BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater 2018;7:93-110. [PMID: 29790132 DOI: 10.1007/s40204-018-0091-4] [Cited by in Crossref: 86] [Cited by in F6Publishing: 56] [Article Influence: 21.5] [Reference Citation Analysis]
Number Citing Articles
1 Wegener B, Behnke M, Milz S, Jansson V, Redlich C, Hermanns W, Birkenmaier C, Pieper K, Weißgärber T, Quadbeck P. Local and systemic inflammation after implantation of a novel iron based porous degradable bone replacement material in sheep model. Sci Rep 2021;11:12035. [PMID: 34103567 DOI: 10.1038/s41598-021-91296-y] [Reference Citation Analysis]
2 Donik Č, Kraner J, Kocijan A, Paulin I, Godec M. Evolution of the ε and γ phases in biodegradable Fe-Mn alloys produced using laser powder-bed fusion. Sci Rep 2021;11:19506. [PMID: 34593952 DOI: 10.1038/s41598-021-99042-0] [Reference Citation Analysis]
3 Cenci MP, Scarazzato T, Munchen DD, Dartora PC, Veit HM, Bernardes AM, Dias PR. Eco‐Friendly Electronics—A Comprehensive Review. Adv Mater Technol . [DOI: 10.1002/admt.202001263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Smith ME, Rose DP, Cui X, Stastny AL, Zhang P, Heineman WR. A Visual Hydrogen Sensor Prototype for Monitoring Magnesium Implant Biodegradation. Anal Chem 2021;93:10487-94. [PMID: 34279086 DOI: 10.1021/acs.analchem.1c01276] [Reference Citation Analysis]
5 Dang LHN, Kim YK, Kim SY, Lim KJ, Bode K, Lee MH, Lee KB. Radiographic and histologic effects of bone morphogenetic protein-2/hydroxyapatite within bioabsorbable magnesium screws in a rabbit model. J Orthop Surg Res 2019;14:117. [PMID: 31036024 DOI: 10.1186/s13018-019-1143-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
6 Li Y, Chen W, Lu L. Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Appl Bio Mater 2021;4:122-39. [DOI: 10.1021/acsabm.0c00859] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
7 Loffredo S, Hermawan H, Vedani M, Mantovani D. Absorbable metals for cardiovascular applications. Metals for Biomedical Devices. Elsevier; 2019. pp. 523-43. [DOI: 10.1016/b978-0-08-102666-3.00020-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Ravanbakhsh S, Paternoster C, Barucca G, Mengucci P, Gambaro S, Lescot T, Chevallier P, Fortin M, Mantovani D. Improving the radiopacity of Fe–Mn biodegradable metals by magnetron-sputtered W–Fe–Mn–C coatings: Application for thinner stents. Bioactive Materials 2022;12:64-70. [DOI: 10.1016/j.bioactmat.2021.10.022] [Reference Citation Analysis]
9 Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A, Fockaert LI, Leeflang MA, Pouran B, Gonzalez-Garcia Y, Weinans H, Mol JMC, Zhou J, Zadpoor AA. Additively manufactured biodegradable porous iron. Acta Biomater 2018;77:380-93. [PMID: 29981948 DOI: 10.1016/j.actbio.2018.07.011] [Cited by in Crossref: 80] [Cited by in F6Publishing: 54] [Article Influence: 20.0] [Reference Citation Analysis]
10 Pezzato L, Brunelli K, Diodati S, Pigato M, Bonesso M, Dabalà M. Microstructural and Corrosion Properties of Hydroxyapatite Containing PEO Coating Produced on AZ31 Mg Alloy. Materials (Basel) 2021;14:1531. [PMID: 33801003 DOI: 10.3390/ma14061531] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34132457 DOI: 10.1002/jbm.b.34893] [Reference Citation Analysis]
12 Oriňaková R, Gorejová R, Petráková M, Králová ZO, Oriňak A, Kupková M, Hrubovčáková M, Podobová M, Baláž M, Smith RM. Degradation Performance of Open-Cell Biomaterials from Phosphated Carbonyl Iron Powder with PEG Coating. Materials (Basel) 2020;13:E4134. [PMID: 32957576 DOI: 10.3390/ma13184134] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wei S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable materials for bone defect repair. Mil Med Res 2020;7:54. [PMID: 33172503 DOI: 10.1186/s40779-020-00280-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
14 Liu P, Zhang D, Dai Y, Lin J, Li Y, Wen C. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques. Acta Biomaterialia 2020;114:485-96. [DOI: 10.1016/j.actbio.2020.07.048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Klíma K, Ulmann D, Bartoš M, Španko M, Dušková J, Vrbová R, Pinc J, Kubásek J, Vlk M, Ulmannová T, Foltán R, Brizman E, Drahoš M, Beňo M, Machoň V, Čapek J. A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. IJMS 2021;22:13444. [DOI: 10.3390/ijms222413444] [Reference Citation Analysis]
16 Farabi E, Sharp JA, Vahid A, Fabijanic DM, Barnett MR, Gallo SC. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices. Mater Sci Eng C Mater Biol Appl 2021;122:111897. [PMID: 33641900 DOI: 10.1016/j.msec.2021.111897] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Li P, Dai J, Schweizer E, Rupp F, Heiss A, Richter A, Klotz UE, Geis-Gerstorfer J, Scheideler L, Alexander D. Response of human periosteal cells to degradation products of zinc and its alloy. Mater Sci Eng C Mater Biol Appl 2020;108:110208. [PMID: 31924034 DOI: 10.1016/j.msec.2019.110208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
18 Ammar HR, Sivasankaran S, Alaboodi AS. Investigation of the Microstructure and Compressibility of Biodegradable Fe-Mn-Cu/W/Co Nanostructured Alloy Powders Synthesized by Mechanical Alloying. Materials (Basel) 2021;14:3088. [PMID: 34200057 DOI: 10.3390/ma14113088] [Reference Citation Analysis]
19 Kumar A, Pandey PM. Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy. Journal of Magnesium and Alloys 2020;8:883-98. [DOI: 10.1016/j.jma.2020.02.011] [Cited by in Crossref: 16] [Article Influence: 8.0] [Reference Citation Analysis]
20 Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021;159:21-35. [PMID: 33338604 DOI: 10.1016/j.ejpb.2020.12.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
21 Horky J, Ghaffar A, Werbach K, Mingler B, Pogatscher S, Schäublin R, Setman D, Uggowitzer PJ, Löffler JF, Zehetbauer MJ. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials (Basel) 2019;12:E2460. [PMID: 31382378 DOI: 10.3390/ma12152460] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
22 Yin Yee Chin P, Cheok Q, Glowacz A, Caesarendra W. A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants. Applied Sciences 2020;10:3141. [DOI: 10.3390/app10093141] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
23 Tong X, Zhang D, Zhang X, Su Y, Shi Z, Wang K, Lin J, Li Y, Lin J, Wen C. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomaterialia 2018;82:197-204. [DOI: 10.1016/j.actbio.2018.10.015] [Cited by in Crossref: 54] [Cited by in F6Publishing: 36] [Article Influence: 13.5] [Reference Citation Analysis]
24 Tun KS, Padnuru Sripathy A, Tekumalla S, Gupta M. Development of Novel Lightweight Metastable Metal-(Metal + Ceramic) Composites Using a New Powder Metallurgy Approach. Materials (Basel) 2020;13:E3283. [PMID: 32718023 DOI: 10.3390/ma13153283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Venezuela JJD, Johnston S, Dargusch MS. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv Healthc Mater 2019;8:e1900408. [PMID: 31267693 DOI: 10.1002/adhm.201900408] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Putra NE, Leeflang MA, Minneboo M, Taheri P, Fratila-Apachitei LE, Mol JMC, Zhou J, Zadpoor AA. Extrusion-based 3D printed biodegradable porous iron. Acta Biomater 2021;121:741-56. [PMID: 33221501 DOI: 10.1016/j.actbio.2020.11.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Sharma P, Pandey PM. Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Materials & Design 2018;160:442-54. [DOI: 10.1016/j.matdes.2018.09.029] [Cited by in Crossref: 29] [Cited by in F6Publishing: 10] [Article Influence: 7.3] [Reference Citation Analysis]
28 Qin Y, Wen P, Guo H, Xia D, Zheng Y, Jauer L, Poprawe R, Voshage M, Schleifenbaum JH. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater 2019;98:3-22. [PMID: 31029830 DOI: 10.1016/j.actbio.2019.04.046] [Cited by in Crossref: 59] [Cited by in F6Publishing: 33] [Article Influence: 19.7] [Reference Citation Analysis]
29 Yusop AH, Sarian MN, Januddi FS, Ahmed QU, Kadir MR, Hartanto D, Hermawan H, Nur H. Structure, degradation, drug release and mechanical properties relationships of iron-based drug eluting scaffolds: The effects of PLGA. Materials & Design 2018;160:203-17. [DOI: 10.1016/j.matdes.2018.09.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
30 Cockerill I, Su Y, Bitten R, Cloarec B, Aouadi S, Zhu D, Young ML. Salt Preform Texturing of Absorbable Zn Substrates for Bone-implant Applications. JOM (1989) 2020;72:1902-9. [PMID: 33737795 DOI: 10.1007/s11837-019-03971-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
31 Venezuela J, Dargusch M. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends. Current Opinion in Solid State and Materials Science 2020;24:100822. [DOI: 10.1016/j.cossms.2020.100822] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
32 Li Y, Jahr H, Zhou J, Zadpoor AA. Additively manufactured biodegradable porous metals. Acta Biomater 2020;115:29-50. [PMID: 32853809 DOI: 10.1016/j.actbio.2020.08.018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
33 Zhao D, Wu J, Chou D, Hoagland W, Benson D, Dong Z, Kumta PN, Heineman WR. Visual Hydrogen Mapping Sensor for Noninvasive Monitoring of Bioresorbable Magnesium Implants In Vivo. JOM 2020;72:1851-8. [DOI: 10.1007/s11837-020-04052-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Panaghie C, Cimpoeșu R, Istrate B, Cimpoeșu N, Bernevig MA, Zegan G, Roman AM, Chelariu R, Sodor A. New Zn3Mg-xY Alloys: Characteristics, Microstructural Evolution and Corrosion Behavior. Materials (Basel) 2021;14:2505. [PMID: 34066121 DOI: 10.3390/ma14102505] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Caneparo C, Brownell D, Chabaud S, Bolduc S. Genitourinary Tissue Engineering: Reconstruction and Research Models. Bioengineering (Basel) 2021;8:99. [PMID: 34356206 DOI: 10.3390/bioengineering8070099] [Reference Citation Analysis]
36 Tai CC, Lo HL, Liaw CK, Huang YM, Huang YH, Yang KY, Huang CC, Huang SI, Shen HH, Lin TH, Lu CK, Liu WC, Sun JS, Tsai PI, Chen CY. Biocompatibility and Biological Performance Evaluation of Additive-Manufactured Bioabsorbable Iron-Based Porous Suture Anchor in a Rabbit Model. Int J Mol Sci 2021;22:7368. [PMID: 34298988 DOI: 10.3390/ijms22147368] [Reference Citation Analysis]
37 Feeley A, Feeley I, Ni Fhoghlú C, Sheehan E, Kennedy M. Use of biomaterials in scaphoid fracture fixation, a systematic review. Clin Biomech (Bristol, Avon) 2021;89:105480. [PMID: 34530377 DOI: 10.1016/j.clinbiomech.2021.105480] [Reference Citation Analysis]
38 Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Appl Bio Mater 2021;4:163-94. [PMID: 33842859 DOI: 10.1021/acsabm.0c01139] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
39 Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 2020;5:61-81. [DOI: 10.1038/s41578-019-0150-z] [Cited by in Crossref: 102] [Cited by in F6Publishing: 38] [Article Influence: 34.0] [Reference Citation Analysis]
40 Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater 2021;6:836-79. [PMID: 33024903 DOI: 10.1016/j.bioactmat.2020.09.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
41 Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm (2020) 2021;2:123-44. [PMID: 34766139 DOI: 10.1002/mco2.59] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Hernández-Escobar D, Champagne S, Yilmazer H, Dikici B, Boehlert CJ, Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater 2019;97:1-22. [PMID: 31351253 DOI: 10.1016/j.actbio.2019.07.034] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 20.0] [Reference Citation Analysis]
43 Erişen DE, Zhang Y, Zhang B, Yang K, Chen S, Wang X. Biosafety and biodegradation studies of AZ31B magnesium alloy carotid artery stent in vitro and in vivo. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34236133 DOI: 10.1002/jbm.b.34907] [Reference Citation Analysis]
44 Lietaert K, van Deursen J, Lapauw T, Weber L, Mortensen A, Vleugels J. Mechanical properties of replicated cellular Zn and Zn1.5Mg in uniaxial compression. Materials Characterization 2019;157:109895. [DOI: 10.1016/j.matchar.2019.109895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
45 Sotoudeh Bagha P, Khakbiz M, Sheibani S, Hermawan H. Design and characterization of nano and bimodal structured biodegradable Fe-Mn-Ag alloy with accelerated corrosion rate. Journal of Alloys and Compounds 2018;767:955-65. [DOI: 10.1016/j.jallcom.2018.07.206] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
46 Dargusch MS, Venezuela J, Dehghan-Manshadi A, Johnston S, Yang N, Mardon K, Lau C, Allavena R. In Vivo Evaluation of Bioabsorbable Fe-35Mn-1Ag: First Reports on In Vivo Hydrogen Gas Evolution in Fe-Based Implants. Adv Healthc Mater 2021;10:e2000667. [PMID: 33135365 DOI: 10.1002/adhm.202000667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
47 Ryu H, Seo MH, Rogers JA. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Adv Healthc Mater 2021;10:e2002236. [PMID: 33586341 DOI: 10.1002/adhm.202002236] [Reference Citation Analysis]
48 Liu L, Lu L, Zhang HJ, Wang LN. Influence of bovine serum albumin on corrosion behaviour of pure Zn in phosphate buffered saline. J Mater Sci Mater Med 2021;32:95. [PMID: 34406479 DOI: 10.1007/s10856-021-06567-x] [Reference Citation Analysis]
49 Sharma P, Pandey PM. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Materials Science and Engineering: C 2019;103:109776. [DOI: 10.1016/j.msec.2019.109776] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Liu Y, Zheng Y, Chen X, Yang J, Pan H, Chen D, Wang L, Zhang J, Zhu D, Wu S, Yeung KWK, Zeng R, Han Y, Guan S. Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Adv Funct Mater 2019;29:1805402. [DOI: 10.1002/adfm.201805402] [Cited by in Crossref: 77] [Cited by in F6Publishing: 27] [Article Influence: 25.7] [Reference Citation Analysis]
51 Tanzi MC, Farè S, Candiani G. Biomaterials and Applications. Foundations of Biomaterials Engineering. Elsevier; 2019. pp. 199-287. [DOI: 10.1016/b978-0-08-101034-1.00004-9] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
52 Li Y, Pavanram P, Zhou J, Lietaert K, Taheri P, Li W, San H, Leeflang MA, Mol JMC, Jahr H, Zadpoor AA. Additively manufactured biodegradable porous zinc. Acta Biomater 2020;101:609-23. [PMID: 31672587 DOI: 10.1016/j.actbio.2019.10.034] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
53 Carluccio D, Demir AG, Bermingham MJ, Dargusch MS. Challenges and Opportunities in the Selective Laser Melting of Biodegradable Metals for Load-Bearing Bone Scaffold Applications. Metall Mater Trans A 2020;51:3311-34. [DOI: 10.1007/s11661-020-05796-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
54 Kawamura N, Nakao Y, Ishikawa R, Tsuchida D, Iijima M. Degradation and Biocompatibility of AZ31 Magnesium Alloy Implants In Vitro and In Vivo: A Micro-Computed Tomography Study in Rats. Materials (Basel) 2020;13:E473. [PMID: 31963840 DOI: 10.3390/ma13020473] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
55 Masood Chaudry U, Farooq A, Malik A, Nabeel M, Sufyan M, Tayyeb A, Asif S, Inam A, Elbalaawy A, Hafez E, Jun T, Hamad K. Biodegradable properties of AZ31-0.5Ca magnesium alloy. Materials Technology. [DOI: 10.1080/10667857.2021.2022571] [Reference Citation Analysis]
56 Mandal S, Ummadi R, Bose M, Balla VK, Roy M. Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties. Materials Letters 2019;237:323-7. [DOI: 10.1016/j.matlet.2018.11.117] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
57 Ammar HR, Sivasankaran S, Alaboodi AS. The influence of ball milling processing variables on the microstructure and compaction behavior of Fe–Mn–Cu alloys. Materials Science-Poland 2021;39:410-29. [DOI: 10.2478/msp-2021-0033] [Reference Citation Analysis]
58 Bai, Gong, Chen, Sun, Zhang, Cai, Zhu, Xie. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals 2019;9:1004. [DOI: 10.3390/met9091004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 3] [Article Influence: 9.7] [Reference Citation Analysis]
59 Paramitha D, Chabaud S, Bolduc S, Hermawan H. Biological Assessment of Zn-Based Absorbable Metals for Ureteral Stent Applications. Materials (Basel) 2019;12:E3325. [PMID: 31614757 DOI: 10.3390/ma12203325] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
60 Md Yusop AH, Ulum MF, Al Sakkaf A, Hartanto D, Nur H. Insight into the bioabsorption of Fe-based materials and their current developments in bone applications. Biotechnol J 2021;:e2100255. [PMID: 34520117 DOI: 10.1002/biot.202100255] [Reference Citation Analysis]
61 Lin J, Tong X, Sun Q, Luan Y, Zhang D, Shi Z, Wang K, Lin J, Li Y, Dargusch M, Wen C. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Acta Biomater 2020;115:432-46. [PMID: 32853807 DOI: 10.1016/j.actbio.2020.08.033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Wang X, Shao X, Dai T, Xu F, Zhou JG, Qu G, Tian L, Liu B, Liu Y. In vivo study of the efficacy, biosafety, and degradation of a zinc alloy osteosynthesis system. Acta Biomaterialia 2019;92:351-61. [DOI: 10.1016/j.actbio.2019.05.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
63 Venezuela J, Dargusch MS. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater 2019;87:1-40. [PMID: 30660777 DOI: 10.1016/j.actbio.2019.01.035] [Cited by in Crossref: 112] [Cited by in F6Publishing: 70] [Article Influence: 37.3] [Reference Citation Analysis]
64 Md Yusop AH, Alsakkaf A, Noordin MA, Idris H, Nur H, Szali Januddi F. Degradation-triggered release from biodegradable metallic surfaces. J Biomed Mater Res B Appl Biomater 2021;109:2184-98. [PMID: 33983686 DOI: 10.1002/jbm.b.34866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Li H, Lin G, Wang P, Huang J, Wen C. Nutrient alloying elements in biodegradable metals: a review. J Mater Chem B 2021;9:9806-25. [PMID: 34842888 DOI: 10.1039/d1tb01962g] [Reference Citation Analysis]
66 Ulum MF, Caesarendra W, Alavi R, Hermawan H. In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants. Coatings 2019;9:282. [DOI: 10.3390/coatings9050282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
67 Champagne S, Mostaed E, Safizadeh F, Ghali E, Vedani M, Hermawan H. In Vitro Degradation of Absorbable Zinc Alloys in Artificial Urine. Materials (Basel) 2019;12:E295. [PMID: 30669269 DOI: 10.3390/ma12020295] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]