BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018;15:541-53. [PMID: 29717413 DOI: 10.1007/s13311-018-0631-6] [Cited by in Crossref: 115] [Cited by in F6Publishing: 114] [Article Influence: 38.3] [Reference Citation Analysis]
Number Citing Articles
1 Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021:nuab068. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Reference Citation Analysis]
2 Fan H, Chen Z, Tang H, Shan L, Chen Z, Wang X, Huang D, Liu S, Chen X, Yang H, Hao D. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10287] [Reference Citation Analysis]
3 Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020;11:439. [PMID: 32513969 DOI: 10.1038/s41419-020-2620-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
4 Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Front Cell Dev Biol 2021;9:703989. [PMID: 34307384 DOI: 10.3389/fcell.2021.703989] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Sun J, Zhang J, Li K, Zheng Q, Song J, Liang Z, Ding T, Qiao L, Zhang J, Hu X, Wang Z. Photobiomodulation Therapy Inhibit the Activation and Secretory of Astrocytes by Altering Macrophage Polarization. Cell Mol Neurobiol 2020;40:141-52. [DOI: 10.1007/s10571-019-00728-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yeh JZ, Wang DH, Cherng JH, Wang YW, Fan GY, Liou NH, Liu JC, Chou CH. A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury. Polymers (Basel) 2020;12:E2245. [PMID: 33003601 DOI: 10.3390/polym12102245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Sun T, Duan L, Li J, Guo H, Xiong M. Gypenoside XVII protects against spinal cord injury in mice by regulating the microRNA‑21‑mediated PTEN/AKT/mTOR pathway. Int J Mol Med 2021;48:146. [PMID: 34132355 DOI: 10.3892/ijmm.2021.4979] [Reference Citation Analysis]
8 Sommer D, Corstjens I, Sanchez S, Dooley D, Lemmens S, Van Broeckhoven J, Bogie J, Vanmierlo T, Vidal PM, Rose-John S, Gou-Fabregas M, Hendrix S. ADAM17-deficiency on microglia but not on macrophages promotes phagocytosis and functional recovery after spinal cord injury. Brain Behav Immun 2019;80:129-45. [PMID: 30851378 DOI: 10.1016/j.bbi.2019.02.032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
9 Wang GY, Cheng ZJ, Yuan PW, Li HP, He XJ. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury. Neural Regen Res 2021;16:1638-44. [PMID: 33433495 DOI: 10.4103/1673-5374.301023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhao K, Li R, Ruan Q, Meng C, Yin F, Zhu Q. microRNA-125b and its downstream Smurf1/KLF2/ATF2 axis as important promoters on neurological function recovery in rats with spinal cord injury. J Cell Mol Med 2021. [PMID: 33951295 DOI: 10.1111/jcmm.16283] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Chellappan R, Guha A, Si Y, Kwan T, Nabors LB, Filippova N, Yang X, Myneni AS, Meesala S, Harms AS, King PH. SRI-42127, a novel small molecule inhibitor of the RNA regulator HuR, potently attenuates glial activation in a model of lipopolysaccharide-induced neuroinflammation. Glia 2021. [PMID: 34533864 DOI: 10.1002/glia.24094] [Reference Citation Analysis]
12 Huang LJ, Li G, Ding Y, Sun JH, Wu TT, Zhao W, Zeng YS. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp Neurol 2019;320:112965. [PMID: 31132364 DOI: 10.1016/j.expneurol.2019.112965] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
13 Liu H, Xu X, Tu Y, Chen K, Song L, Zhai J, Chen S, Rong L, Zhou L, Wu W, So KF, Ramakrishna S, He L. Engineering Microenvironment for Endogenous Neural Regeneration after Spinal Cord Injury by Reassembling Extracellular Matrix. ACS Appl Mater Interfaces 2020;12:17207-19. [PMID: 32207300 DOI: 10.1021/acsami.9b19638] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
14 Lee JS, Hsu YH, Chiu YS, Jou IM, Chang MS. Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats. J Neuroinflammation 2020;17:156. [PMID: 32408881 DOI: 10.1186/s12974-020-01814-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Altinova H, Hammes S, Palm M, Gerardo-Nava J, Achenbach P, Deumens R, Hermans E, Führmann T, Boecker A, van Neerven SGA, Bozkurt A, Weis J, Brook GA. Fibroadhesive scarring of grafted collagen scaffolds interferes with implant-host neural tissue integration and bridging in experimental spinal cord injury. Regen Biomater 2019;6:75-87. [PMID: 30967962 DOI: 10.1093/rb/rbz006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Alsaadi N, Srinivasan AJ, Seshadri A, Shiel M, Neal MD, Scott MJ. The emerging therapeutic potential of extracellular vesicles in trauma. J Leukoc Biol 2021. [PMID: 34533241 DOI: 10.1002/JLB.3MIR0621-298R] [Reference Citation Analysis]
17 Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, Liang Q. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 2020;40:BSR20193315. [PMID: 32096822 DOI: 10.1042/BSR20193315] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 16.0] [Reference Citation Analysis]
18 Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today 2021;26:1642-55. [PMID: 33781952 DOI: 10.1016/j.drudis.2021.03.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Hassan MP, Abdollahifar MA, Aliaghaei A, Tabeie F, Vafaei-Nezhad S, Norouzian M, Abbaszadeh HA. Photobiomodulation therapy improved functional recovery and overexpression of interleukins-10 after contusion spinal cord injury in rats. J Chem Neuroanat 2021;117:102010. [PMID: 34343596 DOI: 10.1016/j.jchemneu.2021.102010] [Reference Citation Analysis]
20 Chen X, Wang Y, Zhou G, Hu X, Han S, Gao J. The combination of nanoscaffolds and stem cell transplantation: Paving a promising road for spinal cord injury regeneration. Biomed Pharmacother 2021;143:112233. [PMID: 34649357 DOI: 10.1016/j.biopha.2021.112233] [Reference Citation Analysis]
21 He Y, Sun L, Feng H, Li J, Zhang N, Wang Z. [Effect and mechanism of glycyrrhizin on glial scar formation after spinal cord injury in rats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2020;34:1298-304. [PMID: 33063497 DOI: 10.7507/1002-1892.202002116] [Reference Citation Analysis]
22 Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, Sole CJ, Haque A, Banik NL. The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021;22:3057. [PMID: 33802713 DOI: 10.3390/ijms22063057] [Reference Citation Analysis]
23 Xu Z, Xu W, Chen X, Zhou Y. [Study on vascular remodeling, inflammatory response, and their correlations in acute spinal cord injury in rats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2020;34:1429-37. [PMID: 33191702 DOI: 10.7507/1002-1892.202003186] [Reference Citation Analysis]
24 Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021;22:13672. [PMID: 34948463 DOI: 10.3390/ijms222413672] [Reference Citation Analysis]
25 Ye Y, Hao J, Hong Z, Wu T, Ge X, Qian B, Chen X, Zhang F. Downregulation of MicroRNA-145-5p in Activated Microglial Exosomes Promotes Astrocyte Proliferation by Removal of Smad3 Inhibition. Neurochem Res 2021. [PMID: 34623564 DOI: 10.1007/s11064-021-03446-3] [Reference Citation Analysis]
26 Bai YR, Lai BQ, Han WT, Sun JH, Li G, Ding Y, Zeng X, Ma YH, Zeng YS. Decellularized optic nerve functional scaffold transplant facilitates directional axon regeneration and remyelination in the injured white matter of the rat spinal cord. Neural Regen Res 2021;16:2276-83. [PMID: 33818513 DOI: 10.4103/1673-5374.310696] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Kjell J, Götz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci 2020;14:32. [PMID: 32153367 DOI: 10.3389/fncel.2020.00032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Zhang B, Ding Z, Dong J, Lin F, Xue Z, Xu J. Macrophage-mediated degradable gelatin-coated mesoporous silica nanoparticles carrying pirfenidone for the treatment of rat spinal cord injury. Nanomedicine 2021;37:102420. [PMID: 34182154 DOI: 10.1016/j.nano.2021.102420] [Reference Citation Analysis]
29 Otsuka T, Maeda Y, Kurose T, Nakagawa K, Mitsuhara T, Kawahara Y, Yuge L. Comparisons of Neurotrophic Effects of Mesenchymal Stem Cells Derived from Different Tissues on Chronic Spinal Cord Injury Rats. Stem Cells Dev 2021. [PMID: 34148410 DOI: 10.1089/scd.2021.0070] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Chen F, Hu M, Shen Y, Zhu W, Cao A, Ni B, Qian J, Yang J. Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. Eur J Pharmacol 2021;895:173878. [PMID: 33453223 DOI: 10.1016/j.ejphar.2021.173878] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Johnson LDV, Pickard MR, Johnson WEB. The Comparative Effects of Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury in Humans and Animal Models: A Systematic Review and Meta-Analysis. Biology (Basel) 2021;10:230. [PMID: 33809684 DOI: 10.3390/biology10030230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Hu X, Li R, Wu Y, Li Y, Zhong X, Zhang G, Kang Y, Liu S, Xie L, Ye J, Xiao J. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. J Cell Mol Med 2020;24:8166-78. [PMID: 32515141 DOI: 10.1111/jcmm.15478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
33 Zhang B, Bailey WM, McVicar AL, Stewart AN, Veldhorst AK, Gensel JC. Reducing age-dependent monocyte-derived macrophage activation contributes to the therapeutic efficacy of NADPH oxidase inhibition in spinal cord injury. Brain Behav Immun 2019;76:139-50. [PMID: 30453022 DOI: 10.1016/j.bbi.2018.11.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
34 Guo WL, Qi ZP, Yu L, Sun TW, Qu WR, Liu QQ, Zhu Z, Li R. Melatonin combined with chondroitin sulfate ABC promotes nerve regeneration after root-avulsion brachial plexus injury. Neural Regen Res 2019;14:328-38. [PMID: 30531017 DOI: 10.4103/1673-5374.244796] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
35 Zhang M, Bai Y, Xu C, Lin J, Jin J, Xu A, Lou JN, Qian C, Yu W, Wu Y, Qi Y, Tao H. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv 2021;28:2548-61. [PMID: 34854786 DOI: 10.1080/10717544.2021.2009937] [Reference Citation Analysis]
36 Gao G, Duan Y, Chang F, Zhang T, Huang X, Yu C. METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury. Cell Death Discov 2022;8:15. [PMID: 35013140 DOI: 10.1038/s41420-021-00808-2] [Reference Citation Analysis]
37 Zrzavy T, Schwaiger C, Wimmer I, Berger T, Bauer J, Butovsky O, Schwab JM, Lassmann H, Höftberger R. Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain 2021;144:144-61. [PMID: 33578421 DOI: 10.1093/brain/awaa360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Liu C, Fan L, Xing J, Wang Q, Lin C, Liu C, Deng X, Ning C, Zhou L, Rong L, Liu B. Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Biomater Sci 2019;7:1995-2008. [PMID: 30839020 DOI: 10.1039/c8bm01363b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Niu F, Pan S. MicroRNA-488 inhibits neural inflammation and apoptosis in spinal cord injury through restraint on the HMGB1/TLR4/NF-κB signaling pathway. Neuroreport 2021;32:1017-26. [PMID: 34102644 DOI: 10.1097/WNR.0000000000001680] [Reference Citation Analysis]
40 Estrada V, Müller HW. Micromechanical adaptation as a treatment for spinal cord injury. Neural Regen Res 2019;14:1909-11. [PMID: 31290446 DOI: 10.4103/1673-5374.259605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
41 Karova K, Wainwright JV, Machova-Urdzikova L, Pisal RV, Schmidt M, Jendelova P, Jhanwar-Uniyal M. Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-κB pathway inhibition. J Neuroinflammation 2019;16:12. [PMID: 30654804 DOI: 10.1186/s12974-019-1394-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
42 Jiang L, Wei ZC, Xu LL, Yu SY, Li C. Inhibition of miR-145-5p Reduces Spinal Cord Injury-Induced Inflammatory and Oxidative Stress Responses via Affecting Nurr1-TNF-α Signaling Axis. Cell Biochem Biophys 2021. [PMID: 34133012 DOI: 10.1007/s12013-021-00992-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Zhao H, Mei X, Yang D, Tu G. Resveratrol inhibits inflammation after spinal cord injury via SIRT-1/NF-κB signaling pathway. Neurosci Lett 2021;762:136151. [PMID: 34352338 DOI: 10.1016/j.neulet.2021.136151] [Reference Citation Analysis]
44 Gao S, Xu T, Guo H, Deng Q, Xun C, Liang W, Sheng W. Ameliorative effects of echinacoside against spinal cord injury via inhibiting NLRP3 inflammasome signaling pathway. Life Sciences 2019;237:116978. [DOI: 10.1016/j.lfs.2019.116978] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
45 González P, González-Fernández C, Javier Rodríguez F. Effects of Wnt5a overexpression in spinal cord injury. J Cell Mol Med 2021;25:5150-63. [PMID: 33939286 DOI: 10.1111/jcmm.16507] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Dyck SM, Karimi-Abdolrezaee S. Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury. Neural Regen Res 2018;13:2080-2. [PMID: 30323126 DOI: 10.4103/1673-5374.241452] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
47 Hutson TH, Di Giovanni S. The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 2019;15:732-45. [DOI: 10.1038/s41582-019-0280-3] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 15.7] [Reference Citation Analysis]
48 Dutta D, Khan N, Wu J, Jay SM. Extracellular Vesicles as an Emerging Frontier in Spinal Cord Injury Pathobiology and Therapy. Trends Neurosci 2021;44:492-506. [PMID: 33581883 DOI: 10.1016/j.tins.2021.01.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 von Boxberg Y, Soares S, Giraudon C, David L, Viallon M, Montembault A, Nothias F. Macrophage polarization in vitro and in vivo modified by contact with fragmented chitosan hydrogel. J Biomed Mater Res A 2021. [PMID: 34723433 DOI: 10.1002/jbm.a.37326] [Reference Citation Analysis]
50 Zeng H, Lu Y, Huang MJ, Yang YY, Xing HY, Liu XX, Zhou MW. Ketogenic diet-mediated steroid metabolism reprogramming improves the immune microenvironment and myelin growth in spinal cord injury rats according to gene and co-expression network analyses. Aging (Albany NY) 2021;13:12973-95. [PMID: 33962394 DOI: 10.18632/aging.202969] [Reference Citation Analysis]
51 Hou Y, Luan J, Huang T, Deng T, Li X, Xiao Z, Zhan J, Luo D, Hou Y, Xu L, Lin D. Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response. J Neuroinflammation 2021;18:216. [PMID: 34544428 DOI: 10.1186/s12974-021-02248-2] [Reference Citation Analysis]
52 Pearse DD, Rao SNR, Morales AA, Wakarchuk W, Rutishauser U, El-Maarouf A, Ghosh M. Engineering polysialic acid on Schwann cells using polysialyltransferase gene transfer or purified enzyme exposure for spinal cord injury transplantation. Neurosci Lett 2021;748:135690. [PMID: 33540059 DOI: 10.1016/j.neulet.2021.135690] [Reference Citation Analysis]
53 Altinova H, Hammes S, Palm M, Achenbach P, Gerardo-nava J, Deumens R, Führmann T, van Neerven SGA, Hermans E, Weis J, Brook GA. Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury. Biomed Mater 2020;15:015012. [DOI: 10.1088/1748-605x/ab5e52] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Yoshizaki S, Tamaru T, Hara M, Kijima K, Tanaka M, Konno DJ, Matsumoto Y, Nakashima Y, Okada S. Microglial inflammation after chronic spinal cord injury is enhanced by reactive astrocytes via the fibronectin/β1 integrin pathway. J Neuroinflammation 2021;18:12. [PMID: 33407620 DOI: 10.1186/s12974-020-02059-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
55 Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. Neurobiol Pain 2021;9:100059. [PMID: 33426367 DOI: 10.1016/j.ynpai.2020.100059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Li C, Sahu S, Kou G, Jagadeesan N, Joseph TP, Li Lin S, Schachner M. Chondroitin 6-sulfate-binding peptides improve recovery in spinal cord-injured mice. Eur J Pharmacol 2021;910:174421. [PMID: 34391768 DOI: 10.1016/j.ejphar.2021.174421] [Reference Citation Analysis]
57 An N, Yang J, Wang H, Sun S, Wu H, Li L, Li M. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 2021;11:41. [PMID: 33622388 DOI: 10.1186/s13578-021-00554-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Wu F, Ding X, Li X, Gong M, An J, Lai J, Huang S. Cellular Inflammatory Response of the Spleen After Acute Spinal Cord Injury in Rat. Inflammation 2019;42:1630-40. [DOI: 10.1007/s10753-019-01024-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Wang L, Gu S, Gan J, Tian Y, Zhang F, Zhao H, Lei D. Neural Stem Cells Overexpressing Nerve Growth Factor Improve Functional Recovery in Rats Following Spinal Cord Injury via Modulating Microenvironment and Enhancing Endogenous Neurogenesis. Front Cell Neurosci 2021;15:773375. [PMID: 34924958 DOI: 10.3389/fncel.2021.773375] [Reference Citation Analysis]
60 Mneimneh AT, Mehanna MM. Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 2021;601:120559. [PMID: 33831486 DOI: 10.1016/j.ijpharm.2021.120559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Tsintou M, Dalamagkas K, Makris N. Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans. Neural Regen Res 2020;15:425-37. [PMID: 31571651 DOI: 10.4103/1673-5374.266048] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
62 Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020;8:190. [PMID: 32269994 DOI: 10.3389/fcell.2020.00190] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
63 Wen S, Li Y, Shen X, Wang Z, Zhang K, Zhang J, Mei X. Protective Effects of Zinc on Spinal Cord Injury. J Mol Neurosci 2021. [PMID: 34160751 DOI: 10.1007/s12031-021-01859-x] [Reference Citation Analysis]
64 Han GH, Kim SJ, Ko WK, Lee D, Lee JS, Nah H, Han IB, Sohn S. Injectable Hydrogel Containing Tauroursodeoxycholic Acid for Anti-neuroinflammatory Therapy After Spinal Cord Injury in Rats. Mol Neurobiol 2020;57:4007-17. [PMID: 32647974 DOI: 10.1007/s12035-020-02010-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.11.032] [Reference Citation Analysis]
66 Dolma S, Kumar H. Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Reference Citation Analysis]
67 Tadjalli A, Seven YB, Perim RR, Mitchell GS. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. J Neuroinflammation 2021;18:28. [PMID: 33468163 DOI: 10.1186/s12974-021-02074-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
68 Saadoun S, Jeffery ND. Acute Traumatic Spinal Cord Injury in Humans, Dogs, and Other Mammals: The Under-appreciated Role of the Dura. Front Neurol 2021;12:629445. [PMID: 33613434 DOI: 10.3389/fneur.2021.629445] [Reference Citation Analysis]
69 Adolf A, Rohrbeck A, Münster-Wandowski A, Johansson M, Kuhn HG, Kopp MA, Brommer B, Schwab JM, Just I, Ahnert-Hilger G, Höltje M. Release of astroglial vimentin by extracellular vesicles: Modulation of binding and internalization of C3 transferase in astrocytes and neurons. Glia 2019;67:703-17. [PMID: 30485542 DOI: 10.1002/glia.23566] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
70 Tu TH, Liou DY, Lin DY, Yang HC, Chen CJ, Huang MC, Huang WC, Tsai MJ, Cheng H. Characterizing the Neuroprotective Effects of S/B Remedy (Scutellaria baicalensis Georgi and Bupleurum scorzonerifolfium Willd) in Spinal Cord Injury. Molecules. 2019;24. [PMID: 31100896 DOI: 10.3390/molecules24101885] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Rahbar A, Shakyba S, Ghaderi M, Kazemi K, Fagheh AF, Farsinejad P, Khosravi A, Louyeh PA, Mirzaeyian E, Chamanara M, Akhavan-Sigari R. Ivermectin-functionalized multiwall carbon nanotube enhanced the locomotor activity and neuropathic pain by modulating M1/M2 macrophage and decrease oxidative stress in rat model of spinal cord injury. Heliyon 2021;7:e07311. [PMID: 34235282 DOI: 10.1016/j.heliyon.2021.e07311] [Reference Citation Analysis]
72 Dolma S, Adhikari K, Mamidi T, Roy A, Pathak Z, Kumar H. Ethamsylate Attenuates Mutilated Secondary Pathogenesis and Exhibits a Neuroprotective Role in Experimental Model of Spinal Cord Injury. Neuroscience 2022:S0306-4522(21)00671-0. [PMID: 34995714 DOI: 10.1016/j.neuroscience.2021.12.038] [Reference Citation Analysis]
73 Benito-arenas R, Zárate S, Revuelta J, Bastida A. Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019;9:322. [DOI: 10.3390/catal9040322] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
74 Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomaterialia 2020. [DOI: 10.1016/j.actbio.2020.12.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
75 Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021;14:5713-37. [PMID: 34764668 DOI: 10.2147/JIR.S329864] [Reference Citation Analysis]
76 Chapela D, Sousa S, Martins I, Cristóvão AM, Pinto P, Corte-Real S, Saúde L. A zebrafish drug screening platform boosts the discovery of novel therapeutics for spinal cord injury in mammals. Sci Rep 2019;9:10475. [PMID: 31324865 DOI: 10.1038/s41598-019-47006-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
77 Rong Z, Huang Y, Cai H, Chen M, Wang H, Liu G, Zhang Z, Wu J. Gut Microbiota Disorders Promote Inflammation and Aggravate Spinal Cord Injury Through the TLR4/MyD88 Signaling Pathway. Front Nutr 2021;8:702659. [PMID: 34589510 DOI: 10.3389/fnut.2021.702659] [Reference Citation Analysis]
78 Villarreal A, Vogel T. Different Flavors of Astrocytes: Revising the Origins of Astrocyte Diversity and Epigenetic Signatures to Understand Heterogeneity after Injury. Int J Mol Sci 2021;22:6867. [PMID: 34206710 DOI: 10.3390/ijms22136867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Yun-Jia L, Xi C, Jie-Qiong Z, Jing-Yi Z, Sen L, Jian Y. Semaphorin3A increases M1-like microglia and retinal ganglion cell apoptosis after optic nerve injury. Cell Biosci 2021;11:97. [PMID: 34039431 DOI: 10.1186/s13578-021-00603-7] [Reference Citation Analysis]
80 Papa S, Veneruso V, Mauri E, Cremonesi G, Mingaj X, Mariani A, De Paola M, Rossetti A, Sacchetti A, Rossi F, Forloni G, Veglianese P. Functionalized nanogel for treating activated astrocytes in spinal cord injury. Journal of Controlled Release 2021;330:218-28. [DOI: 10.1016/j.jconrel.2020.12.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
81 Wang J, Chen J, Jin H, Lin D, Chen Y, Chen X, Wang B, Hu S, Wu Y, Wu Y, Zhou Y, Tian N, Gao W, Wang X, Zhang X. BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. J Cell Mol Med 2019;23:3214-23. [PMID: 30809946 DOI: 10.1111/jcmm.14196] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
82 Gollmann-Tepeköylü C, Nägele F, Graber M, Pölzl L, Lobenwein D, Hirsch J, An A, Irschick R, Röhrs B, Kremser C, Hackl H, Huber R, Venezia S, Hercher D, Fritsch H, Bonaros N, Stefanova N, Tancevski I, Meyer D, Grimm M, Holfeld J. Shock waves promote spinal cord repair via TLR3. JCI Insight 2020;5:134552. [PMID: 32759498 DOI: 10.1172/jci.insight.134552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019;180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
84 Hart CG, Dyck SM, Kataria H, Alizadeh A, Nagakannan P, Thliveris JA, Eftekharpour E, Karimi-Abdolrezaee S. Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury. Exp Neurol 2020;325:113163. [PMID: 31881217 DOI: 10.1016/j.expneurol.2019.113163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
85 Fei M, Li Z, Cao Y, Jiang C, Lin H, Chen Z. MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB. Lab Invest 2021;101:1238-53. [PMID: 34059758 DOI: 10.1038/s41374-021-00606-5] [Reference Citation Analysis]
86 Sun H, Cao X, Gong A, Huang Y, Xu Y, Zhang J, Sun J, Lv B, Li Z, Guan S, Lu L, Yin G. Extracellular vesicles derived from astrocytes facilitated neurite elongation by activating the Hippo pathway. Exp Cell Res 2021;411:112937. [PMID: 34863709 DOI: 10.1016/j.yexcr.2021.112937] [Reference Citation Analysis]
87 Ma L, Zhou Y, Khan MAS, Yasuhara S, Martyn JAJ. Burn-Induced Microglia Activation is Associated With Motor Neuron Degeneration and Muscle Wasting in Mice. Shock 2019;51:569-79. [PMID: 30702509 DOI: 10.1097/SHK.0000000000001300] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
88 Villarreal A, Vidos C, Monteverde Busso M, Cieri MB, Ramos AJ. Pathological Neuroinflammatory Conversion of Reactive Astrocytes Is Induced by Microglia and Involves Chromatin Remodeling. Front Pharmacol 2021;12:689346. [PMID: 34234677 DOI: 10.3389/fphar.2021.689346] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
89 Wang L, Botchway BOA, Liu X. The Repression of the HMGB1-TLR4-NF-κB Signaling Pathway by Safflower Yellow May Improve Spinal Cord Injury. Front Neurosci 2021;15:803885. [PMID: 35002613 DOI: 10.3389/fnins.2021.803885] [Reference Citation Analysis]
90 Wang P, Zhang Y, Xia Y, Xu D, Wang H, Liu D, Xu S, Sun Y. MicroRNA-139-5p Promotes Functional Recovery and Reduces Pain Hypersensitivity in Mice with Spinal Cord Injury by Targeting Mammalian Sterile 20-like Kinase 1. Neurochem Res 2021;46:349-57. [PMID: 33211272 DOI: 10.1007/s11064-020-03170-4] [Reference Citation Analysis]
91 Chen M, Gao YT, Li WX, Wang JC, He YP, Li ZW, Gan GS, Yuan B. FBW7 protects against spinal cord injury by mitigating inflammation-associated neuronal apoptosis in mice. Biochem Biophys Res Commun 2020;532:576-83. [PMID: 32900488 DOI: 10.1016/j.bbrc.2020.08.071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Crespo-Castrillo A, Arevalo MA. Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020;21:E3219. [PMID: 32370112 DOI: 10.3390/ijms21093219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
93 Cheng J, Hao J, Jiang X, Ji J, Wu T, Chen X, Zhang F. Ameliorative effects of miR-423-5p against polarization of microglial cells of the M1 phenotype by targeting a NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2021;99:108006. [PMID: 34339965 DOI: 10.1016/j.intimp.2021.108006] [Reference Citation Analysis]
94 Tang R, Botchway BOA, Meng Y, Zhang Y, Zhou C, Jiang J, Liu X. The Inhibition of Inflammatory Signaling Pathway by Secretory Leukocyte Protease Inhibitor can Improve Spinal Cord Injury. Cell Mol Neurobiol 2020;40:1067-73. [DOI: 10.1007/s10571-020-00799-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
95 Chen Z, Wu H, Zhang M. Long non-coding RNA: An underlying bridge linking neuroinflammation and central nervous system diseases. Neurochem Int 2021;148:105101. [PMID: 34139298 DOI: 10.1016/j.neuint.2021.105101] [Reference Citation Analysis]
96 Zhang Q, Xiong Y, Li B, Deng GY, Fu WW, Cao BC, Zong SH, Zeng GF. Total flavonoids of hawthorn leaves promote motor function recovery via inhibition of apoptosis after spinal cord injury. Neural Regen Res 2021;16:350-6. [PMID: 32859797 DOI: 10.4103/1673-5374.286975] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
97 Yong HYF, Rawji KS, Ghorbani S, Xue M, Yong VW. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol Immunol 2019;16:540-6. [PMID: 30874626 DOI: 10.1038/s41423-019-0223-3] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 14.0] [Reference Citation Analysis]
98 Xu AK, Gong Z, He YZ, Xia KS, Tao HM. Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury. J Zhejiang Univ Sci B 2019;20:205-18. [PMID: 30829009 DOI: 10.1631/jzus.B1800280] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 Gu Y, Chen D, Zhou L, Zhao X, Lin J, Lin B, Lin T, Chen Z, Chen Z, Wang Z, Liu W. Lysine-specific demethylase 1 inhibition enhances autophagy and attenuates early-stage post-spinal cord injury apoptosis. Cell Death Discov 2021;7:69. [PMID: 33824301 DOI: 10.1038/s41420-021-00455-7] [Reference Citation Analysis]
100 Peng P, Yu H, Xing C, Tao B, Li C, Huang J, Ning G, Zhang B, Feng S. Exosomes-mediated phenotypic switch of macrophages in the immune microenvironment after spinal cord injury. Biomed Pharmacother 2021;144:112311. [PMID: 34653754 DOI: 10.1016/j.biopha.2021.112311] [Reference Citation Analysis]
101 Shen H, Xu B, Yang C, Xue W, You Z, Wu X, Ma D, Shao D, Leong K, Dai J. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 2022;280:121279. [PMID: 34847433 DOI: 10.1016/j.biomaterials.2021.121279] [Reference Citation Analysis]
102 Wang S, Jia Y, Cao X, Feng S, Na L, Dong H, Gao J, Zhang L. HUCMSCs transplantation combined with ultrashort wave therapy attenuates neuroinflammation in spinal cord injury through NUR77/ NF-κB pathway. Life Sci 2021;267:118958. [PMID: 33383054 DOI: 10.1016/j.lfs.2020.118958] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
103 Picoli CC, Coimbra-Campos LMC, Guerra DAP, Silva WN, Prazeres PHDM, Costa AC, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericytes Act as Key Players in Spinal Cord Injury. Am J Pathol 2019;189:1327-37. [PMID: 31014955 DOI: 10.1016/j.ajpath.2019.03.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
104 Xu J, Ji J, Wang Z, Xu T. Effects of minocycline on motor function recovery and expression of glial fibrillary acidic protein and brain-derived neurotrophic factor after spinal cord injury in rats. J Pharm Pharmacol 2021;73:332-7. [PMID: 33793886 DOI: 10.1093/jpp/rgaa041] [Reference Citation Analysis]
105 Shams R, Banik NL, Haque A. Implications of enolase in the RANKL-mediated osteoclast activity following spinal cord injury. Biocell 2021;45:1453-7. [PMID: 34539043 DOI: 10.32604/biocell.2021.017659] [Reference Citation Analysis]
106 Chai Y, Long Y, Dong X, Liu K, Wei W, Chen Y, Qiu T, Dai H. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel. Colloids Surf B Biointerfaces 2021;:112220. [PMID: 34840029 DOI: 10.1016/j.colsurfb.2021.112220] [Reference Citation Analysis]
107 He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int J Nanomedicine 2019;14:721-32. [PMID: 30705588 DOI: 10.2147/IJN.S187854] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
108 Santi S, Corridori I, Pugno NM, Motta A, Migliaresi C. Injectable Scaffold-Systems for the Regeneration of Spinal Cord: Advances of the Past Decade. ACS Biomater Sci Eng 2021;7:983-99. [PMID: 33523634 DOI: 10.1021/acsbiomaterials.0c01779] [Reference Citation Analysis]
109 Rismanbaf A, Afshari K, Ghasemi M, Badripour A, Haj-Mirzaian A, Dehpour AR, Shafaroodi H. Therapeutic Effects of Azithromycin on Spinal Cord Injury in Male Wistar Rats: A Role for Inflammatory Pathways. J Neurol Surg A Cent Eur Neurosurg 2021. [PMID: 34781403 DOI: 10.1055/s-0041-1735854] [Reference Citation Analysis]
110 Xia H, Wang D, Guo X, Wu K, Huang F, Feng Y. Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway. Front Pharmacol 2020;11:630222. [PMID: 33628189 DOI: 10.3389/fphar.2020.630222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2021;226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
112 Kong F, Sun K, Zhu J, Li F, Lin F, Sun X, Luo X, Ren C, Lu L, Zhao S, Sun J, Wang Y, Shi J. PD-L1 Improves Motor Function and Alleviates Neuropathic Pain in Male Mice After Spinal Cord Injury by Inhibiting MAPK Pathway. Front Immunol 2021;12:670646. [PMID: 33936116 DOI: 10.3389/fimmu.2021.670646] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Izquierdo-Sánchez V, Zambrano-Rodríguez PC, Peña-Merino N, Bolaños-Puchet S, Reyes-Alva HJ, Martínez-Cruz A, Muñiz-Hernández S, Guízar-Sahagún G, Medina LA. Evaluation of Traumatic Spinal Cord Injury in a Rat Model Using 99mTc-GA-5 as a Potential In Vivo Tracer. Molecules 2021;26:7138. [PMID: 34885718 DOI: 10.3390/molecules26237138] [Reference Citation Analysis]
114 Ala M, Ghasemi M, Mohammad Jafari R, Dehpour AR. Beyond its anti-migraine properties, sumatriptan is an anti-inflammatory agent: A systematic review. Drug Dev Res 2021. [PMID: 33792938 DOI: 10.1002/ddr.21819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
115 Jiang Z, Zhang J. Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway. Cell Cycle 2021;20:993-1009. [PMID: 33945431 DOI: 10.1080/15384101.2021.1919825] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Wang YY, Shen D, Zhao LJ, Zeng N, Hu TH. Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice. Biochem Biophys Res Commun 2019;517:741-8. [PMID: 31400857 DOI: 10.1016/j.bbrc.2019.07.125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
117 Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019;60:109-20. [PMID: 31044582 [PMID: 31044582 DOI: 10.3325/cmj.2019.60.109] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
118 Li H, Wang P, Tang L, Sun J, Zhang Y, Luo W, Luo C, Hu Z, Yang L. Distinct Polarization Dynamics of Microglia and Infiltrating Macrophages: A Novel Mechanism of Spinal Cord Ischemia/Reperfusion Injury. J Inflamm Res 2021;14:5227-39. [PMID: 34675600 DOI: 10.2147/JIR.S335382] [Reference Citation Analysis]
119 Shea GKH, Koljonen PA, Chan YS, Cheung KMC. Prospects of cell replacement therapy for the treatment of degenerative cervical myelopathy. Rev Neurosci 2021;32:275-87. [PMID: 33661584 DOI: 10.1515/revneuro-2020-0075] [Reference Citation Analysis]
120 P Drasites K, Shams R, Zaman V, Matzelle D, C Shields D, P Garner D, J Sole C, Haque A, Banik NL. Pathophysiology, Biomarkers, and Therapeutic Modalities Associated with Skeletal Muscle Loss Following Spinal Cord Injury. Brain Sci 2020;10:E933. [PMID: 33276534 DOI: 10.3390/brainsci10120933] [Reference Citation Analysis]
121 Ruan J, Miao X, Schlüter D, Lin L, Wang X. Extracellular vesicles in neuroinflammation: Pathogenesis, diagnosis, and therapy. Mol Ther 2021;29:1946-57. [PMID: 33895328 DOI: 10.1016/j.ymthe.2021.04.020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]