BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Armstrong LE, Guo GL. Role of FXR in Liver Inflammation during Nonalcoholic Steatohepatitis. Curr Pharmacol Rep 2017;3:92-100. [PMID: 28983452 DOI: 10.1007/s40495-017-0085-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Li H, Xi Y, Liu H, Xin X. Gypenosides ameliorate high-fat diet-induced non-alcoholic steatohepatitis via farnesoid X receptor activation. Front Nutr 2022;9:914079. [DOI: 10.3389/fnut.2022.914079] [Reference Citation Analysis]
2 Murray A, Banota T, Guo GL, Smith LC, Meshanni JA, Lee J, Kong B, Abramova EV, Goedken M, Gow AJ, Laskin JD, Laskin DL. Farnesoid X receptor regulates lung macrophage activation and injury following nitrogen mustard exposure. Toxicol Appl Pharmacol 2022;:116208. [PMID: 35998709 DOI: 10.1016/j.taap.2022.116208] [Reference Citation Analysis]
3 Lin C, Yu B, Chen L, Zhang Z, Ye W, Zhong H, Bai W, Yang Y, Nie B. Obeticholic Acid Induces Hepatoxicity Via FXR in the NAFLD Mice. Front Pharmacol 2022;13:880508. [DOI: 10.3389/fphar.2022.880508] [Reference Citation Analysis]
4 Iyer MR, Kundu B, Wood CM. Soluble epoxide hydrolase inhibitors: an overview and patent review from the last decade. Expert Opin Ther Pat 2022;:1-19. [PMID: 35410559 DOI: 10.1080/13543776.2022.2054329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Gay MD, Cao H, Shivapurkar N, Dakshanamurthy S, Kallakury B, Tucker RD, Kwagyan J, Smith JP. Proglumide Reverses Nonalcoholic Steatohepatitis by Interaction with the Farnesoid X Receptor and Altering the Microbiome. Int J Mol Sci 2022;23:1899. [PMID: 35163821 DOI: 10.3390/ijms23031899] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lee Y, Kim BR, Kang GH, Lee GJ, Park YJ, Kim H, Jang HC, Choi SH. The Effects of PPAR Agonists on Atherosclerosis and Nonalcoholic Fatty Liver Disease in ApoE-/-FXR-/- Mice. Endocrinol Metab (Seoul) 2021;36:1243-53. [PMID: 34986301 DOI: 10.3803/EnM.2021.1100] [Reference Citation Analysis]
7 Singh SP, Anirvan P, Khandelwal R, Satapathy SK. Nonalcoholic Fatty Liver Disease (NAFLD) Name Change: Requiem or Reveille? J Clin Transl Hepatol 2021;9:931-8. [PMID: 34966656 DOI: 10.14218/JCTH.2021.00174] [Reference Citation Analysis]
8 Minamisawa M, Sato Y, Ishiguro E, Taniai T, Sakamoto T, Kawai G, Saito T, Saido TC. Amelioration of Alzheimer's Disease by Gut-Pancreas-Liver-Brain Interaction in an App Knock-In Mouse Model. Life (Basel) 2021;12:34. [PMID: 35054427 DOI: 10.3390/life12010034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ma Y, Tan Z, Li Q, Fan W, Chen G, Bin Y, Zhou Y, Yi J, Luo X, Tan J, Si Z, Li J. Combined Analysis of Expression Profiles in a Mouse Model and Patients Identified BHMT2 as a New Regulator of Lipid Metabolism in Metabolic-Associated Fatty Liver Disease. Front Cell Dev Biol 2021;9:741710. [PMID: 34869329 DOI: 10.3389/fcell.2021.741710] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Meadows V, Kennedy L, Ekser B, Kyritsi K, Kundu D, Zhou T, Chen L, Pham L, Wu N, Demieville J, Hargrove L, Glaser S, Alpini G, Francis H. Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology 2021;74:2684-98. [PMID: 34164827 DOI: 10.1002/hep.32028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
11 Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines 2021;9:1524. [PMID: 34829753 DOI: 10.3390/biomedicines9111524] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021;22:9139. [PMID: 34502047 DOI: 10.3390/ijms22179139] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
13 Huang X, Dubiel D, Dubiel W. The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis. Livers 2021;1:116-31. [DOI: 10.3390/livers1030011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu G, Cui Z, Gao X, Liu H, Wang L, Gong J, Wang A, Zhang J, Ma Q, Huang Y, Piao G, Yuan H. Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways. Phytother Res 2021. [PMID: 34213784 DOI: 10.1002/ptr.7195] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Tveter KM, Villa-Rodriguez JA, Cabales AJ, Zhang L, Bawagan FG, Duran RM, Roopchand DE. Polyphenol-induced improvements in glucose metabolism are associated with bile acid signaling to intestinal farnesoid X receptor. BMJ Open Diabetes Res Care 2020;8:e001386. [PMID: 32771984 DOI: 10.1136/bmjdrc-2020-001386] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
16 Fianchi F, Liguori A, Gasbarrini A, Grieco A, Miele L. Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int J Mol Sci 2021;22:6485. [PMID: 34204274 DOI: 10.3390/ijms22126485] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
17 Russell KM, Smith J, Bremner A, Chintoan-Uta C, Vervelde L, Psifidi A, Stevens MP. Transcriptomic analysis of caecal tissue in inbred chicken lines that exhibit heritable differences in resistance to Campylobacter jejuni. BMC Genomics 2021;22:411. [PMID: 34082718 DOI: 10.1186/s12864-021-07748-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Pazoki R, Vujkovic M, Elliott J, Evangelou E, Gill D, Ghanbari M, van der Most PJ, Pinto RC, Wielscher M, Farlik M, Zuber V, de Knegt RJ, Snieder H, Uitterlinden AG, Lynch JA, Jiang X, Said S, Kaplan DE, Lee KM, Serper M, Carr RM, Tsao PS, Atkinson SR, Dehghan A, Tzoulaki I, Ikram MA, Herzig KH, Järvelin MR, Alizadeh BZ, O'Donnell CJ, Saleheen D, Voight BF, Chang KM, Thursz MR, Elliott P; Lifelines Cohort Study., VA Million Veteran Program. Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes. Nat Commun 2021;12:2579. [PMID: 33972514 DOI: 10.1038/s41467-021-22338-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zhang Z, Fan S, Huang D, Xiong T, Nie S, Xie M. Polysaccharides from fermented Asparagus officinalis with Lactobacillus plantarum NCU116 alleviated liver injury via modulation of glutathione homeostasis, bile acid metabolism, and SCFA production. Food Funct 2020;11:7681-95. [PMID: 32901642 DOI: 10.1039/d0fo01435d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
20 Paraiso IL, Tran TQ, Magana AA, Kundu P, Choi J, Maier CS, Bobe G, Raber J, Kioussi C, Stevens JF. Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling. Front Pharmacol 2021;12:643857. [PMID: 33959012 DOI: 10.3389/fphar.2021.643857] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Peng W, Dai MY, Bao LJ, Zhu WF, Li F. FXR activation prevents liver injury induced by Tripterygium wilfordii preparations. Xenobiotica 2021;51:716-27. [PMID: 33704005 DOI: 10.1080/00498254.2021.1900626] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
22 Kim JY, He F, Karin M. From Liver Fat to Cancer: Perils of the Western Diet. Cancers (Basel) 2021;13:1095. [PMID: 33806428 DOI: 10.3390/cancers13051095] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Xu Y, Li D, Wu J, Zhang M, Shao X, Xu L, Tang L, Zhu M, Ni Z, Zhang M, Mou S. Farnesoid X receptor promotes renal ischaemia-reperfusion injury by inducing tubular epithelial cell apoptosis. Cell Prolif 2021;54:e13005. [PMID: 33594777 DOI: 10.1111/cpr.13005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
24 Moszak M, Szulińska M, Walczak-Gałęzewska M, Bogdański P. Nutritional Approach Targeting Gut Microbiota in NAFLD-To Date. Int J Environ Res Public Health 2021;18:1616. [PMID: 33567710 DOI: 10.3390/ijerph18041616] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Li J, Liu M, Li Y, Sun DD, Shu Z, Tan Q, Guo S, Xie R, Gao L, Ru H, Zang Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020;63:12748-72. [PMID: 32991173 DOI: 10.1021/acs.jmedchem.0c01065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
26 Katsiki N, Mantzoros C. Making progress towards a better pathophysiological understanding and more promising therapeutic options for treating non-alcoholic steatohepatitis (NASH)/DASH (dysmetabolism associated steatohepatitis). Metabolism 2021;114:154333. [PMID: 32771359 DOI: 10.1016/j.metabol.2020.154333] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020;12:E1434. [PMID: 32429195 DOI: 10.3390/nu12051434] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
28 Ji Y, Yin Y, Sun L, Zhang W. The Molecular and Mechanistic Insights Based on Gut-Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement. Int J Mol Sci 2020;21:E3066. [PMID: 32357561 DOI: 10.3390/ijms21093066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
29 Jia B, Park D, Hahn Y, Jeon CO. Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes 2020;11:1300-13. [PMID: 32329665 DOI: 10.1080/19490976.2020.1748261] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
30 Meadows V, Kennedy L, Kundu D, Alpini G, Francis H. Bile Acid Receptor Therapeutics Effects on Chronic Liver Diseases. Front Med (Lausanne) 2020;7:15. [PMID: 32064266 DOI: 10.3389/fmed.2020.00015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
31 Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020;63:5031-73. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Cited by in Crossref: 29] [Cited by in F6Publishing: 39] [Article Influence: 14.5] [Reference Citation Analysis]
32 Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol 2020;502:110665. [PMID: 31760044 DOI: 10.1016/j.mce.2019.110665] [Cited by in Crossref: 31] [Cited by in F6Publishing: 53] [Article Influence: 10.3] [Reference Citation Analysis]
33 Fujimori K, Iguchi Y, Yamashita Y, Gohda K, Teno N. Synthesis of Novel Farnesoid X Receptor Agonists and Validation of Their Efficacy in Activating Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells into Osteoblasts. Molecules 2019;24:E4155. [PMID: 31744088 DOI: 10.3390/molecules24224155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
34 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411-428. [PMID: 31028350 DOI: 10.1038/s41575-019-0145-7] [Cited by in Crossref: 460] [Cited by in F6Publishing: 438] [Article Influence: 153.3] [Reference Citation Analysis]
35 Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2019;23:107-16. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
36 Tølbøl KS, Stierstorfer B, Rippmann JF, Veidal SS, Rigbolt KTG, Schönberger T, Gillum MP, Hansen HH, Vrang N, Jelsing J, Feigh M, Broermann A. Disease Progression and Pharmacological Intervention in a Nutrient-Deficient Rat Model of Nonalcoholic Steatohepatitis. Dig Dis Sci 2019;64:1238-56. [PMID: 30511198 DOI: 10.1007/s10620-018-5395-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
37 Wei Y, Lu Y, Zhu Y, Zheng W, Guo F, Yao B, Xu S, Wang Y, Jin L, Li Y. Structural basis for the hepatoprotective effects of antihypertensive 1,4-dihydropyridine drugs. Biochim Biophys Acta Gen Subj 2018;1862:2261-70. [PMID: 30048741 DOI: 10.1016/j.bbagen.2018.07.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
38 Gerhard GS, Malenica I, Llaci L, Chu X, Petrick AT, Still CD, DiStefano JK. Differentially methylated loci in NAFLD cirrhosis are associated with key signaling pathways. Clin Epigenetics. 2018;10:93. [PMID: 30005700 DOI: 10.1186/s13148-018-0525-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
39 Abdel-Magid AF. Therapeutic Potential of FXR Agonists in the Treatment of Multiple Diseases. ACS Med Chem Lett 2018;9:294-5. [PMID: 29670687 DOI: 10.1021/acsmedchemlett.8b00108] [Reference Citation Analysis]