BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bergenfelz C, Hakansson AP. Streptococcus pneumoniae Otitis Media Pathogenesis and How It Informs Our Understanding of Vaccine Strategies. Curr Otorhinolaryngol Rep 2017;5:115-24. [PMID: 28616365 DOI: 10.1007/s40136-017-0152-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Lang J, Ma X, Liu SS, Streever DL, Serota MD, Franklin T, Loew ER, Yang R. On-demand synthesis of antiseptics at the site of infection for treatment of otitis media. Nano Today 2022;47:101672. [DOI: 10.1016/j.nantod.2022.101672] [Reference Citation Analysis]
2 Feldblium IV, Alyeva MH, Bikmieva AV, Romanenko VV, Rychkova OA, Galustyan AN. Immunological Efficacy and Safety of a New Pneumococcal Polysaccharide Conjugated Thirteen-Valent Vaccine in the Immunization of Adults and Children (Results of Clinical Studies in the Russian Federation). Epidemiology and Vaccinal Prevention 2022;21:64-77. [DOI: 10.31631/2073-3046-2022-21-5-64-77] [Reference Citation Analysis]
3 Tsutsumi Y. Pathology of Streptococcal Infections. Streptococcal Infections [Working Title] 2022. [DOI: 10.5772/intechopen.105814] [Reference Citation Analysis]
4 Safari D, Wahyono DJ, Tafroji W, Darmawan AB, Winarti Y, Kusdaryanto WD, Paramaiswari WT, Pramono H, Pratiwi M, Chamadi MR, Ahmed AM. Serotype Distribution and Antimicrobial Resistance Profile of Haemophilus influenzae Isolated from School Children with Acute Otitis Media. International Journal of Microbiology 2022;2022:1-5. [DOI: 10.1155/2022/5391291] [Reference Citation Analysis]
5 Mikušová M, Tomčíková K, Briestenská K, Kostolanský F, Varečková E. The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022;14:1064. [PMID: 35632805 DOI: 10.3390/v14051064] [Reference Citation Analysis]
6 Evans TJ. Streptococcus pneumoniae. Encyclopedia of Respiratory Medicine 2022. [DOI: 10.1016/b978-0-08-102723-3.00249-3] [Reference Citation Analysis]
7 Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021;11:764772. [PMID: 34778109 DOI: 10.3389/fcimb.2021.764772] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wahyono DJ, Khoeri MM, Darmawan AB, Wijayanti SPM, Mumpuni A, Nawangtantri G, Kusdaryanto WD, Salsabila K, Safari D. Nasopharyngeal carriage rates and serotype distribution of Streptococcus pneumoniae among school children with acute otitis media in Central Java, Indonesia. Access Microbiol 2021;3:000249. [PMID: 34595398 DOI: 10.1099/acmi.0.000249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Xu L, Earl J, Pichichero ME. Nasopharyngeal microbiome composition associated with Streptococcus pneumoniae colonization suggests a protective role of Corynebacterium in young children. PLoS One 2021;16:e0257207. [PMID: 34529731 DOI: 10.1371/journal.pone.0257207] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Blevins LK, Zhou J, Crawford RB, Kaminski NE. Identification of a Sensitive Human Immunological Target of Aryl Hydrocarbon Receptor Activation: CD5+ Innate-Like B Cells. Front Immunol 2021;12:635748. [PMID: 33936048 DOI: 10.3389/fimmu.2021.635748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021:fuaa072. [PMID: 33399826 DOI: 10.1093/femsre/fuaa072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Enoksson F, Ruiz Rodriguez A, Peno C, Balcazar Lopez C, Tjernström F, Bogaert D, Hakansson AP, Bergenfelz C. Niche- and Gender-Dependent Immune Reactions in Relation to the Microbiota Profile in Pediatric Patients with Otitis Media with Effusion. Infect Immun 2020;88:e00147-20. [PMID: 32661126 DOI: 10.1128/IAI.00147-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
13 Domenech M, García E. The N-Acetylglucosaminidase LytB of Streptococcus pneumoniae Is Involved in the Structure and Formation of Biofilms. Appl Environ Microbiol 2020;86:e00280-20. [PMID: 32198170 DOI: 10.1128/AEM.00280-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Bailey MT, Lauber CL, Novotny LA, Goodman SD, Bakaletz LO. Immunization with a Biofilm-Disrupting Nontypeable Haemophilus influenzae Vaccine Antigen Did Not Alter the Gut Microbiome in Chinchillas, Unlike Oral Delivery of a Broad-Spectrum Antibiotic Commonly Used for Otitis Media. mSphere 2020;5:e00296-20. [PMID: 32295873 DOI: 10.1128/mSphere.00296-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Komatsu K, Nam DH, Lee JY, Yoneda G, Yan C, Li JD. Vinpocetine Suppresses Streptococcus pneumoniae-Induced Inflammation via Inhibition of ERK1 by CYLD. J Immunol 2020;204:933-42. [PMID: 31900337 DOI: 10.4049/jimmunol.1901299] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Edechi CA, Nasr MR, Karim A, Blanchard AA, Ellison CA, Qui H, Uzonna JE, Myal Y. The prolactin inducible protein/gross cystic disease fluid protein-15 deficient mice develop anomalies in lymphoid organs. Immunobiology 2019;224:811-6. [DOI: 10.1016/j.imbio.2019.08.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Hammitt LL, Campbell JC, Borys D, Weatherholtz RC, Reid R, Goklish N, Moulton LH, Traskine M, Song Y, Swinnen K, Santosham M, O'Brien KL. Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: A phase IIb randomized study. Vaccine 2019;37:7482-92. [PMID: 31629570 DOI: 10.1016/j.vaccine.2019.09.076] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
18 Weber BP. Otitis media — häufig, aber nicht trivial. HNO Nachrichten 2019;49:18-23. [DOI: 10.1007/s00060-019-5955-2] [Reference Citation Analysis]
19 Silva MD, Sillankorva S. Otitis media pathogens – A life entrapped in biofilm communities. Critical Reviews in Microbiology 2019;45:595-612. [DOI: 10.1080/1040841x.2019.1660616] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
20 Yadav MK, Mailar K, Nagarajappa Masagalli J, Chae SW, Song JJ, Choi WJ. Ruthenium Chloride-Induced Oxidative Cyclization of Trans-Resveratrol to (±)-ε-Viniferin and Antimicrobial and Antibiofilm Activity Against Streptococcus pneumoniae. Front Pharmacol 2019;10:890. [PMID: 31474855 DOI: 10.3389/fphar.2019.00890] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
21 Ziąbka M, Dziadek M, Królicka A. Biological and Physicochemical Assessment of Middle Ear Prosthesis. Polymers (Basel) 2019;11:E79. [PMID: 30960063 DOI: 10.3390/polym11010079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
22 Jafri H, Ansari FA, Ahmad I. Prospects of Essential Oils in Controlling Pathogenic Biofilm. New Look to Phytomedicine. Elsevier; 2019. pp. 203-36. [DOI: 10.1016/b978-0-12-814619-4.00009-4] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
23 Yang R, Sabharwal V, Shlykova N, Okonkwo OS, Pelton SI, Kohane DS. Treatment of Streptococcus pneumoniae otitis media in a chinchilla model by transtympanic delivery of antibiotics. JCI Insight 2018;3:123415. [PMID: 30282835 DOI: 10.1172/jci.insight.123415] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
24 Palframan KM, Robinson SL, Mora-Plazas M, Marin C, Villamor E. Vitamin D-binding protein is inversely associated with the incidence of gastrointestinal and ear infections in school-age children. Epidemiol Infect 2018;146:1996-2002. [PMID: 30056817 DOI: 10.1017/S0950268818002066] [Reference Citation Analysis]
25 Zhu B, Song L, Kong X, Macleod LC, Xu P. A Novel Regulator Modulates Glucan Production, Cell Aggregation and Biofilm Formation in Streptococcus sanguinis SK36. Front Microbiol 2018;9:1154. [PMID: 29896189 DOI: 10.3389/fmicb.2018.01154] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
26 Zarrella TM, Metzger DW, Bai G. Stress Suppressor Screening Leads to Detection of Regulation of Cyclic di-AMP Homeostasis by a Trk Family Effector Protein in Streptococcus pneumoniae. J Bacteriol 2018;200:e00045-18. [PMID: 29483167 DOI: 10.1128/JB.00045-18] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
27 Yadav MK, Vidal JE, Go YY, Kim SH, Chae SW, Song JJ. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection. Front Cell Infect Microbiol 2018;8:138. [PMID: 29780750 DOI: 10.3389/fcimb.2018.00138] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]