BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hesselink DA, Bouamar R, Elens L, van Schaik RHN, van Gelder T. The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2014;53:123-39. [DOI: 10.1007/s40262-013-0120-3] [Cited by in Crossref: 139] [Cited by in F6Publishing: 137] [Article Influence: 15.4] [Reference Citation Analysis]
Number Citing Articles
1 Andrews LM, Hesselink DA, van Schaik RHN, van Gelder T, de Fijter JW, Lloberas N, Elens L, Moes DJAR, de Winter BCM. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 2019;85:601-15. [PMID: 30552703 DOI: 10.1111/bcp.13838] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
2 Ben-fredj N, Hannachi I, Chadli Z, Ben-romdhane H, A Boughattas N, Ben-fadhel N, Aouam K. Dosing algorithm for Tacrolimus in Tunisian Kidney transplant patients: Effect of CYP 3A4*1B and CYP3A4*22 polymorphisms. Toxicology and Applied Pharmacology 2020;407:115245. [DOI: 10.1016/j.taap.2020.115245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Sikma MA, Hunault CC, Van Maarseveen EM, Huitema ADR, Van de Graaf EA, Kirkels JH, Verhaar MC, Grutters JC, Kesecioglu J, De Lange DW. High Variability of Whole-Blood Tacrolimus Pharmacokinetics Early After Thoracic Organ Transplantation. Eur J Drug Metab Pharmacokinet 2020;45:123-34. [PMID: 31745812 DOI: 10.1007/s13318-019-00591-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 McDermott JK, Girgis RE. Individualizing immunosuppression in lung transplantation. Glob Cardiol Sci Pract 2018;2018:5. [PMID: 29644232 DOI: 10.21542/gcsp.2018.5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
5 Tziastoudi M, Pissas G, Raptis G, Cholevas C, Eleftheriadis T, Dounousi E, Stefanidis I, Theoharides TC. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. Int J Mol Sci 2021;22:4480. [PMID: 33923087 DOI: 10.3390/ijms22094480] [Reference Citation Analysis]
6 Stefanović NZ, Cvetković TP, Jevtović-Stoimenov TM, Ignjatović AM, Paunović GJ, Veličković RM. Investigation of CYP 3A5 and ABCB1 gene polymorphisms in the long-term following renal transplantation: Effects on tacrolimus exposure and kidney function. Exp Ther Med 2015;10:1149-56. [PMID: 26622455 DOI: 10.3892/etm.2015.2598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
7 Schwartz JJ, Wilson S, Shi F, Elsouda D, Undre N, Kumar MSA. Prolonged-Release vs Immediate-Release Tacrolimus Capsules in Black vs White Kidney Transplant Patients: A Post Hoc Analysis of Phase III Data. Transplant Proc 2018;50:3283-95. [PMID: 30577198 DOI: 10.1016/j.transproceed.2018.08.050] [Reference Citation Analysis]
8 Tang JT, Andrews LM, van Gelder T, Shi YY, van Schaik RH, Wang LL, Hesselink DA. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol. 2016;12:555-565. [PMID: 27010623 DOI: 10.1517/17425255.2016.1170808] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 11.7] [Reference Citation Analysis]
9 Yang L, de Winter BC, van Schaik RH, Xie R, Li Y, Andrews LM, Shuker N, Bahmany S, Koch B, van Gelder T, Hesselink DA. CYP3A5 and ABCB1 polymorphisms in living donors do not impact clinical outcome after kidney transplantation. Pharmacogenomics 2018;19:895-903. [DOI: 10.2217/pgs-2018-0066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Monostory K, Tóth K, Kiss Á, Háfra E, Csikány N, Paulik J, Sárváry E, Kóbori L. Personalizing initial calcineurin inhibitor dosing by adjusting to donor CYP3A-status in liver transplant patients. Br J Clin Pharmacol 2015;80:1429-37. [PMID: 26271661 DOI: 10.1111/bcp.12747] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
11 Lu T, Zhu X, Xu S, Zhao M, Huang X, Wang Z, Zhao L. Dosage Optimization Based on Population Pharmacokinetic Analysis of Tacrolimus in Chinese Patients with Nephrotic Syndrome. Pharm Res 2019;36. [DOI: 10.1007/s11095-019-2579-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Phupradit A, Vadcharavivad S, Ingsathit A, Kantachuvesiri S, Areepium N, Sra-Ium S, Auamnoy T, Sukasem C, Sumethkul V, Kitiyakara C. Impact of POR and CYP3A5 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in the Early Post-operative Period Following Kidney Transplantation. Ther Drug Monit 2018;40:549-57. [PMID: 29878980 DOI: 10.1097/FTD.0000000000000542] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
13 Imamura CK, Furihata K, Okamoto S, Tanigawara Y. Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole. J Clin Pharmacol 2016;56:408-13. [PMID: 26239045 DOI: 10.1002/jcph.605] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
14 Awdishu L, Joy MS. Role of Pharmacogenomics in Kidney Disease and Injury. Advances in Chronic Kidney Disease 2016;23:106-19. [DOI: 10.1053/j.ackd.2016.01.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Shen CL, Yang AH, Lien TJ, Tarng DC, Yang CY. Tacrolimus Blood Level Fluctuation Predisposes to Coexisting BK Virus Nephropathy and Acute Allograft Rejection. Sci Rep 2017;7:1986. [PMID: 28512328 DOI: 10.1038/s41598-017-02140-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
16 Martial LC, Biewenga M, Ruijter BN, Keizer R, Swen JJ, van Hoek B, Moes DJAR. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br J Clin Pharmacol 2021. [PMID: 33786892 DOI: 10.1111/bcp.14842] [Reference Citation Analysis]
17 de Jonge H, Elens L, de Loor H, van Schaik RH, Kuypers DR. The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics J 2015;15:144-52. [PMID: 25287072 DOI: 10.1038/tpj.2014.49] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
18 van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol. 2014;10:725-731. [PMID: 25247332 DOI: 10.1038/nrneph.2014.172] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 7.3] [Reference Citation Analysis]
19 Kotowski MJ, Bogacz A, Bartkowiak-Wieczorek J, Tejchman K, Dziewanowski K, Ostrowski M, Czerny B, Grześkowiak E, Machaliński B, Sieńko J. Effect of Multidrug-Resistant 1 (MDR1) and CYP3A4*1B Polymorphisms on Cyclosporine-Based Immunosuppressive Therapy in Renal Transplant Patients. Ann Transplant 2019;24:108-14. [PMID: 30799432 DOI: 10.12659/AOT.914683] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
20 Contreras-Castillo S, Plaza A, Stojanova J, Navarro G, Carmona R, Corvalán F, Cerpa L, Sandoval C, Muñoz D, Leiva M, Castañeda LE, Farias N, Alvarez C, Llull G, Mezzano S, Ardiles L, Varela N, Rodríguez MS, Flores C, Cayún JP, Krall P, Quiñones LA. Effect of CYP3A4, CYP3A5, MDR1 and POR Genetic Polymorphisms in Immunosuppressive Treatment in Chilean Kidney Transplanted Patients. Front Pharmacol 2021;12:674117. [PMID: 34938174 DOI: 10.3389/fphar.2021.674117] [Reference Citation Analysis]
21 Andrews LM, de Winter BCM, Cornelissen EAM, de Jong H, Hesselink DA, Schreuder MF, Brüggemann RJM, van Gelder T, Cransberg K. A Population Pharmacokinetic Model Does Not Predict the Optimal Starting Dose of Tacrolimus in Pediatric Renal Transplant Recipients in a Prospective Study: Lessons Learned and Model Improvement. Clin Pharmacokinet 2020;59:591-603. [PMID: 31654367 DOI: 10.1007/s40262-019-00831-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Brazeau DA, Attwood K, Meaney CJ, Wilding GE, Consiglio JD, Chang SS, Gundroo A, Venuto RC, Cooper L, Tornatore KM. Beyond Single Nucleotide Polymorphisms: CYP3A5367 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front Genet 2020;11:889. [PMID: 32849848 DOI: 10.3389/fgene.2020.00889] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Woillard JB, Mourad M, Neely M, Capron A, van Schaik RH, van Gelder T, Lloberas N, Hesselink DA, Marquet P, Haufroid V, Elens L. Tacrolimus Updated Guidelines through popPK Modeling: How to Benefit More from CYP3A Pre-emptive Genotyping Prior to Kidney Transplantation. Front Pharmacol 2017;8:358. [PMID: 28642710 DOI: 10.3389/fphar.2017.00358] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
24 Iida T, Nojima M, Nakase H. Therapeutic Efficacy and Adverse Events of Tacrolimus in Patients with Crohn's Disease: Systematic Review and Meta-Analysis. Dig Dis Sci 2019;64:2945-54. [PMID: 30982208 DOI: 10.1007/s10620-019-05619-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
25 Déri M, Szakál-Tóth Z, Fekete F, Mangó K, Incze E, Minus A, Merkely B, Sax B, Monostory K. CYP3A-status is associated with blood concentration and dose-requirement of tacrolimus in heart transplant recipients. Sci Rep 2021;11:21389. [PMID: 34725418 DOI: 10.1038/s41598-021-00942-y] [Reference Citation Analysis]
26 Andrews LM, Riva N, de Winter BC, Hesselink DA, de Wildt SN, Cransberg K, van Gelder T. Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opinion on Drug Metabolism & Toxicology 2015;11:921-36. [DOI: 10.1517/17425255.2015.1033397] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
27 Kurzawski M, Malinowski D, Dziewanowski K, Droździk M. Analysis of common polymorphisms within NR1I2 and NR1I3 genes and tacrolimus dose-adjusted concentration in stable kidney transplant recipients. Pharmacogenetics and Genomics 2017;27:372-7. [DOI: 10.1097/fpc.0000000000000301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
28 Shuker N, Cadogan M, van Gelder T, Roodnat JI, Kho MM, Weimar W, Hesselink DA. Conversion from twice-daily to once-daily tacrolimus does not reduce intrapatient variability in tacrolimus exposure. Ther Drug Monit. 2015;37:262-269. [PMID: 25265255 DOI: 10.1097/ftd.0000000000000136] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
29 Thomas B, Weir MR. The Evaluation and Therapeutic Management of Hypertension in the Transplant Patient. Curr Cardiol Rep 2015;17. [DOI: 10.1007/s11886-015-0647-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
30 Andrews LM, Hesselink DA, van Gelder T, Koch BCP, Cornelissen EAM, Brüggemann RJM, van Schaik RHN, de Wildt SN, Cransberg K, de Winter BCM. A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus Following Pediatric Renal Transplantation. Clin Pharmacokinet 2018;57:475-89. [PMID: 28681225 DOI: 10.1007/s40262-017-0567-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 11.7] [Reference Citation Analysis]
31 Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier M, Bellissant E. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2019;58:593-613. [DOI: 10.1007/s40262-018-0717-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
32 Shuker N, van Gelder T, Hesselink DA. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev (Orlando). 2015;29:78-84. [PMID: 25687818 DOI: 10.1016/j.trre.2015.01.002] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 14.9] [Reference Citation Analysis]
33 Prytuła A, Cransberg K, Raes A. Drug-metabolizing enzymes CYP3A as a link between tacrolimus and vitamin D in renal transplant recipients: is it relevant in clinical practice? Pediatr Nephrol 2019;34:1201-10. [PMID: 30058048 DOI: 10.1007/s00467-018-4030-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Vanhove T, Bouwsma H, Hilbrands L, Swen JJ, Spriet I, Annaert P, Vanaudenaerde B, Verleden G, Vos R, Kuypers DRJ. Determinants of the Magnitude of Interaction Between Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients. Am J Transplant 2017;17:2372-80. [PMID: 28224698 DOI: 10.1111/ajt.14232] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
35 Sukkha S, Chindavijak B, Nosoongnoen W, Phakdeekitchareon B, Kitiyakara C, Sumethkul V. The association between trough blood concentration and systemic exposure of tacrolimus: Comparison between once-daily (Advagraf®) and twice-daily (Prograf®) formulation in de novo kidney transplant recipients. Drug Metabolism and Pharmacokinetics 2020;35:139-44. [DOI: 10.1016/j.dmpk.2019.10.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Zhao CY, Jiao Z, Mao JJ, Qiu XY. External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 2016;81:891-907. [PMID: 26574188 DOI: 10.1111/bcp.12830] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
37 Liu Y, Zhang T, Zhang X, Ye L, Gu H, Zhong L, Sun H, Song C, Peng Z, Fan J. A new donors' CYP3A5 and recipients' CYP3A4 cluster predicting tacrolimus disposition, and new-onset hypertension in Chinese liver transplant patients. Oncotarget 2017;8:70250-61. [PMID: 29050276 DOI: 10.18632/oncotarget.19606] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
38 Staatz CE, Tett SE. Clinical Pharmacokinetics of Once-Daily Tacrolimus in Solid-Organ Transplant Patients. Clin Pharmacokinet 2015;54:993-1025. [DOI: 10.1007/s40262-015-0282-2] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 7.7] [Reference Citation Analysis]
39 Li Y, Yan L, Shi Y, Bai Y, Tang J, Wang L. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. Springerplus 2015;4:637. [PMID: 26543771 DOI: 10.1186/s40064-015-1425-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
40 Zhao W, Leroux S, Jacqz-Aigrain E. Dosage individualization in children: integration of pharmacometrics in clinical practice. World J Pediatr 2014;10:197-203. [PMID: 25124969 DOI: 10.1007/s12519-014-0493-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
41 Riva N, Dip M, Halac E, Cáceres Guido P, Woillard JB, Licciardone N, Chan D, Buendía J, Borgnia D, Bosaleh A, de Davila MT, Imventarza O, Schaiquevich P. Survival Time to Biopsy-Proven Acute Rejection and Tacrolimus Adverse Drug Reactions in Pediatric Liver Transplantation. Ther Drug Monit 2018;40:401-10. [PMID: 29621122 DOI: 10.1097/FTD.0000000000000517] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
42 Lesche D, Sigurdardottir V, Setoud R, Oberhänsli M, Carrel T, Fiedler GM, Largiadèr CR, Mohacsi P, Sistonen J. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther Drug Monit 2014;36:710-5. [PMID: 24739669 DOI: 10.1097/FTD.0000000000000080] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
43 Medeiros M, Castañeda-Hernández G, Ross CJ, Carleton BC. Use of pharmacogenomics in pediatric renal transplant recipients. Front Genet 2015;6:41. [PMID: 25741362 DOI: 10.3389/fgene.2015.00041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Francke MI, de Winter BC, Elens L, Lloberas N, Hesselink DA. The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. Expert Review of Precision Medicine and Drug Development 2020;5:313-6. [DOI: 10.1080/23808993.2020.1776107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Alvarez-Elías AC, García-Roca P, Velásquez-Jones L, Valverde S, Varela-Fascinetto G, Medeiros M. CYP3A5 Genotype and Time to Reach Tacrolimus Therapeutic Levels in Renal Transplant Children. Transplant Proc 2016;48:631-4. [PMID: 27110018 DOI: 10.1016/j.transproceed.2016.02.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
46 Birdwell K. Role of pharmacogenomics in dialysis and transplantation. Curr Opin Nephrol Hypertens 2014;23:570-7. [PMID: 25162201 DOI: 10.1097/MNH.0000000000000065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.1] [Reference Citation Analysis]
47 Gim JA, Kwon Y, Lee HA, Lee KR, Kim S, Choi Y, Kim YK, Lee H. A Machine Learning-Based Identification of Genes Affecting the Pharmacokinetics of Tacrolimus Using the DMETTM Plus Platform. Int J Mol Sci 2020;21:E2517. [PMID: 32260456 DOI: 10.3390/ijms21072517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Krogstad V, Vethe NT, Robertsen I, Hasvold G, Ose AD, Hermann M, Andersen AM, Chan J, Skauby M, Svensson MHS, Åsberg A, Christensen H. Determination of Tacrolimus Concentration and Protein Expression of P-Glycoprotein in Single Human Renal Core Biopsies. Therapeutic Drug Monitoring 2018;40:292-300. [DOI: 10.1097/ftd.0000000000000510] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
49 Vanhove T, Annaert P, Kuypers DRJ. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metabolism Reviews 2016;48:88-112. [DOI: 10.3109/03602532.2016.1151037] [Cited by in Crossref: 71] [Cited by in F6Publishing: 56] [Article Influence: 11.8] [Reference Citation Analysis]
50 Xia T, Zhu S, Wen Y, Gao S, Li M, Tao X, Zhang F, Chen W. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis. Drug Des Devel Ther 2018;12:417-28. [PMID: 29535503 DOI: 10.2147/DDDT.S149340] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
51 Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. Pharmgenomics Pers Med 2018;11:23-33. [PMID: 29563827 DOI: 10.2147/PGPM.S107710] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
52 Yang T, Chen Y, Xue F, Han L, Shen C, Zhou T, Luo Y, Zhang J, Xia Q. Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation. Int J Clin Pract 2015;69:53-62. [DOI: 10.1111/ijcp.12667] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
53 Tielemans MM, van Boekel GAJ, van Gelder T, Tjwa ET, Hilbrands LB. Immunosuppressive drugs and the gastrointestinal tract in renal transplant patients. Transplant Rev (Orlando). 2019;33:55-63. [PMID: 30473173 DOI: 10.1016/j.trre.2018.11.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Turner RM, Park BK, Pirmohamed M. Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdiscip Rev Syst Biol Med 2015;7:221-41. [PMID: 25950758 DOI: 10.1002/wsbm.1302] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
55 Ruiz J, Herrero MJ, Bosó V, Megías JE, Hervás D, Poveda JL, Escrivá J, Pastor A, Solé A, Aliño SF. Impact of Single Nucleotide Polymorphisms (SNPs) on Immunosuppressive Therapy in Lung Transplantation. Int J Mol Sci 2015;16:20168-82. [PMID: 26307985 DOI: 10.3390/ijms160920168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
56 Bloch J, Hazzan M, Van der Hauwaert C, Buob D, Savary G, Hertig A, Gnemmi V, Frimat M, Perrais M, Copin M, Broly F, Noël C, Pottier N, Cauffiez C, Glowacki F. Donor ABCB1 genetic polymorphisms influence epithelial-to-mesenchyme transition in tacrolimus-treated kidney recipients. Pharmacogenomics 2014;15:2011-24. [DOI: 10.2217/pgs.14.146] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
57 Tapirdamaz Ö, Hesselink DA, el Bouazzaoui S, Azimpour M, Hansen B, van der Laan LJ, Polak WG, Kwekkeboom J, van Schaik RH, van Gelder T, Metselaar HJ. Genetic variance in ABCB1 and CYP3A5 does not contribute toward the development of chronic kidney disease after liver transplantation. Pharmacogenet Genomics 2014;24:427-35. [PMID: 25014506 DOI: 10.1097/FPC.0000000000000063] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
58 Job KM, Roberts JK, Enioutina EY, IIIamola SM, Kumar SS, Rashid J, Ward RM, Fukuda T, Sherbotie J, Sherwin CM. Treatment optimization of maintenance immunosuppressive agents in pediatric renal transplant recipients. Expert Opin Drug Metab Toxicol 2021;17:747-65. [PMID: 34121566 DOI: 10.1080/17425255.2021.1943356] [Reference Citation Analysis]
59 van Gelder T, Meziyerh S, Swen JJ, de Vries APJ, Moes DJAR. The Clinical Impact of the C0/D Ratio and the CYP3A5 Genotype on Outcome in Tacrolimus Treated Kidney Transplant Recipients. Front Pharmacol 2020;11:1142. [PMID: 32848756 DOI: 10.3389/fphar.2020.01142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
60 Thongprayoon C, Hansrivijit P, Kovvuru K, Kanduri SR, Bathini T, Pivovarova A, Smith JR, Cheungpasitporn W. Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients. J Clin Med 2020;9:E2193. [PMID: 32664531 DOI: 10.3390/jcm9072193] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
61 Zaza G, Granata S, Tomei P, Dalla Gassa A, Lupo A. Personalization of the immunosuppressive treatment in renal transplant recipients: the great challenge in "omics" medicine. Int J Mol Sci 2015;16:4281-305. [PMID: 25690039 DOI: 10.3390/ijms16024281] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
62 Azam F, Khan M, Khaliq T, Bhatti ABH. Influence of ABCB1 gene polymorphism on concentration to dose ratio and adverse effects of tacrolimus in Pakistani liver transplant recipients. Pak J Med Sci 2021;37:689-94. [PMID: 34104149 DOI: 10.12669/pjms.37.3.3898] [Reference Citation Analysis]
63 Sharma N, Zhao Q, Ni B, Elder P, Puto M, Benson DM, Rosko A, Chaudhry M, Devarakonda S, Bumma N, Khan A, Vasu S, Jaglowski S, William BM, Mims A, Choe H, Larkin K, Brammer J, Wall S, Grieselhuber N, Saad A, Penza S, Efebera Y. Effect of Early Post-Transplantation Tacrolimus Concentration on the Risk of Acute Graft-Versus-Host Disease in Allogenic Stem Cell Transplantation. Cancers (Basel) 2021;13:613. [PMID: 33557088 DOI: 10.3390/cancers13040613] [Reference Citation Analysis]
64 Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen M, Elens L, Johnson-davis KL, Kunicki PK, Macphee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Therapeutic Drug Monitoring 2019;41:261-307. [DOI: 10.1097/ftd.0000000000000640] [Cited by in Crossref: 131] [Cited by in F6Publishing: 46] [Article Influence: 43.7] [Reference Citation Analysis]
65 Langman L, van Gelder T, van Schaik RH. Pharmacogenomics aspect of immunosuppressant therapy. Personalized Immunosuppression in Transplantation. Elsevier; 2016. pp. 109-24. [DOI: 10.1016/b978-0-12-800885-0.00005-9] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
66 Togashi M, Niioka T, Komatsuda A, Nara M, Okuyama S, Omokawa A, Abumiya M, Wakui H, Takahashi N, Miura M. Effect of CYP3A5 and ABCB1 polymorphisms on the interaction between tacrolimus and itraconazole in patients with connective tissue disease. Eur J Clin Pharmacol 2015;71:1091-7. [PMID: 26184414 DOI: 10.1007/s00228-015-1901-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
67 Alamilla-Sanchez ME, Alcala-Salgado MA, Alonso-Bello CD, Fonseca-Gonzalez GT. Mechanism of Action and Efficacy of Immunosupressors in Lupus Nephritis. Int J Nephrol Renovasc Dis 2021;14:441-58. [PMID: 34924767 DOI: 10.2147/IJNRD.S335371] [Reference Citation Analysis]
68 Gómez-Bravo MA, Apellaniz-Ruiz M, Salcedo M, Fondevila C, Suarez F, Castellote J, Rufian S, Pons JA, Bilbao I, Alamo JM, Millán O, Brunet M, Rodríguez-Antona C. Influence of donor liver CYP3A4*20 loss-of-function genotype on tacrolimus pharmacokinetics in transplanted patients. Pharmacogenet Genomics 2018;28:41-8. [PMID: 29256966 DOI: 10.1097/FPC.0000000000000321] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
69 Lloberas N, Hesselink DA, van Schaik RH, Grinyò JM, Colom H, Gelder TV, Elens L. Detection of a rare CYP3A4 variant in a transplant patient characterized by a tacrolimus poor metabolizer phenotype. Pharmacogenomics 2018;19:305-10. [PMID: 29469606 DOI: 10.2217/pgs-2017-0301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
70 Shuker N, Bouamar R, van Schaik RH, Clahsen-van Groningen MC, Damman J, Baan CC, van de Wetering J, Rowshani AT, Weimar W, van Gelder T, Hesselink DA. A Randomized Controlled Trial Comparing the Efficacy of Cyp3a5 Genotype-Based With Body-Weight-Based Tacrolimus Dosing After Living Donor Kidney Transplantation. Am J Transplant. 2016;16:2085-2096. [PMID: 26714287 DOI: 10.1111/ajt.13691] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 13.7] [Reference Citation Analysis]
71 Stefanović NZ, Cvetković TP, Jevtović-Stoimenov TM, Zvezdanović-Čelebić LV, Stojanović DR, Ignjatović AM, Živković ND, Veličković-Radovanović RM. Potential role of tacrolimus in erythrocytes' antioxidative capacity in long-term period after renal transplantation. Eur J Pharm Sci 2015;70:132-9. [PMID: 25657088 DOI: 10.1016/j.ejps.2015.01.013] [Reference Citation Analysis]
72 Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018;19:513-22. [PMID: 29380698 DOI: 10.2174/1389200219666180129151948] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
73 Kagaya H, Niioka T, Saito M, Inoue T, Numakura K, Yamamoto R, Akamine Y, Habuchi T, Satoh S, Miura M. Prediction of Tacrolimus Exposure by CYP3A5 Genotype and Exposure of Co-Administered Everolimus in Japanese Renal Transplant Recipients. Int J Mol Sci 2018;19:E882. [PMID: 29547545 DOI: 10.3390/ijms19030882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Deininger KM, Vu A, Page RL 2nd, Ambardekar AV, Lindenfeld J, Aquilante CL. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients. Clin Transplant 2016;30:1074-81. [PMID: 27314545 DOI: 10.1111/ctr.12790] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
75 Moes AD, Hesselink DA, Zietse R, van Schaik RH, van Gelder T, Hoorn EJ. Calcineurin inhibitors and hypertension: a role for pharmacogenetics? Pharmacogenomics 2014;15:1243-51. [DOI: 10.2217/pgs.14.87] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
76 Shipkova M. Biomarker monitoring in immunosuppressant therapy. Personalized Immunosuppression in Transplantation. Elsevier; 2016. pp. 125-52. [DOI: 10.1016/b978-0-12-800885-0.00006-0] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
77 Shi YY, Hesselink DA, van Gelder T. Pharmacokinetics and pharmacodynamics of immunosuppressive drugs in elderly kidney transplant recipients. Transplant Rev (Orlando) 2015;29:224-30. [PMID: 26048322 DOI: 10.1016/j.trre.2015.04.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
78 Tron C, Woillard JB, Houssel-Debry P, David V, Jezequel C, Rayar M, Balakirouchenane D, Blanchet B, Debord J, Petitcollin A, Roussel M, Verdier MC, Bellissant E, Lemaitre F. Pharmacogenetic-Whole blood and intracellular pharmacokinetic-Pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients. PLoS One 2020;15:e0230195. [PMID: 32163483 DOI: 10.1371/journal.pone.0230195] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
79 Shuker N, de Man FM, de Weerd AE, van Agteren M, Weimar W, Betjes MG, van Gelder T, Hesselink DA. Pretransplant Tacrolimus Dose Requirements Predict Early Posttransplant Dose Requirements in Blood Group AB0-Incompatible Kidney Transplant Recipients. Ther Drug Monit 2016;38:217-22. [PMID: 26630539 DOI: 10.1097/FTD.0000000000000266] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
80 Zhu Y, Zhang M, Wang F, Lu J, Chen R, Xie Q, Sun J, Xue J, Hao C, Lin S. The calcineurin regulatory subunit polymorphism and the treatment efficacy of tacrolimus for idiopathic membranous nephropathy. Int Immunopharmacol 2018;65:422-8. [PMID: 30388516 DOI: 10.1016/j.intimp.2018.10.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
81 Davis S, Gralla J, Klem P, Tong S, Wedermyer G, Freed B, Wiseman A, Cooper JE. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant 2018;18:907-15. [PMID: 28925597 DOI: 10.1111/ajt.14504] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 11.4] [Reference Citation Analysis]
82 Taber DJ, Gebregziabher MG, Srinivas TR, Chavin KD, Baliga PK, Egede LE. African-American race modifies the influence of tacrolimus concentrations on acute rejection and toxicity in kidney transplant recipients. Pharmacotherapy 2015;35:569-77. [PMID: 26011276 DOI: 10.1002/phar.1591] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
83 Kwekkeboom J, van der Laan LJ, Betjes MG, Manintveld OC, Hoek RA, Cransberg K, de Bruin RW, Dor FJ, de Jonge J, Boor PP, van Gent R, van Besouw NM, Boer K, Litjens NH, Hesselink DA, Hoogduijn MJ, Massey E, Rowshani AT, van de Wetering J, de Jong H, Hendriks RW, Metselaar HJ, van Gelder T, Weimar W, IJzermans JN, Baan CC. Rotterdam: main port for organ transplantation research in the Netherlands. Transpl Immunol 2014;31:200-6. [PMID: 25240732 DOI: 10.1016/j.trim.2014.09.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
84 Aschauer C, Perco P, Heinzel A, Sunzenauer J, Oberbauer R. Positioning of Tacrolimus for the Treatment of Diabetic Nephropathy Based on Computational Network Analysis. PLoS One 2017;12:e0169518. [PMID: 28060893 DOI: 10.1371/journal.pone.0169518] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
85 Dorr CR, Oetting WS, Jacobson PA, Israni AK. Genetics of acute rejection after kidney transplantation. Transpl Int 2018;31:263-77. [PMID: 29030886 DOI: 10.1111/tri.13084] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
86 Debette-gratien M, Woillard J, Picard N, Sebagh M, Loustaud-ratti V, Sautereau D, Samuel D, Marquet P. Influence of Donor and Recipient CYP3A4, CYP3A5, and ABCB1 Genotypes on Clinical Outcomes and Nephrotoxicity in Liver Transplant Recipients. Transplantation 2016;100:2129-37. [DOI: 10.1097/tp.0000000000001394] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
87 Sugimoto M, Hira D, Murata M, Kawai T, Terada T. Effect of Antibiotic Susceptibility and CYP3A4/5 and CYP2C19 Genotype on the Outcome of Vonoprazan-Containing Helicobacter pylori Eradication Therapy. Antibiotics (Basel) 2020;9:E645. [PMID: 32993151 DOI: 10.3390/antibiotics9100645] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
88 Avila JD, Živković S. The neurology of solid organ transplantation. Curr Neurol Neurosci Rep 2015;15:38. [PMID: 26008808 DOI: 10.1007/s11910-015-0560-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
89 Tortajada-genaro LA, Puchades R, Maquieira Á. Primer design for SNP genotyping based on allele-specific amplification—Application to organ transplantation pharmacogenomics. Journal of Pharmaceutical and Biomedical Analysis 2017;136:14-21. [DOI: 10.1016/j.jpba.2016.12.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
90 Woillard J, Debord J, Monchaud C, Saint-marcoux F, Marquet P. Population Pharmacokinetics and Bayesian Estimators for Refined Dose Adjustment of a New Tacrolimus Formulation in Kidney and Liver Transplant Patients. Clin Pharmacokinet 2017;56:1491-8. [DOI: 10.1007/s40262-017-0533-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
91 Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2021;87:1918-29. [PMID: 33025649 DOI: 10.1111/bcp.14585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Burke MT, Isbel N, Barraclough KA, Jung JW, Wells JW, Staatz CE. Genetics and nonmelanoma skin cancer in kidney transplant recipients. Pharmacogenomics 2015;16:161-72. [PMID: 25616102 DOI: 10.2217/pgs.14.156] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
93 Zununi Vahed S, Ardalan M, Samadi N, Omidi Y. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients. Bioimpacts. 2015;5:45-54. [PMID: 25901296 DOI: 10.15171/bi.2015.12] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
94 Fontova P, Colom H, Rigo-Bonnin R, Bestard O, Vidal-Alabró A, van Merendonk LN, Cerezo G, Polo C, Montero N, Melilli E, Manonelles A, Meneghini M, Coloma A, Cruzado JM, Torras J, Grinyó JM, Lloberas N. Sustained Inhibition of Calcineurin Activity With a Melt-Dose Once-daily Tacrolimus Formulation in Renal Transplant Recipients. Clin Pharmacol Ther 2021;110:238-47. [PMID: 33626199 DOI: 10.1002/cpt.2220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
95 Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating BJ, Iklé D, Remmel RP, Dorr CR, Mannon RB, Matas AJ, Israni AK, Oetting WS, Jacobson PA; DeKAF Genomics and GEN03 Investigators. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am J Transplant 2019;19:2795-804. [PMID: 30953600 DOI: 10.1111/ajt.15385] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
96 Niioka T, Kagaya H, Saito M, Inoue T, Numakura K, Yamamoto R, Akamine Y, Habuchi T, Satoh S, Miura M. Influence of everolimus on the pharmacokinetics of tacrolimus in Japanese renal transplant patients. Int J Urol. 2016;23:484-490. [PMID: 26990259 DOI: 10.1111/iju.13081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
97 Zhu J, Campagne O, Torrice CD, Flynn G, Miller JA, Patel T, Suzuki O, Ptachcinski JR, Armistead PM, Wiltshire T, Mager DE, Weiner DL, Crona DJ. Evaluation of the performance of a prior tacrolimus population pharmacokinetic kidney transplant model among adult allogeneic hematopoietic stem cell transplant patients. Clin Transl Sci 2021;14:908-18. [PMID: 33502111 DOI: 10.1111/cts.12956] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 Kou K, Sun X, Li M, Li T, Hu Y, Li S, Lv G. Beneficial effects of Wuzhi Capsule on tacrolimus blood concentrations in liver transplant patients with different donor-recipient CYP3A5 genotypes. J Clin Pharm Ther 2021. [PMID: 34708436 DOI: 10.1111/jcpt.13533] [Reference Citation Analysis]
99 Marquet P, Åsberg A. Individualizing Transplant Therapy. Individualized Drug Therapy for Patients. Elsevier; 2017. pp. 255-79. [DOI: 10.1016/b978-0-12-803348-7.00016-2] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
100 Calvo PL, Serpe L, Brunati A, Nonnato A, Bongioanni D, Olio DD, Pinon M, Ferretti C, Tandoi F, Carbonaro G, Salizzoni M, Amoroso A, Romagnoli R, Canaparo R. Donor CYP3A5 genotype influences tacrolimus disposition on the first day after paediatric liver transplantation. Br J Clin Pharmacol 2017;83:1252-62. [PMID: 28044353 DOI: 10.1111/bcp.13219] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
101 Elens L, Haufroid V. Genotype-based tacrolimus dosing guidelines: with or without CYP3A4*22 ? Pharmacogenomics 2017;18:1473-80. [DOI: 10.2217/pgs-2017-0131] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
102 Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020;16:769-82. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
103 Gu XQ, Tang D, Wan P, Qin T, Yang TH, Wu J, Ji H, Liu JC, Xue F, Tang YJ, Xia Q. Multiple microRNAs regulate tacrolimus metabolism through CYP3A5. Pharmacol Res 2021;164:105382. [PMID: 33348024 DOI: 10.1016/j.phrs.2020.105382] [Reference Citation Analysis]
104 Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Mannon RB, Matas AJ, Israni AK, Jacobson PA. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients. Pharmacogenomics J 2018;18:501-5. [PMID: 29160300 DOI: 10.1038/tpj.2017.49] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
105 Sanghavi K, Brundage RC, Miller MB, Schladt DP, Israni AK, Guan W, Oetting WS, Mannon RB, Remmel RP, Matas AJ, Jacobson PA. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J 2017;17:61-8. [PMID: 26667830 DOI: 10.1038/tpj.2015.87] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.7] [Reference Citation Analysis]
106 Chen Z, Cheng X, Zhang L, Tang L, Fang Y, Chen H, Zhang L, Shen A. The impact of IL-10 and CYP3A5 gene polymorphisms on dose-adjusted trough blood tacrolimus concentrations in early post-renal transplant recipients. Pharmacol Rep 2021. [PMID: 34089513 DOI: 10.1007/s43440-021-00288-2] [Reference Citation Analysis]
107 Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4*1B Genetic Polymorphism on the Pharmacokinetics of Tacrolimus in Adult Renal Transplant Recipients: A Meta-Analysis. PLoS One. 2015;10:e0127995. [PMID: 26039043 DOI: 10.1371/journal.pone.0127995] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
108 Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Dorr C, Mannon RB, Matas AJ, Israni AK, Jacobson PA. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics 2018;19:175-84. [PMID: 29318894 DOI: 10.2217/pgs-2017-0187] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
109 Zhu J, Patel T, Miller JA, Torrice CD, Aggarwal M, Sketch MR, Alexander MD, Armistead PM, Coghill JM, Grgic T, Jamieson KJ, Ptachcinski JR, Riches ML, Serody JS, Schmitz JL, Shaw JR, Shea TC, Suzuki O, Vincent BG, Wood WA, Rao KV, Wiltshire T, Weimer ET, Crona DJ. Influence of Germline Genetics on Tacrolimus Pharmacokinetics and Pharmacodynamics in Allogeneic Hematopoietic Stem Cell Transplant Patients. Int J Mol Sci 2020;21:E858. [PMID: 32013193 DOI: 10.3390/ijms21030858] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
110 Choi Y, Jiang F, An H, Park HJ, Choi JH, Lee H. A pharmacogenomic study on the pharmacokinetics of tacrolimus in healthy subjects using the DMETTM Plus platform. Pharmacogenomics J 2017;17:174-9. [DOI: 10.1038/tpj.2015.99] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
111 Del Bello A, Congy-Jolivet N, Danjoux M, Muscari F, Lavayssière L, Esposito L, Hebral AL, Bellière J, Kamar N. High tacrolimus intra-patient variability is associated with graft rejection, and de novo donor-specific antibodies occurrence after liver transplantation. World J Gastroenterol 2018; 24(16): 1795-1802 [PMID: 29713132 DOI: 10.3748/wjg.v24.i16.1795] [Cited by in CrossRef: 37] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
112 Sharif A, Cohney S. Post-transplantation diabetes-state of the art. Lancet Diabetes Endocrinol. 2016;4:337-349. [PMID: 26632096 DOI: 10.1016/s2213-8587(15)00387-3] [Cited by in Crossref: 45] [Cited by in F6Publishing: 17] [Article Influence: 6.4] [Reference Citation Analysis]
113 Liu LS, Li J, Chen XT, Zhang HX, Fu Q, Wang HY, Xiong YY, Liu S, Liu XM, Li JL, Huang M, Wang CX. Comparison of tacrolimus and cyclosporin A in CYP3A5 expressing Chinese de novo kidney transplant recipients: a 2-year prospective study. Int J Clin Pract Suppl 2015;:43-52. [PMID: 26177348 DOI: 10.1111/ijcp.12666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
114 Campagne O, Mager DE, Tornatore KM. Population Pharmacokinetics of Tacrolimus in Transplant Recipients: What Did We Learn About Sources of Interindividual Variabilities? J Clin Pharmacol 2019;59:309-25. [PMID: 30371942 DOI: 10.1002/jcph.1325] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
115 Mendoza Rojas A, Hesselink DA, van Besouw NM, Baan CC, van Gelder T. Impact of low tacrolimus exposure and high tacrolimus intra-patient variability on the development of de novo anti-HLA donor-specific antibodies in kidney transplant recipients. Expert Rev Clin Immunol 2019;15:1323-31. [PMID: 31721605 DOI: 10.1080/1744666X.2020.1693263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
116 Francke MI, Andrews LM, Le HL, van de Wetering J, Clahsen-van Groningen MC, van Gelder T, van Schaik RHN, van der Holt B, de Winter BCM, Hesselink DA. Avoiding Tacrolimus Underexposure and Overexposure with a Dosing Algorithm for Renal Transplant Recipients: A Single Arm Prospective Intervention Trial. Clin Pharmacol Ther 2021;110:169-78. [PMID: 33452682 DOI: 10.1002/cpt.2163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Yan Z, Wang J, Huang T, Liu X, Wang L, Xu G. Effectiveness and safety of tacrolimus treatment for IgA nephropathy: A prospective cohort study. Med Clin (Barc) 2021:S0025-7753(21)00558-3. [PMID: 34838267 DOI: 10.1016/j.medcli.2021.07.030] [Reference Citation Analysis]
118 Amsden JR, Gubbins PO. Pharmacogenomics of triazole antifungal agents: implications for safety, tolerability and efficacy. Expert Opinion on Drug Metabolism & Toxicology 2017;13:1135-46. [DOI: 10.1080/17425255.2017.1391213] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
119 Hamadeh IS, Zhang Q, Steuerwald N, Hamilton A, Druhan LJ, McSwain M, Diez Y, Rusin S, Han Y, Symanowski J, Gerber J, Grunwald MR, Ghosh N, Plesca D, Arnall J, Trivedi J, Avalos B, Copelan E, Patel JN. Effect of CYP3A4, CYP3A5, and ABCB1 Polymorphisms on Intravenous Tacrolimus Exposure and Adverse Events in Adult Allogeneic Stem Cell Transplant Patients. Biol Blood Marrow Transplant 2019;25:656-63. [PMID: 30597277 DOI: 10.1016/j.bbmt.2018.12.766] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
120 Rodieux F, Wilbaux M, van den Anker JN, Pfister M. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin Pharmacokinet 2015;54:1183-204. [PMID: 26138291 DOI: 10.1007/s40262-015-0298-7] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 9.7] [Reference Citation Analysis]
121 Stefanović N, Veličković-Radovanović R, Danković K, Pavlović I, Catić-Đorđević A, Bašić J, Despotović M, Jevtović-Stoimenov T, Mitić B, Cvetković T. Effect of the Interrelation between CYP3A5 Genotype, Concentration/Dose Ratio and Intrapatient Variability of Tacrolimus on Kidney Graft Function: Monte Carlo Simulation Approach. Pharmaceutics 2021;13:1970. [PMID: 34834385 DOI: 10.3390/pharmaceutics13111970] [Reference Citation Analysis]
122 Mooij MG, Nies AT, Knibbe CA, Schaeffeler E, Tibboel D, Schwab M, de Wildt SN. Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics. Clin Pharmacokinet 2016;55:507-24. [PMID: 26410689 DOI: 10.1007/s40262-015-0328-5] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.8] [Reference Citation Analysis]
123 Jefferson JA. Complications of Immunosuppression in Glomerular Disease. Clin J Am Soc Nephrol 2018;13:1264-75. [PMID: 30042223 DOI: 10.2215/CJN.01920218] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
124 Ganetsky A, Shah A, Miano TA, Hwang WT, He J, Loren AW, Hexner EO, Frey NV, Porter DL, Reshef R. Higher tacrolimus concentrations early after transplant reduce the risk of acute GvHD in reduced-intensity allogeneic stem cell transplantation. Bone Marrow Transplant 2016;51:568-72. [PMID: 26691423 DOI: 10.1038/bmt.2015.323] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
125 Gervasini G, García-pino G, Vergara E, Mota-zamorano S, García-cerrada M, Luna E. CYP3A genotypes of donors but not those of the patients increase the risk of acute rejection in renal transplant recipients on calcineurin inhibitors: a pilot study. Eur J Clin Pharmacol 2018;74:53-60. [DOI: 10.1007/s00228-017-2353-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
126 Ghareeb M, Gohh RY, Akhlaghi F. Tacrolimus Concentration in Saliva of Kidney Transplant Recipients: Factors Influencing the Relationship with Whole Blood Concentrations. Clin Pharmacokinet 2018;57:1199-210. [PMID: 29330784 DOI: 10.1007/s40262-017-0626-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
127 Revollo JY, Cuffy MC, Abu Jawdeh BG, Paterno F, Girnita A, Brailey P, Alloway RR, Woodle ES. Case Report: Successful Living Donor Kidney Transplantation in a Highly Human Leukocyte Antigen-Sensitized Recipient With a Positive Cytotoxic Crossmatch Using Bortezomib-Based Desensitization Without Intravenous Immunoglobulin. Transplant Proc 2015;47:2254-7. [PMID: 26361693 DOI: 10.1016/j.transproceed.2015.05.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Chen YK, Han LZ, Xue F, Shen CH, Lu J, Yang TH, Zhang JJ, Xia Q. Personalized tacrolimus dose requirement by CYP3A5 but not ABCB1 or ACE genotyping in both recipient and donor after pediatric liver transplantation. PLoS One 2014;9:e109464. [PMID: 25310192 DOI: 10.1371/journal.pone.0109464] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
129 Csikány N, Kiss Á, Déri M, Fekete F, Minus A, Tóth K, Temesvári M, Sárváry E, Bihari L, Gerlei Z, Kóbori L, Monostory K. Clinical significance of personalized tacrolimus dosing by adjusting to donor CYP3A-status in liver transplant recipients. Br J Clin Pharmacol 2021;87:1790-800. [PMID: 32986876 DOI: 10.1111/bcp.14566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
130 Kuypers DR, de Loor H, Naesens M, Coopmans T, de Jonge H. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics. 2014;24:597-606. [PMID: 25322286 DOI: 10.1097/fpc.0000000000000095] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
131 Liu MZ, He HY, Zhang YL, Hu YF, He FZ, Luo JQ, Luo ZY, Chen XP, Liu ZQ, Zhou HH, Shao MJ, Ming YZ, Xin HW, Zhang W. IL-3 and CTLA4 gene polymorphisms may influence the tacrolimus dose requirement in Chinese kidney transplant recipients. Acta Pharmacol Sin 2017;38:415-23. [PMID: 28112181 DOI: 10.1038/aps.2016.153] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
132 Davis S, Gralla J, Klem P, Stites E, Wiseman A, Cooper JE. Tacrolimus Intrapatient Variability, Time in Therapeutic Range, and Risk of De Novo Donor–Specific Antibodies. Transplantation 2020;104:881-7. [DOI: 10.1097/tp.0000000000002913] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
133 Zhang X, Xu J, Fan J, Zhang T, Li Y, Xie B, Zhang W, Lin S, Ye L, Liu Y, Jiang G. Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients. Dis Markers 2017;2017:7834035. [PMID: 28246425 DOI: 10.1155/2017/7834035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
134 Liu Y, Zhang T, Li C, Ye L, Gu H, Zhong L, Sun H, Sun Y, Peng Z, Fan J. SLC28A3 rs7853758 as a new biomarker of tacrolimus elimination and new-onset hypertension in Chinese liver transplantation patients. Biomark Med 2017;11:607-18. [PMID: 28621555 DOI: 10.2217/bmm-2017-0128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
135 Arreola-Guerra JM, Alberú J, Chew-Wong A, Macias DM, Hernández-Rosales J, Zuñiga-Macías L, Delgadillo-Castañeda R, Ricalde-Ríos G, Haro-Alcalde F, Villafán-Bernal JR, Ramos-Medellín CL, Reyes-Acevedo R. Changes in the commercial brand of tacrolimus lead to subtherapeutic trough levels and acute rejection in renal transplant recipients. Clin Transplant 2019;33:e13749. [PMID: 31691354 DOI: 10.1111/ctr.13749] [Reference Citation Analysis]
136 Asada A, Bamba S, Morita Y, Takahashi K, Imaeda H, Nishida A, Inatomi O, Sugimoto M, Sasaki M, Andoh A. The effect of CYP3A5 genetic polymorphisms on adverse events in patients with ulcerative colitis treated with tacrolimus. Dig Liver Dis. 2017;49:24-28. [PMID: 27717793 DOI: 10.1016/j.dld.2016.09.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
137 Shipkova M, López OM, Picard N, Noceti O, Sommerer C, Christians U, Wieland E. Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation. Ther Drug Monit 2016;38 Suppl 1:S80-92. [PMID: 26418704 DOI: 10.1097/FTD.0000000000000230] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Meng H, Luo Z, Hu B, Jin W, Yan C, Li Z, Xue Y, Liu Y, Luo Y, Xu L, Yang H. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018;19:495-511. [DOI: 10.2217/pgs-2017-0182] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
139 Kravljaca M, Perovic V, Pravica V, Brkovic V, Milinkovic M, Lausevic M, Naumovic R. The importance of MDR1 gene polymorphisms for tacrolimus dosage. European Journal of Pharmaceutical Sciences 2016;83:109-13. [DOI: 10.1016/j.ejps.2015.12.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
140 Fernandes MR, Rodrigues JCG, Maroñas O, Latorre-Pellicer A, Cruz R, Guerreiro JF, Burbano RMR, de Assumpção PP, Ribeiro-Dos-Santos A, Dos Santos SEB, Carracedo A, Dos Santos NPC. Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon. Pharmgenomics Pers Med 2021;14:117-33. [PMID: 33519226 DOI: 10.2147/PGPM.S274741] [Reference Citation Analysis]
141 Helal M, Obada M, Elrazek WA, Safan M, El-hakim TA, El-said H. Effect of ABCB1 (3435C>T) and CYP3A5 (6986A>G) genes polymorphism on tacrolimus concentrations and dosage requirements in liver transplant patients. Egyptian Journal of Medical Human Genetics 2017;18:261-8. [DOI: 10.1016/j.ejmhg.2016.10.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
142 Lemaitre F, Vethe NT, D'Avolio A, Tron C, Robertsen I, De Winter B, Denicolo A, Koch BCP, Venkataramanan R, Van Gelder T, Brunet M, Bergan S, Hesselink DA, Wallemacq P. Measuring Intracellular Concentrations of Calcineurin Inhibitors: Expert Consensus from the International Association of Therapeutic Drug Monitoring and Clinical Toxicology Expert Panel. Ther Drug Monit 2020;42:665-70. [PMID: 32520841 DOI: 10.1097/FTD.0000000000000780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
143 Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, Bestard O, Torras J, Cruzado JM, Grinyó JM, Lloberas N. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clin Pharmacokinet 2017;56:963-75. [PMID: 28050888 DOI: 10.1007/s40262-016-0491-3] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
144 Riva N, Woillard JB, Distefano M, Moragas M, Dip M, Halac E, Cáceres Guido P, Licciardone N, Mangano A, Bosaleh A, de Davila MT, Schaiquevich P, Imventarza O. Identification of Factors Affecting Tacrolimus Trough Levels in Latin American Pediatric Liver Transplant Patients. Liver Transpl 2019;25:1397-407. [PMID: 31102573 DOI: 10.1002/lt.25495] [Reference Citation Analysis]
145 Si S, Wang Z, Yang H, Han Z, Tao J, Chen H, Wang K, Guo M, Tan R, Wei JF, Gu M. Impact of single nucleotide polymorphisms on P450 oxidoreductase and peroxisome proliferator-activated receptor alpha on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenomics J 2019;19:42-52. [PMID: 30323313 DOI: 10.1038/s41397-018-0061-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]