BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bozkurt S, van de Vosse FN, Rutten MC. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System. J Med Biol Eng 2016;36:308-15. [PMID: 27441034 DOI: 10.1007/s40846-016-0140-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Kára T, Aschermann M. (Physiology of Continuous-flow Left Ventricular Assist Device Therapy. Translation of the document prepared by the Czech Society of Cardiology). Cor Vasa 2022;64:89-132. [DOI: 10.33678/cor.2022.040] [Reference Citation Analysis]
2 Torres DS, Mazzetto M, Cestari IA. A novel automated simulator of pediatric systemic circulation: Design and applications. Biomedical Signal Processing and Control 2021;70:102926. [DOI: 10.1016/j.bspc.2021.102926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Cusimano V, Di Molfetta A, Ferrari G. Designing an Active Valvulated Outflow Conduit for a Continuous-Flow Left Ventricular Assist Device to Increase Pulsatility: A Simulation Study. ASAIO J 2021;67:529-35. [PMID: 33902101 DOI: 10.1097/MAT.0000000000001255] [Reference Citation Analysis]
4 Di Molfetta A, Cusimano V, Ferrari G. Increasing the pulsatility of continuos flow VAD: comparison between a valvulated outflow cannula and speed modulation by simulation. J Artif Organs 2021;24:146-56. [PMID: 33512579 DOI: 10.1007/s10047-020-01235-3] [Reference Citation Analysis]
5 Liu H, Liu S, Ma X. Varying speed modulation of continuous-flow left ventricular assist device based on cardiovascular coupling numerical model. Comput Methods Biomech Biomed Engin 2021;24:956-72. [PMID: 33347766 DOI: 10.1080/10255842.2020.1861601] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ogawa D, Kobayashi S, Yamazaki K, Motomura T, Nishimura T, Shimamura J, Tsukiya T, Mizuno T, Takewa Y, Tatsumi E, Nishinaka T. Evaluation of cardiac beat synchronization control for a rotary blood pump on valvular regurgitation with a mathematical model. Artif Organs 2021;45:124-34. [PMID: 32813920 DOI: 10.1111/aor.13795] [Reference Citation Analysis]
7 Cordeiro TD, Sousa DL, Cestari IA, Lima AM. A physiological control system for ECG-synchronized pulsatile pediatric ventricular assist devices. Biomedical Signal Processing and Control 2020;57:101752. [DOI: 10.1016/j.bspc.2019.101752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Itkin GP, Bychnev AS, Kuleshov AP, Drobyshev AA. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro. Int J Artif Organs 2020;43:157-64. [PMID: 31603372 DOI: 10.1177/0391398819879939] [Reference Citation Analysis]
9 Ogawa D, Kobayashi S, Yamazaki K, Motomura T, Nishimura T, Shimamura J, Tsukiya T, Mizuno T, Takewa Y, Tatsumi E. Mathematical evaluation of cardiac beat synchronization control used for a rotary blood pump. J Artif Organs 2019;22:276-85. [DOI: 10.1007/s10047-019-01117-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Bozkurt S. Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support: EFFECT OF CEREBRAL FLOW AUTOREGULATION FUNCTION. Artificial Organs 2018;42:800-13. [DOI: 10.1111/aor.13148] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Bozkurt S, van Tuijl S, van de Vosse FN, Rutten MC. Arterial pulsatility under phasic left ventricular assist device support. Biomed Mater Eng 2016;27:451-60. [PMID: 27885993 DOI: 10.3233/BME-161599] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]