta 2010;1797:1775-9. [PMID: 20633532 DOI: 10.1016/j.bbabio.2010.07.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
95 Aronis A, Komarnitsky R, Shilo S, Tirosh O. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production. Antioxid Redox Signal 2002;4:647-54. [PMID: 12230877 DOI: 10.1089/15230860260220157] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
96 Jou M. Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca2+ stress in astrocyte: Melatonin preserves the t-MPT for protection during mCa2+ stress. Journal of Pineal Research 2011;50:427-35. [DOI: 10.1111/j.1600-079x.2011.00861.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 3.9] [Reference Citation Analysis]
97 Kong JY, Rabkin SW. Mechanisms of Palmitate-induced Cardiomyocyte Apoptosis. In: Singal PK, Dixon IMC, Kirshenbaum LA, Dhalla NS, editors. Cardiac Remodeling and Failure. Boston: Springer US; 2003. pp. 435-57. [DOI: 10.1007/978-1-4419-9262-8_30] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
98 Petrussa E, Casolo V, Braidot E, Chiandussi E, Macrì F, Vianello A. Cyclosporin A induces the opening of a potassium-selective channel in higher plant mitochondria. J Bioenerg Biomembr 2001;33:107-17. [PMID: 11456216 DOI: 10.1023/a:1010796314162] [Cited by in Crossref: 37] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
99 Steinmetz RD, Firla B, Steinhilber D. Inhibition of the functional expression of N-methyl-d-aspartate receptors in a stably transformed cell line by cyclosporin A. Biochemical Pharmacology 2004;68:563-71. [DOI: 10.1016/j.bcp.2004.04.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
100 Hortelano S, Dallaporta B, Zamzami N, Hirsch T, Susin SA, Marzo I, Boscá L, Kroemer G. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett. 1997;410:373-377. [PMID: 9237665 DOI: 10.1016/s0014-5793(97)00623-6] [Cited by in Crossref: 186] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
101 Mcarthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew T, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018;359:eaao6047. [DOI: 10.1126/science.aao6047] [Cited by in Crossref: 249] [Cited by in F6Publishing: 232] [Article Influence: 83.0] [Reference Citation Analysis]
102 Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46:821-831. [PMID: 19265700 DOI: 10.1016/j.yjmcc.2009.02.021] [Cited by in Crossref: 590] [Cited by in F6Publishing: 569] [Article Influence: 49.2] [Reference Citation Analysis]
103 Bernardi P. Perspectives on the Permeability Transition Pore, a Mitochondrial Channel Involved in Cell Death. In: Papa S, Guerrieri F, Tager JM, editors. Frontiers of Cellular Bioenergetics. Boston: Springer US; 1999. pp. 773-95. [DOI: 10.1007/978-1-4615-4843-0_31] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.0] [Reference Citation Analysis]
104 Kamei Y, Koushi M, Aoyama Y, Asakai R. The yeast mitochondrial permeability transition is regulated by reactive oxygen species, endogenous Ca2+ and Cpr3, mediating cell death. Biochim Biophys Acta Bioenerg 2018;1859:1313-26. [PMID: 30031690 DOI: 10.1016/j.bbabio.2018.07.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
105 Rustenbeck I, Münster W, Lenzen S. Relation between accumulation of phospholipase A2 reaction products and Ca2+ release in isolated liver mitochondria. Biochim Biophys Acta 1996;1304:129-38. [PMID: 8954136 DOI: 10.1016/s0005-2760(96)00113-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
106 Leducq N, Delmas-Beauvieux MC, Bourdel-Marchasson I, Dufour S, Gallis JL, Canioni P, Diolez P. Mitochondrial permeability transition during hypothermic to normothermic reperfusion in rat liver demonstrated by the protective effect of cyclosporin A. Biochem J 1998;336 ( Pt 2):501-6. [PMID: 9820829 DOI: 10.1042/bj3360501] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 2.6] [Reference Citation Analysis]
107 Mignotte B, Vayssiere J. Mitochondrial control of apoptosis. Programmed Cell Death. Elsevier; 2001. pp. 93-122. [DOI: 10.1016/s1566-3124(01)05004-0] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
108 Ricchelli F, Beghetto C, Gobbo S, Tognon G, Moretto V, Crisma M. Structural modifications of the permeability transition pore complex in resealed mitochondria induced by matrix-entrapped disaccharides. Archives of Biochemistry and Biophysics 2003;410:155-60. [DOI: 10.1016/s0003-9861(02)00667-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
109 Reynolds IJ. Mitochondrial Membrane Potential and the Permeability Transition in Excitotoxicity. Annals NY Acad Sci 1999;893:33-41. [DOI: 10.1111/j.1749-6632.1999.tb07816.x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 2.9] [Reference Citation Analysis]
110 Bizetto EL, Noleto GR, Echevarria A, Canuto AV, Cadena SMSC. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages. Mol Cell Biochem 2012;360:15-21. [DOI: 10.1007/s11010-011-1038-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
111 Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013;4:95. [PMID: 23675351 DOI: 10.3389/fphys.2013.00095] [Cited by in Crossref: 237] [Cited by in F6Publishing: 225] [Article Influence: 29.6] [Reference Citation Analysis]
112 Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427:461-465. [PMID: 14749836 DOI: 10.1038/nature02229] [Cited by in Crossref: 788] [Cited by in F6Publishing: 748] [Article Influence: 46.4] [Reference Citation Analysis]
113 Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta. 2009;1787:1402-1415. [PMID: 19168026 DOI: 10.1016/j.bbabio.2008.12.017] [Cited by in Crossref: 261] [Cited by in F6Publishing: 243] [Article Influence: 21.8] [Reference Citation Analysis]
114 Jung JY, Jeong YJ, Jeong TS, Chung HJ, Kim WJ. Inhibition of apoptotic signals in overgrowth of human gingival fibroblasts by cyclosporin A treatment. Arch Oral Biol. 2008;53:1042-1049. [PMID: 18471799 DOI: 10.1016/j.archoralbio.2008.03.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
115 Bernardi P, Di Lisa F, Fogolari F, Lippe G. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase. Circ Res 2015;116:1850-62. [PMID: 25999424 DOI: 10.1161/CIRCRESAHA.115.306557] [Cited by in Crossref: 75] [Cited by in F6Publishing: 39] [Article Influence: 12.5] [Reference Citation Analysis]
116 Wieckowski MR, Szabadkai G, Wasilewski M, Pinton P, Duszyński J, Rizzuto R. Overexpression of adenine nucleotide translocase reduces Ca2+ signal transmission between the ER and mitochondria. Biochemical and Biophysical Research Communications 2006;348:393-9. [DOI: 10.1016/j.bbrc.2006.07.072] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
117 Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998;18:4439-50. [PMID: 9614221 [PMID: 9614221 DOI: 10.1523/jneurosci.18-12-04439.1998] [Cited by in Crossref: 160] [Article Influence: 7.0] [Reference Citation Analysis]
118 Bernardi P, Rasola A. Calcium and cell death: the mitochondrial connection. Subcell Biochem. 2007;45:481-506. [PMID: 18193649 DOI: 10.1007/978-1-4020-6191-2_18] [Cited by in Crossref: 140] [Cited by in F6Publishing: 132] [Article Influence: 10.8] [Reference Citation Analysis]
119 Pinton P, Ferrari D, Di Virgilio F, Pozzan T, Rizzuto R. Molecular machinery and signaling events in apoptosis. Drug Dev Res 2001;52:558-70. [DOI: 10.1002/ddr.1159] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
120 Yang R, Rincon M. Mitochondrial Stat3, the Need for Design Thinking. Int J Biol Sci 2016;12:532-44. [PMID: 27019635 DOI: 10.7150/ijbs.15153] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 12.4] [Reference Citation Analysis]
121 Bernardi P, Basso E, Colonna R, Costantini P, Di Lisa F, Eriksson O, Fontaine E, Forte M, Ichas F, Massari S, Nicolli A, Petronilli V, Scorrano L. Perspectives on the mitochondrial permeability transition. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1998;1365:200-6. [DOI: 10.1016/s0005-2728(98)00069-3] [Cited by in Crossref: 27] [Article Influence: 1.2] [Reference Citation Analysis]
122 Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res. 2000;256:50-57. [PMID: 10739651 DOI: 10.1006/excr.2000.4839] [Cited by in Crossref: 489] [Cited by in F6Publishing: 445] [Article Influence: 23.3] [Reference Citation Analysis]
123 Bround MJ, Bers DM, Molkentin JD. A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J Mol Cell Cardiol 2020;144:A3-A13. [PMID: 32454061 DOI: 10.1016/j.yjmcc.2020.05.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
124 Minamikawa T, Williams DA, Bowser DN, Nagley P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp Cell Res 1999;246:26-37. [PMID: 9882512 DOI: 10.1006/excr.1998.4290] [Cited by in Crossref: 120] [Cited by in F6Publishing: 120] [Article Influence: 5.5] [Reference Citation Analysis]
125 Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH. Cell-permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury. J Biol Chem. 2004;279:34682-34690. [PMID: 15178689 DOI: 10.1074/jbc.m402999200] [Cited by in Crossref: 513] [Cited by in F6Publishing: 233] [Article Influence: 30.2] [Reference Citation Analysis]
126 Custodio JB, Moreno AJ, Wallace KB. Tamoxifen Inhibits Induction of the Mitochondrial Permeability Transition by Ca2+and Inorganic Phosphate. Toxicology and Applied Pharmacology 1998;152:10-7. [DOI: 10.1006/taap.1998.8510] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 3.0] [Reference Citation Analysis]
127 Waterhouse NJ, Ricci JE, Green DR. And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 2002;84:113-21. [PMID: 12022942 DOI: 10.1016/s0300-9084(02)01379-2] [Cited by in Crossref: 92] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
128 Bernardi P, Colonna R, Costantini P, Eriksson O, Fontaine E, Ichas F, Massari S, Nicolli A, Petronilli V, Scorrano L. The mitochondrial permeability transition. Biofactors. 1998;8:273-281. [PMID: 9914829 DOI: 10.1002/biof.5520080315] [Cited by in Crossref: 129] [Cited by in F6Publishing: 131] [Article Influence: 5.9] [Reference Citation Analysis]
129 Hoyt KR, Stout AK, Cardman JM, Reynolds IJ. The role of intracellular Na+ and mitochondria in buffering of kainate-induced intracellular free Ca2+ changes in rat forebrain neurones. J Physiol 1998;509 ( Pt 1):103-16. [PMID: 9547385 DOI: 10.1111/j.1469-7793.1998.103bo.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 40] [Article Influence: 1.3] [Reference Citation Analysis]
130 Irwin W, Fontaine E, Agnolucci L, Penzo D, Betto R, Bortolotto S, Reggiani C, Salviati G, Bernardi P. Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem 2002;277:12221-7. [PMID: 11790774 DOI: 10.1074/jbc.M108938200] [Cited by in Crossref: 126] [Cited by in F6Publishing: 24] [Article Influence: 6.6] [Reference Citation Analysis]
131 Bernardi P. The permeability transition pore. History and perspectives of a cyclosporin A-sensitive mitochondrial channel. Thirty Years of Progress in Mitochondrial Bioenergetics and Molecular Biology. Elsevier; 1995. pp. 119-23. [DOI: 10.1016/b978-0-444-82235-2.50024-2] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
132 Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem. 2001;276:12035-12040. [PMID: 11134037 DOI: 10.1074/jbc.m010603200] [Cited by in Crossref: 218] [Cited by in F6Publishing: 71] [Article Influence: 10.4] [Reference Citation Analysis]
133 Hillard CJ, Campbell WB. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. Journal of Lipid Research 1997;38:2383-98. [DOI: 10.1016/s0022-2275(20)30024-9] [Cited by in Crossref: 55] [Article Influence: 2.3] [Reference Citation Analysis]
134 Pagano A, Barazzone-Argiroffo C. Alveolar cell death in hyperoxia-induced lung injury. Ann N Y Acad Sci 2003;1010:405-16. [PMID: 15033761 DOI: 10.1196/annals.1299.074] [Cited by in Crossref: 114] [Cited by in F6Publishing: 103] [Article Influence: 6.7] [Reference Citation Analysis]
135 Dumas JF, Argaud L, Cottet-Rousselle C, Vial G, Gonzalez C, Detaille D, Leverve X, Fontaine E. Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. J Biol Chem 2009;284:15117-25. [PMID: 19346250 DOI: 10.1074/jbc.M900926200] [Cited by in Crossref: 39] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
136 Carraro M, Carrer A, Urbani A, Bernardi P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. Journal of Molecular and Cellular Cardiology 2020;144:76-86. [DOI: 10.1016/j.yjmcc.2020.05.014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 28.0] [Reference Citation Analysis]
137 Bazil JN, Buzzard GT, Rundell AE. A bioenergetic model of the mitochondrial population undergoing permeability transition. J Theor Biol 2010;265:672-90. [PMID: 20538008 DOI: 10.1016/j.jtbi.2010.06.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
138 Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998;18:687-97. [PMID: 9425011 [PMID: 9425011 DOI: 10.1523/jneurosci.18-02-00687.1998] [Cited by in Crossref: 652] [Article Influence: 28.3] [Reference Citation Analysis]
139 Bernardi P, Penzo D, Wojtczak L. Mitochondrial energy dissipation by fatty acids. Elsevier; 2002. pp. 97-126. [DOI: 10.1016/s0083-6729(02)65061-7] [Cited by in Crossref: 58] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
140 Balakirev MY, Zimmer G. Gradual Changes in Permeability of Inner Mitochondrial Membrane Precede the Mitochondrial Permeability Transition. Archives of Biochemistry and Biophysics 1998;356:46-54. [DOI: 10.1006/abbi.1998.0738] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 0.6] [Reference Citation Analysis]
141 Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N. Calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem 2006;281:37547-58. [PMID: 17056496 DOI: 10.1074/jbc.M607263200] [Cited by in Crossref: 55] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
142 Lifshitz J, Janmey PA, Mcintosh TK. Photon correlation spectroscopy of brain mitochondrial populations: Application to traumatic brain injury. Experimental Neurology 2006;197:318-29. [DOI: 10.1016/j.expneurol.2005.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
143 Wilson J, Berntsen HF, Zimmer KE, Frizzell C, Verhaegen S, Ropstad E, Connolly L. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening. Toxicology and Applied Pharmacology 2016;294:21-31. [DOI: 10.1016/j.taap.2016.01.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
144 Schwerdt G, Freudinger R, Schuster C, Silbernagl S, Gekle M. Inhibition of mitochondria prevents cell death in kidney epithelial cells by intra- and extracellular acidification. Kidney Int 2003;63:1725-35. [PMID: 12675848 DOI: 10.1046/j.1523-1755.2003.00934.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 1.5] [Reference Citation Analysis]
145 Pourzand C, Tyrrell RM. Apoptosis, the Role of Oxidative Stress and the Example of Solar UV Radiation. Photochem Photobiol 1999;70:380-90. [DOI: 10.1111/j.1751-1097.1999.tb08239.x] [Cited by in Crossref: 113] [Cited by in F6Publishing: 79] [Article Influence: 5.1] [Reference Citation Analysis]