BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther. 2018;22:571-593. [PMID: 30039193 DOI: 10.1007/s40291-018-0352-x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 72] [Article Influence: 21.3] [Reference Citation Analysis]
Number Citing Articles
1 Shakibaei F, Jelvani D. Effect of Adding l-Carnitine to Risperidone on Behavioral, Cognitive, Social, and Physical Symptoms in Children and Adolescents With Autism: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Clin Neuropharmacol 2023. [PMID: 36735565 DOI: 10.1097/WNF.0000000000000544] [Reference Citation Analysis]
2 Scuderi C, Santa Paola S, Lo Giudice M, Di Blasi FD, Giusto S, Di Vita G, Pettinato R, Vitello GA, Romano C, Buono S, Salpietro V, Houlden H, Borgione E. Mitochondrial DNA involvement in patients with autism spectrum disorders and intellectual disability. Research in Autism Spectrum Disorders 2023;100:102084. [DOI: 10.1016/j.rasd.2022.102084] [Reference Citation Analysis]
3 Ülgen DH, Ruigrok SR, Sandi C. Powering the social brain: Mitochondria in social behaviour. Curr Opin Neurobiol 2023;79:102675. [PMID: 36696841 DOI: 10.1016/j.conb.2022.102675] [Reference Citation Analysis]
4 Righetto I, Gasparotto M, Casalino L, Vacca M, Filippini F. Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis. Biomolecules 2023;13. [PMID: 36671555 DOI: 10.3390/biom13010169] [Reference Citation Analysis]
5 Boktor JC, Adame MD, Rose DR, Schumann CM, Murray KD, Bauman MD, Careaga M, Mazmanian SK, Ashwood P, Needham BD. Global metabolic profiles in a non-human primate model of maternal immune activation: implications for neurodevelopmental disorders. Mol Psychiatry 2022;27:4959-73. [PMID: 36028571 DOI: 10.1038/s41380-022-01752-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022;13:985713. [PMID: 36506457 DOI: 10.3389/fpsyt.2022.985713] [Reference Citation Analysis]
7 Frickel E, Bam S, Buchanan E, Mahony C, van der Watt M, O’ryan C. Molecular autism research in Africa: a scoping review comparing publication outputs to Brazil, India, the UK, and the USA.. [DOI: 10.1101/2022.11.11.516128] [Reference Citation Analysis]
8 Trivedi P, Pandey M, Kumar Rai P, Singh P, Srivastava P. A meta-analysis of differentially expressed and regulatory genes with their functional enrichment analysis for brain transcriptome data in autism spectrum disorder. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2143900] [Reference Citation Analysis]
9 Caporali L, Fiorini C, Palombo F, Romagnoli M, Baccari F, Zenesini C, Visconti P, Posar A, Scaduto MC, Ormanbekova D, Battaglia A, Tancredi R, Cameli C, Viggiano M, Olivieri A, Torroni A, Maestrini E, Rochat MJ, Bacchelli E, Carelli V, Maresca A. Dissecting the multifaceted contribution of the mitochondrial genome to autism spectrum disorder. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.953762] [Reference Citation Analysis]
10 Yang X, Li J, Zhou Y, Zhang N, Liu J. Effect of stigma maydis polysaccharide on the gut microbiota and transcriptome of VPA induced autism model rats. Front Microbiol 2022;13. [DOI: 10.3389/fmicb.2022.1009502] [Reference Citation Analysis]
11 Dănciulescu T, Zaharia A. Piano with a Twist: A Pilot Study Exploring the Preliminary Effects of a Piano Therapy Program for Children with Autism Spectrum Disorder. The Arts in Psychotherapy 2022. [DOI: 10.1016/j.aip.2022.101987] [Reference Citation Analysis]
12 Adams JB, Kirby J, Audhya T, Whiteley P, Bain J. Vitamin/mineral/micronutrient supplement for autism spectrum disorders: a research survey. BMC Pediatr 2022;22:590. [PMID: 36229781 DOI: 10.1186/s12887-022-03628-0] [Reference Citation Analysis]
13 Trinchese G, Cimmino F, Cavaliere G, Catapano A, Fogliano C, Lama A, Pirozzi C, Cristiano C, Russo R, Petrella L, Meli R, Mattace Raso G, Crispino M, Avallone B, Mollica MP. The Hepatic Mitochondrial Alterations Exacerbate Meta-Inflammation in Autism Spectrum Disorders. Antioxidants 2022;11:1990. [DOI: 10.3390/antiox11101990] [Reference Citation Analysis]
14 Noda Y. A Paradigm Shift in Understanding the Pathological Basis of Autism Spectrum Disorder: From the Womb to the Tomb. J Pers Med 2022;12:1622. [PMID: 36294761 DOI: 10.3390/jpm12101622] [Reference Citation Analysis]
15 Boterberg S, Vantroys E, De Paepe B, Van Coster R, Roeyers H. Urine lactate concentration as a non-invasive screener for metabolic abnormalities: Findings in children with autism spectrum disorder and regression. PLoS ONE 2022;17:e0274310. [DOI: 10.1371/journal.pone.0274310] [Reference Citation Analysis]
16 Otaru S, Lawrence DA. Autism: genetics, environmental stressors, maternal immune activation, and the male bias in autism. Explor Neuroprot Ther 2022. [DOI: 10.37349/ent.2022.00025] [Reference Citation Analysis]
17 Jensen AR, Lane AL, Werner BA, McLees SE, Fletcher TS, Frye RE. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther 2022. [PMID: 35759118 DOI: 10.1007/s40291-022-00600-7] [Reference Citation Analysis]
18 Qureshi F, Adams JB, Audhya T, Hahn J. Multivariate Analysis of Metabolomic and Nutritional Profiles among Children with Autism Spectrum Disorder. JPM 2022;12:923. [DOI: 10.3390/jpm12060923] [Reference Citation Analysis]
19 Gyllenhammer LE, Rasmussen JM, Bertele N, Halbing A, Entringer S, Wadhwa PD, Buss C. Maternal Inflammation During Pregnancy and Offspring Brain Development: The Role of Mitochondria. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2022;7:498-509. [DOI: 10.1016/j.bpsc.2021.11.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Brister D, Werner BA, Gideon G, Mccarty PJ, Lane A, Burrows BT, Mclees S, Adelson PD, Arango JI, Marsh W, Flores A, Pankratz MT, Ly NH, Flood M, Brown D, Carpentieri D, Jin Y, Gu H, Frye RE. Central Nervous System Metabolism in Autism, Epilepsy and Developmental Delays: A Cerebrospinal Fluid Analysis. Metabolites 2022;12:371. [DOI: 10.3390/metabo12050371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Friedman H. Autism Spectrum Disorder (ASD): From Molecular Mechanism to Novel Therapeutic Approach. Learning Disabilities - Neurobiology, Assessment, Clinical Features and Treatments 2022. [DOI: 10.5772/intechopen.100537] [Reference Citation Analysis]
22 Jiji KN, Muralidharan P. Evaluation of the protective effect of Clitoria ternatea L. against propionic acid induced autistic spectrum disorders in rat model. Bull Natl Res Cent 2022;46. [DOI: 10.1186/s42269-022-00738-8] [Reference Citation Analysis]
23 Frye RE. A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. JPM 2022;12:464. [DOI: 10.3390/jpm12030464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022;13:648-63. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Vlachou E, Ntikoudi A, Owens DA, Nikolakopoulou M, Chalimourdas T, Cauli O. Effectiveness of cognitive behavioral therapy-based interventions on psychological symptoms in adults with type 2 diabetes mellitus: An update review of randomized controlled trials. Journal of Diabetes and its Complications 2022. [DOI: 10.1016/j.jdiacomp.2022.108185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sciences 2022;12:250. [DOI: 10.3390/brainsci12020250] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Boryczka G, Kosiorowska E, Świętek J, Głowacka K, Waluga M. Gut microbiome in non-alcoholic fatty liver disease. Polish Journal of Public Health 2022;132:11-15. [DOI: 10.2478/pjph-2022-0002] [Reference Citation Analysis]
28 Bertelli MO, Azeem MW, Underwood L, Scattoni ML, Persico AM, Ricciardello A, Sappok T, Bergmann T, Keller R, Bianco A, Corti S, Miselli G, Lassi S, Croce L, Bradley E, Munir K. Autism Spectrum Disorder. Textbook of Psychiatry for Intellectual Disability and Autism Spectrum Disorder 2022. [DOI: 10.1007/978-3-319-95720-3_16] [Reference Citation Analysis]
29 Victor AK, Donaldson M, Johnson D, Miller W, Reiter LT. Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism Susceptibility. Front Mol Neurosci 2021;14:747855. [PMID: 34776864 DOI: 10.3389/fnmol.2021.747855] [Reference Citation Analysis]
30 Frye RE, Lionnard L, Singh I, Karim MA, Chajra H, Frechet M, Kissa K, Racine V, Ammanamanchi A, McCarty PJ, Delhey L, Tippett M, Rose S, Aouacheria A. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder. Transl Psychiatry 2021;11:527. [PMID: 34645790 DOI: 10.1038/s41398-021-01647-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Mahony C, O'Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021;22:10757. [PMID: 34639097 DOI: 10.3390/ijms221910757] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Brown CO, Uy J, Murtaza N, Rosa E, Alfonso A, Xing S, Dave BM, Kilpatrick S, Cheng AA, White SH, Howe J, Scherer SW, Lu Y, Singh KK. Disruption of the autism-associated gene SCN2A alters synaptic development and neuronal signaling in patient iPSC-glutamatergic neurons.. [DOI: 10.1101/2021.09.14.460368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Adams JB, Bhargava A, Coleman DM, Frye RE, Rossignol DA. Ratings of the Effectiveness of Nutraceuticals for Autism Spectrum Disorders: Results of a National Survey. J Pers Med 2021;11:878. [PMID: 34575655 DOI: 10.3390/jpm11090878] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
34 Morimoto Y, Yamamoto N, Kanegae S, Matsuzaka R, Ozawa H, Imamura A. Genetic Overlap Among Autism Spectrum Disorders and Other Neuropsychiatric Disorders. Autism Spectrum Disorders 2021. [DOI: 10.36255/exonpublications.autismspectrumdisorders.2021.geneticoverlap] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Abruzzo PM, Panisi C, Marini M. The Alteration of Chloride Homeostasis/GABAergic Signaling in Brain Disorders: Could Oxidative Stress Play a Role? Antioxidants (Basel) 2021;10:1316. [PMID: 34439564 DOI: 10.3390/antiox10081316] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Rossignol DA, Frye RE. The Effectiveness of Cobalamin (B12) Treatment for Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J Pers Med 2021;11:784. [PMID: 34442428 DOI: 10.3390/jpm11080784] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
37 Victor AK, Donaldson M, Johnson D, Miller W, Reiter LT. Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism Susceptibility.. [DOI: 10.1101/2021.08.09.455700] [Reference Citation Analysis]
38 Curpan AS, Luca AC, Ciobica A. Potential Novel Therapies for Neurodevelopmental Diseases Targeting Oxidative Stress. Oxid Med Cell Longev 2021;2021:6640206. [PMID: 34336109 DOI: 10.1155/2021/6640206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Alymov AA, Kapitsa IG, Voronina TA. Neurochemical Mechanisms of Pathogenesis and Pharmacological Correction of Autism Spectrum Disorders: Current Concepts and Prospects. Neurochem J 2021;15:129-38. [DOI: 10.1134/s1819712421020033] [Reference Citation Analysis]
40 Podgórska-Bednarz J, Perenc L. Hyperbaric Oxygen Therapy for Children and Youth with Autism Spectrum Disorder: A Review. Brain Sci 2021;11:916. [PMID: 34356150 DOI: 10.3390/brainsci11070916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Yardeni T, Cristancho AG, McCoy AJ, Schaefer PM, McManus MJ, Marsh ED, Wallace DC. An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proc Natl Acad Sci U S A 2021;118:e2021429118. [PMID: 33536343 DOI: 10.1073/pnas.2021429118] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
42 Lee S, Kang H, Jung H, Kim E, Lee E. Gene Dosage- and Age-Dependent Differential Transcriptomic Changes in the Prefrontal Cortex of Shank2-Mutant Mice. Front Mol Neurosci 2021;14:683196. [PMID: 34177464 DOI: 10.3389/fnmol.2021.683196] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Sharma R, Tiwari A, Rahi S, Mehan S. Current Neuropharmacological Interventions in Autism: Potential Drug Targets from Pre-clinical and Clinical Findings. CPSP 2021;10:98-114. [DOI: 10.2174/1389203721999200820165117] [Reference Citation Analysis]
44 Barone R, Bastin J, Djouadi F, Singh I, Karim MA, Ammanamanchi A, McCarty PJ, Delhey L, Shannon R, Casabona A, Rizzo R, Frye RE. Mitochondrial Fatty Acid β-Oxidation and Resveratrol Effect in Fibroblasts from Patients with Autism Spectrum Disorder. J Pers Med 2021;11:510. [PMID: 34199819 DOI: 10.3390/jpm11060510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Zimmerman AW, Singh K, Connors SL, Liu H, Panjwani AA, Lee LC, Diggins E, Foley A, Melnyk S, Singh IN, James SJ, Frye RE, Fahey JW. Randomized controlled trial of sulforaphane and metabolite discovery in children with Autism Spectrum Disorder. Mol Autism 2021;12:38. [PMID: 34034808 DOI: 10.1186/s13229-021-00447-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Feng C, Chen Y, Zhang Y, Yan Y, Yang M, Gui H, Wang M. PTEN Regulates Mitochondrial Biogenesis via the AKT/GSK-3β/PGC-1α Pathway in Autism. Neuroscience 2021;465:85-94. [PMID: 33895342 DOI: 10.1016/j.neuroscience.2021.04.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021;11:218. [PMID: 33803789 DOI: 10.3390/jpm11030218] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
48 Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, Hirofuji Y, Yamaza H, Yamada A, Fukumoto S. Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders. Int J Mol Sci 2021;22:2269. [PMID: 33668763 DOI: 10.3390/ijms22052269] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
49 McMeekin LJ, Fox SN, Boas SM, Cowell RM. Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021;10:352. [PMID: 33572179 DOI: 10.3390/cells10020352] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
50 Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021;11:70. [PMID: 33504019 DOI: 10.3390/jpm11020070] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
51 Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021;166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
52 Abdel-Rahman EA, Zaky EA, Aboulsaoud M, Elhossiny RM, Youssef WY, Mahmoud AM, Ali SS. Autism spectrum disorder (ASD)-associated mitochondrial deficits are revealed in children's platelets but unimproved by hyperbaric oxygen therapy. Free Radic Res 2021;55:26-40. [PMID: 33402007 DOI: 10.1080/10715762.2020.1856376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Wang YM, Qiu MY, Liu Q, Tang H, Gu HF. Critical role of dysfunctional mitochondria and defective mitophagy in autism spectrum disorders. Brain Res Bull 2021;168:138-45. [PMID: 33400955 DOI: 10.1016/j.brainresbull.2020.12.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Farhana A, Khan YS. Mitochondrial Dysfunction: A Key Player in the Pathogenesis of Autism Spectrum Disorders and Alzheimer’s Disease. Autism Spectrum Disorder and Alzheimer's Disease 2021. [DOI: 10.1007/978-981-16-4558-7_2] [Reference Citation Analysis]
55 Rojas-Charry L, Nardi L, Methner A, Schmeisser MJ. Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl) 2021;99:161-78. [PMID: 33340060 DOI: 10.1007/s00109-020-02018-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
56 Kwan V, Rosa E, Xing S, Murtaza N, Singh K, Holzapfel NT, Berg T, Lu Y, Singh KK. Proteomic Analysis Reveals Autism-Associated Gene DIXDC1 Regulates Proteins Associated with Mitochondrial Organization and Function. J Proteome Res 2021;20:1052-62. [PMID: 33337894 DOI: 10.1021/acs.jproteome.0c00896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
57 Amaral AU, Wajner M. Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids. Front Genet 2020;11:598976. [PMID: 33329744 DOI: 10.3389/fgene.2020.598976] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
58 Hirayama A, Wakusawa K, Fujioka T, Iwata K, Usui N, Kurita D, Kameno Y, Wakuda T, Takagai S, Hirai T, Nara T, Ito H, Nagano Y, Oowada S, Tsujii M, Tsuchiya KJ, Matsuzaki H. Simultaneous evaluation of antioxidative serum profiles facilitates the diagnostic screening of autism spectrum disorder in under-6-year-old children. Sci Rep 2020;10:20602. [PMID: 33244118 DOI: 10.1038/s41598-020-77328-z] [Reference Citation Analysis]
59 Efe A, Neşelioğlu S, Soykan A. An Investigation of the Dynamic Thiol/Disulfide Homeostasis, As a Novel Oxidative Stress Plasma Biomarker, in Children With Autism Spectrum Disorders. Autism Res 2021;14:473-87. [PMID: 33210838 DOI: 10.1002/aur.2436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
60 Hu VW, Bi C. Phenotypic Subtyping and Re-analyses of Existing Transcriptomic Data from Autistic Probands in Simplex Families Reveal Differentially Expressed and ASD Trait-Associated Genes. Front Neurol 2020;11:578972. [PMID: 33281715 DOI: 10.3389/fneur.2020.578972] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
61 Finsterer J. Phenotypic spectrum of variants in the beta-oxidation enoyl-CoA hydratase-1 (ECHS-1) gene. European Journal of Paediatric Neurology 2020;29:101-102. [DOI: 10.1016/j.ejpn.2020.09.005] [Reference Citation Analysis]
62 Ventura G, Calvano CD, Porcelli V, Palmieri L, De Giacomo A, Xu Y, Goodacre R, Palmisano F, Cataldi TRI. Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Anal Bioanal Chem 2020;412:6859-74. [DOI: 10.1007/s00216-020-02817-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
63 Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021;8:629-39. [PMID: 34291134 DOI: 10.1016/j.gendis.2020.07.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
64 Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Palmer RF, Austin C, Curtin P, Arora M. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl Psychiatry 2020;10:223. [PMID: 32636364 DOI: 10.1038/s41398-020-00905-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
65 Mazziotti R, Cacciante F, Sagona G, Lupori L, Gennaro M, Putignano E, Alessandrì MG, Ferrari A, Battini R, Cioni G, Pizzorusso T, Baroncelli L. Novel translational phenotypes and biomarkers for creatine transporter deficiency. Brain Commun 2020;2:fcaa089. [PMID: 32954336 DOI: 10.1093/braincomms/fcaa089] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
66 Genovese A, Butler MG. Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). Int J Mol Sci 2020;21:E4726. [PMID: 32630718 DOI: 10.3390/ijms21134726] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
67 Sala R, Amet L, Blagojevic-Stokic N, Shattock P, Whiteley P. Bridging the Gap Between Physical Health and Autism Spectrum Disorder. Neuropsychiatr Dis Treat 2020;16:1605-18. [PMID: 32636630 DOI: 10.2147/NDT.S251394] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
68 Yamashita M. Potential Role of Neuroactive Tryptophan Metabolites in Central Fatigue: Establishment of the Fatigue Circuit. Int J Tryptophan Res 2020;13:1178646920936279. [PMID: 32647476 DOI: 10.1177/1178646920936279] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
69 Frye RE, Rossignol DA, Scahill L, McDougle CJ, Huberman H, Quadros EV. Treatment of Folate Metabolism Abnormalities in Autism Spectrum Disorder. Semin Pediatr Neurol 2020;35:100835. [PMID: 32892962 DOI: 10.1016/j.spen.2020.100835] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
70 Frye RE. Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Semin Pediatr Neurol 2020;35:100829. [PMID: 32892956 DOI: 10.1016/j.spen.2020.100829] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
71 Smith AM, Natowicz MR, Braas D, Ludwig MA, Ney DM, Donley ELR, Burrier RE, Amaral DG. A Metabolomics Approach to Screening for Autism Risk in the Children's Autism Metabolome Project. Autism Res 2020;13:1270-85. [PMID: 32558271 DOI: 10.1002/aur.2330] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
72 Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2019;25:4430-53. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
73 Shuid AN, Jayusman PA, Shuid N, Ismail J, Kamal Nor N, Naina Mohamed I. Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder. Brain Sci 2020;10:E309. [PMID: 32443912 DOI: 10.3390/brainsci10050309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
74 Thorsen M. Oxidative stress, metabolic and mitochondrial abnormalities associated with autism spectrum disorder. Prog Mol Biol Transl Sci 2020;173:331-54. [PMID: 32711815 DOI: 10.1016/bs.pmbts.2020.04.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
75 Ahn Y, Sabouny R, Villa BR, Yee NC, Mychasiuk R, Uddin GM, Rho JM, Shutt TE. Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. Int J Mol Sci 2020;21:E3266. [PMID: 32380723 DOI: 10.3390/ijms21093266] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
76 Dufour-rainfray D, Lambérioux M, Boulard P, Guidotti M, Delaye J, Ribeiro M, Gauchez A, Balageas A, Emond P, Agin A. Metabolomics – an overview. From basic principles to potential biomarkers (part 2). Médecine Nucléaire 2020;44:158-163. [DOI: 10.1016/j.mednuc.2020.02.004] [Reference Citation Analysis]
77 Singh K, Singh IN, Diggins E, Connors SL, Karim MA, Lee D, Zimmerman AW, Frye RE. Developmental regression and mitochondrial function in children with autism. Ann Clin Transl Neurol 2020;7:683-94. [PMID: 32343046 DOI: 10.1002/acn3.51034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
78 Graham SF, Turkoglu O, Yilmaz A, Ustun I, Ugur Z, Bjorndhal T, Han B, Mandal R, Wishart D, Bahado-Singh RO. Targeted metabolomics highlights perturbed metabolism in the brain of autism spectrum disorder sufferers. Metabolomics 2020;16:59. [PMID: 32333121 DOI: 10.1007/s11306-020-01685-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
79 Pecorelli A, Ferrara F, Messano N, Cordone V, Schiavone ML, Cervellati F, Woodby B, Cervellati C, Hayek J, Valacchi G. Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder. FASEB J 2020;34:6521-38. [PMID: 32246805 DOI: 10.1096/fj.201902677R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
80 Almeida C, Oliveira R, Soares R, Barata P. Influence of gut microbiota dysbiosis on brain function: a systematic review. Porto Biomed J 2020;5:1-8. [PMID: 33299942 DOI: 10.1097/j.pbj.0000000000000059] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
81 Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020;287:2154-75. [PMID: 32087041 DOI: 10.1111/febs.15258] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
82 Kreiman BL, Boles RG. State of the Art of Genetic Testing for Patients With Autism: A Practical Guide for Clinicians. Semin Pediatr Neurol 2020;34:100804. [PMID: 32446438 DOI: 10.1016/j.spen.2020.100804] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
83 Jaureguiberry MS, Venturino A. Nutritional and environmental contributions to Autism Spectrum Disorders: Focus on nutrigenomics as complementary therapy. Int J Vitam Nutr Res 2020;:1-19. [PMID: 32065556 DOI: 10.1024/0300-9831/a000630] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
84 Haskell MAM. Neurodevelopmental Disorders in Children. Integrative and Functional Medical Nutrition Therapy 2020. [DOI: 10.1007/978-3-030-30730-1_30] [Reference Citation Analysis]
85 Ahmadabadi F, Nemati H, Abdolmohammadzadeh A, Ahadi A. Autistic feature as a presentation of Inborn Errors of Metabolism. Iran J Child Neurol 2020;14:17-28. [PMID: 33193781] [Reference Citation Analysis]
86 Frye RE, Vassall S, Kaur G, Lewis C, Karim M, Rossignol D. Emerging biomarkers in autism spectrum disorder: a systematic review. Ann Transl Med 2019;7:792. [PMID: 32042808 DOI: 10.21037/atm.2019.11.53] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 13.3] [Reference Citation Analysis]
87 Malaguarnera M, Cauli O. Effects of l-Carnitine in Patients with Autism Spectrum Disorders: Review of Clinical Studies. Molecules 2019;24:E4262. [PMID: 31766743 DOI: 10.3390/molecules24234262] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
88 Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019;9:E238. [PMID: 31540439 DOI: 10.3390/brainsci9090238] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
89 Strunecka A, Strunecky O. Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder. Int J Environ Res Public Health 2019;16:E3431. [PMID: 31527457 DOI: 10.3390/ijerph16183431] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
90 Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019;10:1474. [PMID: 31379804 DOI: 10.3389/fimmu.2019.01474] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
91 Cheng J, Eskenazi B, Widjaja F, Cordero JF, Hendren RL. Improving autism perinatal risk factors: A systematic review. Medical Hypotheses 2019;127:26-33. [DOI: 10.1016/j.mehy.2019.03.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
92 Zamanian Azodi M, Rezaei Tavirani M, Rezaei Tavirani M. Identification of the Key Genes of Autism Spectrum Disorder Through Protein-Protein Interaction Network. Galen Med J 2019;8:e1367. [PMID: 34466502 DOI: 10.31661/gmj.v0i0.1367] [Reference Citation Analysis]
93 Bennuri SC, Rose S, Frye RE. Mitochondrial Dysfunction Is Inducible in Lymphoblastoid Cell Lines From Children With Autism and May Involve the TORC1 Pathway. Front Psychiatry 2019;10:269. [PMID: 31133888 DOI: 10.3389/fpsyt.2019.00269] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
94 Giusti L, Molinaro A, Alessandrì MG, Boldrini C, Ciregia F, Lacerenza S, Ronci M, Urbani A, Cioni G, Mazzoni MR, Pizzorusso T, Lucacchini A, Baroncelli L. Brain mitochondrial proteome alteration driven by creatine deficiency suggests novel therapeutic venues for creatine deficiency syndromes. Neuroscience 2019;409:276-89. [PMID: 31029731 DOI: 10.1016/j.neuroscience.2019.03.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
95 Carrasco M, Salazar C, Tiznado W, Ruiz LM. Alterations of Mitochondrial Biology in the Oral Mucosa of Chilean Children with Autism Spectrum Disorder (ASD). Cells 2019;8:E367. [PMID: 31018497 DOI: 10.3390/cells8040367] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
96 Barone R, Rizzo R, Tabbì G, Malaguarnera M, Frye RE, Bastin J. Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int J Mol Sci 2019;20:E1878. [PMID: 30995737 DOI: 10.3390/ijms20081878] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
97 Walker SJ, Langefeld CD, Zimmerman K, Schwartz MZ, Krigsman A. A molecular biomarker for prediction of clinical outcome in children with ASD, constipation, and intestinal inflammation. Sci Rep 2019;9:5987. [PMID: 30979947 DOI: 10.1038/s41598-019-42568-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
98 Boterberg S, Charman T, Marschik PB, Bölte S, Roeyers H. Regression in autism spectrum disorder: A critical overview of retrospective findings and recommendations for future research. Neurosci Biobehav Rev 2019;102:24-55. [PMID: 30917924 DOI: 10.1016/j.neubiorev.2019.03.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
99 Jyonouchi H, Geng L, Rose S, Bennuri SC, Frye RE. Variations in Mitochondrial Respiration Differ in IL-1ß/IL-10 Ratio Based Subgroups in Autism Spectrum Disorders. Front Psychiatry 2019;10:71. [PMID: 30842746 DOI: 10.3389/fpsyt.2019.00071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
100 Demarquoy C, Demarquoy J. Autism and carnitine: A possible link. World J Biol Chem 2019; 10(1): 7-16 [PMID: 30622681 DOI: 10.4331/wjbc.v10.i1.7] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
101 Barone R, Alaimo S, Messina M, Pulvirenti A, Bastin J, Ferro A, Frye RE, Rizzo R; MIMIC-Autism Group. A Subset of Patients With Autism Spectrum Disorders Show a Distinctive Metabolic Profile by Dried Blood Spot Analyses. Front Psychiatry 2018;9:636. [PMID: 30581393 DOI: 10.3389/fpsyt.2018.00636] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]