BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 2021;4:36-50. [DOI: 10.1007/s42114-021-00208-1] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 70.0] [Reference Citation Analysis]
Number Citing Articles
1 Luo J, Yang X, Xue Y, Yang C, Yang Z, Tusiime R, Liu Y, Zhang H, Yu J. Simultaneous optimization of the thermal conductivity and mechanical properties of epoxy resin composites through PES and AgNP functionalized BNs. Composites Part B: Engineering 2023;248:110373. [DOI: 10.1016/j.compositesb.2022.110373] [Reference Citation Analysis]
2 Duan X, Cheng S, Li Z, Liang C, Zhang Z, Zhao G, Liu Y, An D, Sun Z, Wong C. Flexible and environmentally friendly graphene natural rubber composites with high thermal conductivity for thermal management. Composites Part A: Applied Science and Manufacturing 2022;163:107223. [DOI: 10.1016/j.compositesa.2022.107223] [Reference Citation Analysis]
3 Yu Z, Wu S, Li C, Xiao Y, Liu J, Zhang B. Mechanically Robust Fluorinated Graphene/Poly(p-Phenylene Benzobisoxazole) Nanofiber Films with Low Dielectric Constant and Enhanced Thermal Conductivity: Implications for Thermal Management Applications. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04137] [Reference Citation Analysis]
4 Yang M, Wang Z, Li M, Yin Z, Butt HA. The synthesis, mechanisms, and additives for bio‐compatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook. Vinyl Additive Technology 2022. [DOI: 10.1002/vnl.21962] [Reference Citation Analysis]
5 Sheng M, Yu J, Gong H, Zhang Y, Wang Y. Enhancing the thermal stability and mechanical properties of phenyl silicone rubbers by controlling BN addition and phenyl content. Composites Communications 2022;35:101340. [DOI: 10.1016/j.coco.2022.101340] [Reference Citation Analysis]
6 Wu W, Ren T, Liu X, Davis R, Huai K, Cui X, Wei H, Hu J, Xia Y, Huang S, Qiang Z, Fu K(, Zhang J, Chen Y. Creating thermal conductive pathways in polymer matrix by directional assembly of synergistic fillers assisted by electric fields. Composites Communications 2022;35:101309. [DOI: 10.1016/j.coco.2022.101309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Xie X, Yang D. Multi-functionalization of Al2O3 nanoparticles for enhancing thermal conductivity of epoxy natural rubber composites. Applied Surface Science 2022;602:154335. [DOI: 10.1016/j.apsusc.2022.154335] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li Z, Lu Y, Guo N, Feng W, Fu S, Zhang P. Hygroscopic and Cool Boron Nitride Nanosheets/Regenerated Flax Fiber Material Microstructure Dual-Cooling Composite Fabric. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.11.130] [Reference Citation Analysis]
9 Cai Z, Thirunavukkarasu N, Diao X, Wang H, Wu L, Zhang C, Wang J. Progress of Polymer-Based Thermally Conductive Materials by Fused Filament Fabrication: A Comprehensive Review. Polymers 2022;14:4297. [DOI: 10.3390/polym14204297] [Reference Citation Analysis]
10 Wang Y, Zhang W, Feng M, Qu M, Cai Z, Yang G, Pan Y, Liu C, Shen C, Liu X. The influence of boron nitride shape and size on thermal conductivity, rheological and passive cooling properties of polyethylene composites. Composites Part A: Applied Science and Manufacturing 2022;161:107117. [DOI: 10.1016/j.compositesa.2022.107117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Lee SH, Kim D, Kwon TH, Kwon I, Han DH, Park H, Han SW, Lee JH, Lee DH, Yu S. Polyvinylidene fluoride dopant as voltage stabilizer for improving high-voltage insulation properties of polypropylene.. [DOI: 10.21203/rs.3.rs-2002013/v1] [Reference Citation Analysis]
12 Ren Q, Feng T, Song Z, Zhou P, Wang M, Zhang Q, Wang L. Autogenous and Tunable CNTs for Enhanced Polarization and Conduction Loss Enabling Sea Urchin-Like Co3ZnC/Co/C Composites with Excellent Microwave Absorption Performance. ACS Appl Mater Interfaces 2022. [PMID: 36045505 DOI: 10.1021/acsami.2c13064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yan Z, Li J, Chen Q, Chen S, Luo L, Chen Y. Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00524-0] [Reference Citation Analysis]
14 Yang S, Huang Z, Hu Q, Zhang Y, Wang F, Wang H, Shu Y. Proportional Optimization Model of Multiscale Spherical BN for Enhancing Thermal Conductivity. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c00878] [Reference Citation Analysis]
15 Yang S, Zhang Y, Sha Z, Huang Z, Wang H, Wang F, Li J. Deterministic Manipulation of Heat Flow via Three-Dimensional-Printed Thermal Meta-Materials for Multiple Protection of Critical Components. ACS Appl Mater Interfaces 2022. [PMID: 35984869 DOI: 10.1021/acsami.2c09602] [Reference Citation Analysis]
16 Yun H, Kwak M, Park K, Kim Y. Fabrication, Thermal Conductivity, and Mechanical Properties of Hexagonal-Boron-Nitride-Pattern-Embedded Aluminum Oxide Composites. Nanomaterials 2022;12:2815. [DOI: 10.3390/nano12162815] [Reference Citation Analysis]
17 Liu B, Liu Y, Liu X. Enhanced Thermal Conductivity of All-Organic Aramid Nanofiber Films via Interfacial Coupling Reaction. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01007] [Reference Citation Analysis]
18 Zhang W, Feng Y, Althakafy JT, Liu Y, Abo-dief HM, Huang M, Zhou L, Su F, Liu C, Shen C. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00539-7] [Reference Citation Analysis]
19 Wang H, Hao J, Yang D. Noncovalent functionalization of boron nitride via chelation of tannic acid with Fe ions for constructing high thermally conductive polymeric composites. Polymers for Advanced Techs. [DOI: 10.1002/pat.5822] [Reference Citation Analysis]
20 Luo W, Ma Y, Li T, Thabet HK, Hou C, Ibrahim MM, El-bahy SM, Xu BB, Guo Z. Overview of MXene/conducting polymer composites for supercapacitors. Journal of Energy Storage 2022;52:105008. [DOI: 10.1016/j.est.2022.105008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
21 Gao J, Hao M, Wang Y, Kong X, Yang B, Wang R, Lu Y, Zhang L, Gong M, Zhang L, Wang D, Lin X. 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Additive Manufacturing 2022;56:102897. [DOI: 10.1016/j.addma.2022.102897] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Jia Y, Mao Z, Huang W, Zhang J. Effect of temperature and crystallinity on the thermal conductivity of semi-crystalline polymers: A case study of polyethylene. Materials Chemistry and Physics 2022;287:126325. [DOI: 10.1016/j.matchemphys.2022.126325] [Reference Citation Analysis]
23 Du Q, Guo M, Zhang H, Liu Y, Wu D, Ru Y, Gao D, Chen N, Sun J. Preparation of PP / SCF thermally conductive composites with forced‐assembled networks by multiple injection compression molding. J of Applied Polymer Sci. [DOI: 10.1002/app.52826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Lygdenov B, Guryev A, Vlasova O, Zheng Q, Mei S. Improving the technology of chemical-thermal treatment of tool steels. Grand Altai Research & Education / Наука и образование Большого Алтая 2022. [DOI: 10.25712/astu.2410-485x.2022.01.011] [Reference Citation Analysis]
25 Yang X, Fu K, Wu L, Tang X, Wang J, Tong G, Chen D, Wu W. Synergistic enhancement of thermal conduction and microwave absorption of silica films based on graphene/chiral PPy/Al2O3 ternary aerogels. Carbon 2022. [DOI: 10.1016/j.carbon.2022.07.060] [Reference Citation Analysis]
26 Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interface Sci 2022;305:102705. [PMID: 35640315 DOI: 10.1016/j.cis.2022.102705] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
27 Zhao L, Wei C, Ren J, Li Y, Zheng J, Jia L, Wang Z, Jia S. Biomimetic Nacreous Composite Films toward Multipurpose Application Structured by Aramid Nanofibers and Edge-Hydroxylated Boron Nitride Nanosheets. Ind Eng Chem Res 2022;61:8881-8894. [DOI: 10.1021/acs.iecr.2c01281] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Zhang S, Cheng B, Jia Z, Zhao Z, Jin X, Zhao Z, Wu G. The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00514-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
29 Wu Y, Huang H, Zhou W, You C, Ye H, Chen J, Zang S, Yun J, Chen X, Wang L, Yuan Z. High-Porosity Lamellar Films Prepared by a Multistage Assembly Strategy for Efficient Photothermal Water Evaporation and Power Generation. ACS Appl Mater Interfaces 2022. [PMID: 35713882 DOI: 10.1021/acsami.2c05125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Feng CP, Wei F, Sun KY, Wang Y, Lan HB, Shang HJ, Ding FZ, Bai L, Yang J, Yang W. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. Nanomicro Lett 2022;14:127. [PMID: 35699776 DOI: 10.1007/s40820-022-00868-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Xie J, Li C, Fu Y, Chen Z, Wang X, Qin H, Zhang X, Zhang S, Wang S, Xiong C, Zhu S. Spherical boron nitride/pitch‐based carbon fiber/silicone rubber composites for high thermal conductivity and excellent electromagnetic interference shielding performance. J of Applied Polymer Sci. [DOI: 10.1002/app.52734] [Reference Citation Analysis]
32 Mou P, Zhao J, Wang G, Shi S, Wan G, Zhou M, Deng Z, Teng S, Wang G. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chemical Engineering Journal 2022;437:135285. [DOI: 10.1016/j.cej.2022.135285] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
33 Zandieh A, Izadi H, Hamidinejad M, Shin H, Shi S, Martinez-rubi Y, Guan J, Cho H, Kim KS, Park CB. Molecular engineering of the surface of boron nitride nanotubes for manufacture of thermally conductive dielectric polymer composites. Applied Surface Science 2022;587:152779. [DOI: 10.1016/j.apsusc.2022.152779] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Song N, Zhang F, Cao D, Wang P, Ding P. Bicontinuous laminated structure design of polypropylene/reduced graphene oxide hybrid films for thermal management. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00470-x] [Reference Citation Analysis]
35 Lin J, Hu H, Luo J, Miao L, Yang Z, Chen M, Zhang M, Ou JZ. Micro/Nanoarrays and Their Applications in Flexible Sensors: A Review. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin Xu B, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z. Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites. Nanomicro Lett 2022;14:118. [PMID: 35488958 DOI: 10.1007/s40820-022-00863-z] [Cited by in Crossref: 50] [Cited by in F6Publishing: 67] [Article Influence: 50.0] [Reference Citation Analysis]
37 Zhao J, Bao K, Xie M, Wei D, Yang K, Zhang X, Zhang C, Wang Z, Yang X. Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00455-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. High strength and anti‐freezing piezoresistive pressure sensor based on a composite gel. Polymers for Advanced Techs. [DOI: 10.1002/pat.5700] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Zhang S, Jia Z, Cheng B, Zhao Z, Lu F, Wu G. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00458-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 21.0] [Reference Citation Analysis]
40 Zhang Z, Li Z, Zhao Y, Bi X, Zhang Z, Long Z, Liu Z, Zhang L, Cai W, Liu Y, Fan R. Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00445-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Hu D, Liu H, Yang M, Guo Y, Ma W. Construction of boron nitride nanosheets-based nanohybrids by electrostatic self-assembly for highly thermally conductive composites. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00463-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Yu Z, Wang Y, Zheng J, Sun S, Fu Y, Chen D, Cai W, Wang D, Zhou H, Li D. Fast-Response Bioinspired Near-Infrared Light-Driven Soft Robot Based on Two-Stage Deformation. ACS Appl Mater Interfaces 2022;14:16649-57. [PMID: 35360897 DOI: 10.1021/acsami.2c01109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Liu Y, Jia Z, Zhan Q, Dong Y, Xu Q, Wu G. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res . [DOI: 10.1007/s12274-022-4287-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 41.0] [Reference Citation Analysis]
44 Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu BB, Murugadoss V, Huang M, Guo Z. Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00438-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 34.0] [Reference Citation Analysis]
45 Hu X, Zhu C, Wu H, Li X, Lu X, Qu J. Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and utilization. Composites Part A: Applied Science and Manufacturing 2022;154:106770. [DOI: 10.1016/j.compositesa.2021.106770] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
46 Laxminarasimha Rao V, Vasudevareddy Y, Shekharam T, Nagabhushanam M. First report on effect of freezing of charge carriers on conductivity of CoxZn1-xS ternary semiconductor compounds at low temperatures. Chemical Physics Letters 2022. [DOI: 10.1016/j.cplett.2022.139571] [Reference Citation Analysis]
47 Yang T, Liu L, Li X, Zhang L. High performance silicate/silicone elastomer dielectric composites. Polymer 2022;240:124470. [DOI: 10.1016/j.polymer.2021.124470] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Shi Y, Bai Y, Lei Y, Zhang H, Zhou S, Zou H, Liang M, Chen Y. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure. Journal of Materials Science & Technology 2022;99:239-50. [DOI: 10.1016/j.jmst.2021.05.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Wang Y, Jin H, Shen J, Wang B, Feng X, Mao Z, Zhang Y, Sui X. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach. Journal of Materials Science & Technology 2022;101:146-54. [DOI: 10.1016/j.jmst.2021.06.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 He X, Li S, Shen R, Ma Y, Zhang L, Sheng X, Chen Y, Xie D, Huang J. A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-021-00392-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 18.0] [Reference Citation Analysis]
51 Parameswaranpillai J, Midhun Dominic C, Mavinkere Rangappa S, Siengchin S, Ozbakkaloglu T. Introduction to elastomers. Elastomer Blends and Composites 2022. [DOI: 10.1016/b978-0-323-85832-8.00002-x] [Reference Citation Analysis]
52 Li R, Yang X, Li J, Shen Y, Zhang L, Lu R, Wang C, Zheng X, Chen H, Zhang T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Materials Today Physics 2022;22:100594. [DOI: 10.1016/j.mtphys.2021.100594] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
53 Ouyang Y, Bai L, Tian H, Li X, Yuan F. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Composites Part A: Applied Science and Manufacturing 2022;152:106685. [DOI: 10.1016/j.compositesa.2021.106685] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
54 Tang G, Hou X, Wang Y, Yan Z, Ren T, Ma L, Huang X, Wang C. Hexagonal Boron Nitride/Polyaniline Nanocomposites for Anticorrosive Waterborne Epoxy Coatings. ACS Appl Nano Mater 2022;5:361-72. [DOI: 10.1021/acsanm.1c03173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
55 Alikhaidarova E, Afanasyev D, Ibrayev N, Nuraje N. Plasmonic enhanced polymer solar cell with inclusion of Ag@SiO 2 core‐shell nanostructures. Polymers for Advanced Techs 2022;33:1000-8. [DOI: 10.1002/pat.5574] [Reference Citation Analysis]
56 Qiu H, Zhao X, Li H, Li Y, Li J, Yang J. Highly flexible and thermal conductive films of graphene/poly(naphthylamine) and applications in thermal management of LED devices. J of Applied Polymer Sci 2021;138:51383. [DOI: 10.1002/app.51383] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
57 Yue C, Guan L, Zhang X, Wang Y, Weng L. Thermally conductive epoxy/boron nitride composites with high glass transition temperatures for thermal interface materials. Materials & Design 2021;212:110190. [DOI: 10.1016/j.matdes.2021.110190] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
58 Xu F, Bao D, Cui Y, Gao Y, Lin D, Wang X, Peng J, Geng H, Wang H. Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-021-00367-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
59 Qu K, Wang W, Shi C, Sun Z, Qi H, Shi J, Yang S, Huang Z, Guo Z. Fungus bran-derived nanoporous carbon with layered structure and rime-like support for enhanced symmetric supercapacitors. J Nanostruct Chem 2021;11:769-84. [DOI: 10.1007/s40097-021-00448-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
60 Wei X, Song G, Wang B, Li M, Qin Y, Li L, Cui J, Cai T, Dai W, Lin C, Jiang N, Pan Z, Zhou X, Wang Z, Yu J. Black phosphorene-cellulose nanofiber hybrid paper as flexible heat spreader. 2D Mater 2021;8:045029. [DOI: 10.1088/2053-1583/ac207a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
61 Yuan Z, Ma H, Hussien MA, Feng Y. Development and Challenges of Thermal Interface Materials: A Review. Macromol Mater Eng 2021;306:2100428. [DOI: 10.1002/mame.202100428] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
62 Zhang X, Dong J, Pan D, Yang G, Su F, Ji Y, Liu C, Shen C. Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv Compos Hybrid Mater 2021;4:1102-12. [DOI: 10.1007/s42114-021-00335-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
63 Ruan K, Zhong X, Shi X, Dang J, Gu J. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review. Materials Today Physics 2021;20:100456. [DOI: 10.1016/j.mtphys.2021.100456] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 46.0] [Reference Citation Analysis]
64 Guo Y, Ruan K, Gu J. Controllable thermal conductivity in composites by constructing thermal conduction networks. Materials Today Physics 2021;20:100449. [DOI: 10.1016/j.mtphys.2021.100449] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 36.0] [Reference Citation Analysis]
65 Zhang F, Jia Z, Wang Z, Zhang C, Wang B, Xu B, Liu X, Wu G. Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Materials Today Physics 2021;20:100475. [DOI: 10.1016/j.mtphys.2021.100475] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
66 Su Y, Yang J, Wang X, Ma Y, Pan D, Vupputuri S. Surlyn resin ionic interlayer-based laminated glass: preparation and property analysis. Adv Compos Hybrid Mater 2022;5:229-37. [DOI: 10.1007/s42114-021-00325-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
67 Tong Y, Zhao W, Wu W, Zhang D, He G, Yang Z, Cao X. Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design. Adv Compos Hybrid Mater 2022;5:263-77. [DOI: 10.1007/s42114-021-00333-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
68 He X, Ou D, Wu S, Luo Y, Ma Y, Sun J. A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv Compos Hybrid Mater 2022;5:21-38. [DOI: 10.1007/s42114-021-00321-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
69 Chen F, Xiao H, Peng ZQ, Zhang ZP, Rong MZ, Zhang MQ. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv Compos Hybrid Mater 2021;4:1048-58. [DOI: 10.1007/s42114-021-00303-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
70 Ruan K, Yan H, Zhang S, Shi X, Guo Y, Gu J. In-situ fabrication of hetero-structured fillers to significantly enhance thermal conductivities of silicone rubber composite films. Composites Science and Technology 2021;210:108799. [DOI: 10.1016/j.compscitech.2021.108799] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 32.0] [Reference Citation Analysis]
71 Gao H, Li J, Liu Y, Leng J. Shape memory polymer solar cells with active deformation. Adv Compos Hybrid Mater 2021;4:957-65. [DOI: 10.1007/s42114-021-00263-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
72 Ruan K, Guo Y, Gu J. Liquid Crystalline Polyimide Films with High Intrinsic Thermal Conductivities and Robust Toughness. Macromolecules 2021;54:4934-44. [DOI: 10.1021/acs.macromol.1c00686] [Cited by in Crossref: 57] [Cited by in F6Publishing: 65] [Article Influence: 57.0] [Reference Citation Analysis]