BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen J, Zhou X, Wu W, Wang X, Wang Y. FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice. J Physiol Biochem 2015;71:405-13. [DOI: 10.1007/s13105-015-0420-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Zhou X, He L, Wan D, Yang H, Yao K, Wu G, Wu X, Yin Y. Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids 2016;48:1533-40. [DOI: 10.1007/s00726-016-2247-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
2 Tang J, Fang Q, Lu M, Shao R, Shen J, Lu L, Niu D. The Effect of Hydrated Sodium Calcium Aluminosilicate on Fatty Liver and the Composition of the Intestinal Microbiota in Overfed Landes Geese. Braz J Poult Sci 2018;20:393-402. [DOI: 10.1590/1806-9061-2017-0499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Lu J, Qian J, Yin S, Zhou L, Zheng S, Zhang W. Mechanisms of RNA N6-Methyladenosine in Hepatocellular Carcinoma: From the Perspectives of Etiology. Front Oncol 2020;10:1105. [PMID: 32733807 DOI: 10.3389/fonc.2020.01105] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Ge W, Zhao Y, Yang Y, Ding Z, Xu X, Weng D, Wang S, Cheng R, Zhang J. An insulin-independent mechanism for transcriptional regulation of Foxo1 in type 2 diabetic mice. J Biol Chem 2021;297:100846. [PMID: 34058194 DOI: 10.1016/j.jbc.2021.100846] [Reference Citation Analysis]
5 Zhao N, Yang S, Jia Y, Sun B, He B, Zhao R. Maternal betaine supplementation attenuates glucocorticoid-induced hepatic lipid accumulation through epigenetic modification in adult offspring rats. The Journal of Nutritional Biochemistry 2018;54:105-12. [DOI: 10.1016/j.jnutbio.2017.12.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
6 Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017;5:E12. [PMID: 28933365 DOI: 10.3390/diseases5010012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
7 Wu W, Feng J, Jiang D, Zhou X, Jiang Q, Cai M, Wang X, Shan T, Wang Y. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine. Sci Rep 2017;7:41606. [PMID: 28176824 DOI: 10.1038/srep41606] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
8 Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis 2021;8:746-58. [PMID: 34522705 DOI: 10.1016/j.gendis.2020.07.011] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Wang C, Ma C, Gong L, Dai S, Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur J Pharmacol 2021;912:174604. [PMID: 34743980 DOI: 10.1016/j.ejphar.2021.174604] [Reference Citation Analysis]
10 Pirola CJ, Sookoian S. Epigenetics factors in nonalcoholic fatty liver disease. Expert Review of Gastroenterology & Hepatology. [DOI: 10.1080/17474124.2020.1765772] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesity–associated protein promotes liver steatosis by targeting PPARα. Lipids Health Dis 2022;21. [DOI: 10.1186/s12944-022-01640-y] [Reference Citation Analysis]
12 Wu J, Frazier K, Zhang J, Gan Z, Wang T, Zhong X. Emerging role of m6 A RNA methylation in nutritional physiology and metabolism. Obes Rev 2020;21:e12942. [PMID: 31475777 DOI: 10.1111/obr.12942] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
13 Aluru N, Karchner SI. PCB126 Exposure Revealed Alterations in m6A RNA Modifications in Transcripts Associated With AHR Activation. Toxicol Sci 2021;179:84-94. [PMID: 33064826 DOI: 10.1093/toxsci/kfaa158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Klinge CM, Piell KM, Petri BJ, He L, Zhang X, Pan J, Rai SN, Andreeva K, Rouchka EC, Wahlang B, Beier JI, Cave MC. Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. Environ Epigenet 2021;7:dvab008. [PMID: 34548932 DOI: 10.1093/eep/dvab008] [Reference Citation Analysis]
15 Day CR, Kempson SA. Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta. 2016;1860:1098-1106. [PMID: 26850693 DOI: 10.1016/j.bbagen.2016.02.001] [Cited by in Crossref: 91] [Cited by in F6Publishing: 77] [Article Influence: 15.2] [Reference Citation Analysis]
16 Wu J, Li Y, Yu J, Gan Z, Wei W, Wang C, Zhang L, Wang T, Zhong X. Resveratrol Attenuates High-Fat Diet Induced Hepatic Lipid Homeostasis Disorder and Decreases m6A RNA Methylation. Front Pharmacol 2020;11:568006. [PMID: 33519432 DOI: 10.3389/fphar.2020.568006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
17 Mizuno TM. Fat Mass and Obesity Associated (FTO) Gene and Hepatic Glucose and Lipid Metabolism. Nutrients 2018;10:E1600. [PMID: 30388740 DOI: 10.3390/nu10111600] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
18 Mosca P, Leheup B, Dreumont N. Nutrigenomics and RNA methylation: Role of micronutrients. Biochimie 2019;164:53-9. [DOI: 10.1016/j.biochi.2019.07.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
19 Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, Liu Y, Ye L, Li Y, Zhang X. MicroRNA-145 Modulates N6-Methyladenosine Levels by Targeting the 3'-Untranslated mRNA Region of the N6-Methyladenosine Binding YTH Domain Family 2 Protein. J Biol Chem 2017;292:3614-23. [PMID: 28104805 DOI: 10.1074/jbc.M116.749689] [Cited by in Crossref: 109] [Cited by in F6Publishing: 90] [Article Influence: 21.8] [Reference Citation Analysis]
20 Chen J, Yang Y, Li S, Yang Y, Dai Z, Wang F, Wu Z, Tso P, Wu G. E2F1 Regulates Adipocyte Differentiation and Adipogenesis by Activating ICAT. Cells 2020;9:E1024. [PMID: 32326181 DOI: 10.3390/cells9041024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
21 Zhou X, Chen J, Chen J, Wu W, Wang X, Wang Y. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit. The Journal of Nutritional Biochemistry 2015;26:1678-84. [DOI: 10.1016/j.jnutbio.2015.08.014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zhao Z, Meng J, Su R, Zhang J, Chen J, Ma X, Xia Q. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. J Hepatol 2020;73:664-79. [PMID: 32330603 DOI: 10.1016/j.jhep.2020.04.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
23 Melnik BC, Kakulas F. Milk Exosomes and microRNAs: Potential Epigenetic Regulators. In: Patel V, Preedy V, editors. Handbook of Nutrition, Diet, and Epigenetics. Cham: Springer International Publishing; 2017. pp. 1-28. [DOI: 10.1007/978-3-319-31143-2_86-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
24 Sámano-Hernández L, Fierro R, Marchal A, Guéant JL, González-Márquez H, Guéant-Rodríguez RM. Beneficial and deleterious effects of sitagliptin on a methionine/choline-deficient diet-induced steatohepatitis in rats. Biochimie 2021;181:240-8. [PMID: 33333172 DOI: 10.1016/j.biochi.2020.12.004] [Reference Citation Analysis]
25 Hu Y, Sun Q, Hu Y, Hou Z, Zong Y, Omer NA, Abobaker H, Zhao R. Corticosterone-Induced Lipogenesis Activation and Lipophagy Inhibition in Chicken Liver Are Alleviated by Maternal Betaine Supplementation. The Journal of Nutrition 2018;148:316-25. [DOI: 10.1093/jn/nxx073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
26 Jiang T, Shi X, Yan Z, Wang X, Gun S. Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp Ther Med 2019;18:2160-6. [PMID: 31452707 DOI: 10.3892/etm.2019.7820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Mosca P, Robert A, Alberto JM, Meyer M, Kundu U, Hergalant S, Umoret R, Coelho D, Guéant JL, Leheup B, Dreumont N. Vitamin B12 Deficiency Dysregulates m6A mRNA Methylation of Genes Involved in Neurological Functions. Mol Nutr Food Res 2021;65:e2100206. [PMID: 34291881 DOI: 10.1002/mnfr.202100206] [Reference Citation Analysis]
28 Cui C, Deng J, Yan L, Liu Y, Fan J, Mu H, Sun H, Wang Y, Han J. Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. Journal of Ethnopharmacology 2017;208:24-35. [DOI: 10.1016/j.jep.2017.06.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
29 Li S, Wang X, Zhang J, Li J, Liu X, Ma Y, Han C, Zhang L, Zheng L. Exenatide ameliorates hepatic steatosis and attenuates fat mass and FTO gene expression through PI3K signaling pathway in nonalcoholic fatty liver disease. Braz J Med Biol Res 2018;51:e7299. [PMID: 29924135 DOI: 10.1590/1414-431x20187299] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
30 Chen W, Xu M, Xu M, Wang Y, Zou Q, Xie S, Wang L. Effects of betaine on non-alcoholic liver disease. Nutr Res Rev 2021;:1-11. [PMID: 33818349 DOI: 10.1017/S0954422421000056] [Reference Citation Analysis]
31 Xu Z, Peng B, Cai Y, Wu G, Huang J, Gao M, Guo G, Zeng S, Gong Z, Yan Y. N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol 2020;182:114258. [PMID: 33017575 DOI: 10.1016/j.bcp.2020.114258] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Cheng L, Yu P, Li F, Jiang X, Jiao X, Shen Y, Lai X. Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression. Hum Cell 2021;34:1697-708. [PMID: 34410623 DOI: 10.1007/s13577-021-00593-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Zheng J, Xiao H, Duan Y, Song B, Zheng C, Guo Q, Li F, Li T. Roles of amino acid derivatives in the regulation of obesity. Food Funct 2021;12:6214-25. [PMID: 34105579 DOI: 10.1039/d1fo00780g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kang H, Zhang Z, Yu L, Li Y, Liang M, Zhou L. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J Cell Biochem 2018;119:5676-85. [PMID: 29384213 DOI: 10.1002/jcb.26746] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
35 Zhang L, Qi Y, ALuo Z, Liu S, Zhang Z, Zhou L. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct 2019;10:216-23. [PMID: 30534761 DOI: 10.1039/c8fo02004c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
36 Kucher AN. The FTO Gene and Diseases: The Role of Genetic Polymorphism, Epigenetic Modifications, and Environmental Factors. Russ J Genet 2020;56:1025-43. [DOI: 10.1134/s1022795420090136] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Hu Y, Feng Y, Zhang L, Jia Y, Cai D, Qian SB, Du M, Zhao R. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs. RNA Biol 2020;17:930-42. [PMID: 32116145 DOI: 10.1080/15476286.2020.1736868] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]