BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nyberg E, Holmes C, Witham T, Grayson WL. Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res 2016;6:184-94. [PMID: 25967594 DOI: 10.1007/s13346-015-0233-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Damayanti MM, Rachmawati M. Pre-Clinical Study: Immunohistochemical evaluation of matrix metalloproteinase-13 on rabbit (Oryctolagus cuniculus) socket healing after application of platelet-rich fibrin with and without hydroxyapatite. F1000Res 2022;11:29. [DOI: 10.12688/f1000research.74094.2] [Reference Citation Analysis]
2 Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022;:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Reference Citation Analysis]
3 Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.2c00264] [Reference Citation Analysis]
4 Gundu S, Varshney N, Sahi AK, Mahto SK. Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-02928-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Damayanti MM, Rachmawati M. Pre-Clinical Study: Immunohistochemical evaluation of matrix metalloproteinase-13 on rabbit (Oryctolagus cuniculus) socket healing after application of platelet-rich fibrin with and without hydroxyapatite. F1000Res 2022;11:29. [DOI: 10.12688/f1000research.74094.1] [Reference Citation Analysis]
6 Kanwar S, Vijayavenkataraman S. Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 2021;24:e00167. [DOI: 10.1016/j.bprint.2021.e00167] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
7 Echave M, Erezuma I, Golafshan N, Castilho M, Kadumudi F, Pimenta-lopes C, Ventura F, Pujol A, Jimenez J, Camara J, Hernáez-moya R, Iturriaga L, Sáenz Del Burgo L, Iloro I, Azkargorta M, Elortza F, Lakshminarayanan R, Al-tel T, García-garcía P, Reyes R, Delgado A, Évora C, Pedraz J, Dolatshahi-pirouz A, Orive G. Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repair. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Balakrishnan B. Role of Nanoscale Delivery Systems in Tissue Engineering. Curr Pathobiol Rep 2021;9:119-32. [DOI: 10.1007/s40139-021-00225-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Bjelić D, Finšgar M. The Role of Growth Factors in Bioactive Coatings. Pharmaceutics 2021;13:1083. [PMID: 34371775 DOI: 10.3390/pharmaceutics13071083] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
10 Longoni A, Li J, Lindberg GCJ, Rnjak-Kovacina J, Wise LM, Hooper GJ, Woodfield TBF, Kieser DC, Lim KS. Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021:EBC20200130. [PMID: 34156062 DOI: 10.1042/EBC20200130] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Subbiah R, Ruehle MA, Klosterhoff BS, Lin ASP, Hettiaratchi MH, Willett NJ, Bertassoni LE, García AJ, Guldberg RE. Triple growth factor delivery promotes functional bone regeneration following composite musculoskeletal trauma. Acta Biomater 2021;127:180-92. [PMID: 33823326 DOI: 10.1016/j.actbio.2021.03.066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021;9:4541-67. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
13 Busch A, Jäger M, Mayer C, Sowislok A. Functionalization of Synthetic Bone Substitutes. Int J Mol Sci 2021;22:4412. [PMID: 33922517 DOI: 10.3390/ijms22094412] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Adv Sci (Weinh) 2021;8:2004014. [PMID: 33898183 DOI: 10.1002/advs.202004014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 34.0] [Reference Citation Analysis]
15 Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. Micromachines (Basel) 2021;12:287. [PMID: 33800485 DOI: 10.3390/mi12030287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
16 Koons GL, Kontoyiannis PD, Diba M, Chim LK, Scott DW, Mikos AG. Effect of 3D Printing Temperature on Bioactivity of Bone Morphogenetic Protein-2 Released from Polymeric Constructs. Ann Biomed Eng 2021. [PMID: 33560466 DOI: 10.1007/s10439-021-02736-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci 2021;22:E903. [PMID: 33477502 DOI: 10.3390/ijms22020903] [Cited by in Crossref: 4] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
18 Elangovan S, Gajendrareddy P, Ravindran S, Salem AK. Emerging local delivery strategies to enhance bone regeneration. Biomed Mater 2020;15:062001. [PMID: 32647095 DOI: 10.1088/1748-605X/aba446] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Borcherding K, Schmidmaier G, Hofmann GO, Wildemann B. The rationale behind implant coatings to promote osteointegration, bone healing or regeneration. Injury 2021;52 Suppl 2:S106-11. [PMID: 33257018 DOI: 10.1016/j.injury.2020.11.050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
20 Roy T, James BD, Allen JB. Anti-VEGF-R2 Aptamer and RGD Peptide Synergize in a Bifunctional Hydrogel for Enhanced Angiogenic Potential. Macromol Biosci 2021;21:e2000337. [PMID: 33191671 DOI: 10.1002/mabi.202000337] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
21 Ghorbani F, Li D, Zhong Z, Sahranavard M, Qian Z, Ni S, Zhang Z, Zamanian A, Yu B. Bioprinting a cell‐laden matrix for bone regeneration: A focused review. J Appl Polym Sci 2021;138:49888. [DOI: 10.1002/app.49888] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Subbiah R, Cheng A, Ruehle MA, Hettiaratchi MH, Bertassoni LE, Guldberg RE. Effects of controlled dual growth factor delivery on bone regeneration following composite bone-muscle injury. Acta Biomater 2020;114:63-75. [PMID: 32688092 DOI: 10.1016/j.actbio.2020.07.026] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
23 Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. Micromachines (Basel) 2020;11:E797. [PMID: 32842692 DOI: 10.3390/mi11090797] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J, Zhang S. Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration. Adv Healthc Mater 2020;:e2000727. [PMID: 32743958 DOI: 10.1002/adhm.202000727] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
25 Abbadessa A, Crecente-Campo J, Alonso MJ. Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery. Tissue Eng Part B Rev 2021;27:133-54. [PMID: 32723019 DOI: 10.1089/ten.TEB.2020.0096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
26 Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020;8:620. [PMID: 32637403 DOI: 10.3389/fbioe.2020.00620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
27 Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020;12:E428. [PMID: 32384753 DOI: 10.3390/pharmaceutics12050428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
28 Almeida AC, Vale AC, Pires RA, Reis RL, Alves NM. Layer‐by‐layer films based on catechol‐modified polysaccharides produced by dip‐ and spin‐coating onto different substrates. J Biomed Mater Res 2020;108:1412-27. [DOI: 10.1002/jbm.b.34489] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
29 Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020;12:E844. [PMID: 32268607 DOI: 10.3390/polym12040844] [Cited by in Crossref: 24] [Cited by in F6Publishing: 50] [Article Influence: 12.0] [Reference Citation Analysis]
30 Tabatabaei F, Aghamohammadi Z, Tayebi L. In vitro and in vivo effects of concentrated growth factor on cells and tissues. J Biomed Mater Res A 2020;108:1338-50. [PMID: 32090458 DOI: 10.1002/jbm.a.36906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
31 Wang J, Chen Q, Shan Y, Pan X, Zhang J. Activity-based proteomic profiling: application of releasable linker in photoaffinity probes. Drug Discovery Today 2020;25:133-40. [DOI: 10.1016/j.drudis.2019.10.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
32 Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020;46:326-40. [PMID: 31854489 DOI: 10.1002/biof.1598] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
33 Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019;9:E750. [PMID: 31752393 DOI: 10.3390/biom9110750] [Cited by in Crossref: 41] [Cited by in F6Publishing: 66] [Article Influence: 13.7] [Reference Citation Analysis]
34 Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019;9:E750. [PMID: 31752393 DOI: 10.3390/biom9110750] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Qasim M, Chae DS, Lee NY. Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J Biomed Mater Res A 2020;108:394-411. [PMID: 31618509 DOI: 10.1002/jbm.a.36817] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
36 Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Front Bioeng Biotechnol 2019;7:190. [PMID: 31448271 DOI: 10.3389/fbioe.2019.00190] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
37 Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O'Sullivan AN, Dorafshar AH, Grayson WL. Heparin-Conjugated Decellularized Bone Particles Promote Enhanced Osteogenic Signaling of PDGF-BB to Adipose-Derived Stem Cells in Tissue Engineered Bone Grafts. Adv Healthc Mater 2019;8:e1801565. [PMID: 30941920 DOI: 10.1002/adhm.201801565] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
38 Li X, Zhang R, Li B, Tan X, Wang X. Biocompatible nHA/Col-BMP-9/GM Scaffold: Synthesis, Characterization, and Effects on Bone Marrow Mesenchymal Stem Cells. J hard tissue biol 2019;28:175-84. [DOI: 10.2485/jhtb.28.175] [Reference Citation Analysis]
39 Koons GL, Mikos AG. Progress in three-dimensional printing with growth factors. J Control Release 2019;295:50-9. [PMID: 30579982 DOI: 10.1016/j.jconrel.2018.12.035] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
40 Bittner SM, Guo JL, Mikos AG. Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds. Bioprinting 2018;12:e00032. [PMID: 31106279 DOI: 10.1016/j.bprint.2018.e00032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
41 Kazem-Arki M, Kabiri M, Rad I, Roodbari NH, Hosseinpoor H, Mirzaei S, Parivar K, Hanaee-Ahvaz H. Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology 2018;70:1487-98. [PMID: 30083791 DOI: 10.1007/s10616-018-0226-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
42 Kim BS, Yang SS, Kim CS. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids Surf B Biointerfaces 2018;170:421-9. [PMID: 29957531 DOI: 10.1016/j.colsurfb.2018.06.043] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
43 De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5:197-211. [PMID: 30094059 DOI: 10.1093/rb/rby013] [Cited by in Crossref: 177] [Cited by in F6Publishing: 209] [Article Influence: 44.3] [Reference Citation Analysis]
44 Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, Marei HE. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med 2018;12:1448-68. [DOI: 10.1002/term.2677] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 12.8] [Reference Citation Analysis]
45 Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater 2018;69:42-62. [PMID: 29371132 DOI: 10.1016/j.actbio.2018.01.017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
46 Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017;8:2041731417712073. [PMID: 28634532 DOI: 10.1177/2041731417712073] [Cited by in Crossref: 42] [Cited by in F6Publishing: 53] [Article Influence: 8.4] [Reference Citation Analysis]
47 Moioli EK, Bolotin D, Alam M. Regenerative Medicine and Stem Cells in Dermatology. Dermatol Surg 2017;43:625-34. [PMID: 28441301 DOI: 10.1097/DSS.0000000000001060] [Reference Citation Analysis]
48 Sathy BN, Olvera D, Gonzalez-Fernandez T, Cunniffe GM, Pentlavalli S, Chambers P, Jeon O, Alsberg E, McCarthy HO, Dunne N, Haut Donahue TL, Kelly DJ. RALA complexed α-TCP nanoparticle delivery to mesenchymal stem cells induces bone formation in tissue engineered constructs in vitro and in vivo. J Mater Chem B 2017;5:1753-64. [PMID: 32263916 DOI: 10.1039/c6tb02881k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
49 Baumann B, Wittig R, Lindén M. Mesoporous silica nanoparticles in injectable hydrogels: factors influencing cellular uptake and viability. Nanoscale 2017;9:12379-90. [DOI: 10.1039/c7nr02015e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
50 Wagner Q, Offner D, Idoux-Gillet Y, Saleem I, Somavarapu S, Schwinté P, Benkirane-Jessel N, Keller L. Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization. Nanomedicine (Lond) 2016;11:2419-30. [PMID: 27529130 DOI: 10.2217/nnm-2016-0189] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
51 Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 2016;40:125-32. [PMID: 27064433 DOI: 10.1016/j.copbio.2016.02.029] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 7.8] [Reference Citation Analysis]