BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shao Y, Wang Y, Wu X, Xu X, Kong S, Tong L, Jiang Z, Li B. Biodegradation of PAHs by Acinetobacter isolated from karst groundwater in a coal-mining area. Environ Earth Sci 2015;73:7479-88. [DOI: 10.1007/s12665-014-3920-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Zhou H, Huang X, Liang Y, Li Y, Xie Q, Zhang C, You S. Enhanced bioremediation of hydraulic fracturing flowback and produced water using an indigenous biosurfactant-producing bacteria Acinetobacter sp. Y2. Chemical Engineering Journal 2020;397:125348. [DOI: 10.1016/j.cej.2020.125348] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Acer Ö. Phylogeny and polycyclic aromatic hydrocarbons degradation potential of bacteria isolated from crude oil-contaminated soil in Diyarbakir, in the southeast of Turkey. Bioremediation Journal 2021;25:297-307. [DOI: 10.1080/10889868.2021.1972925] [Reference Citation Analysis]
3 Pan T, Deng T, Zeng X, Dong W, Yu S. Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans. Appl Microbiol Biotechnol 2016;100:431-7. [PMID: 26392138 DOI: 10.1007/s00253-015-6980-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
4 Jiang Y, Zhang Z, Zhang X. Co-biodegradation of pyrene and other PAHs by the bacterium Acinetobacter johnsonii. Ecotoxicology and Environmental Safety 2018;163:465-70. [DOI: 10.1016/j.ecoenv.2018.07.065] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
5 Haleyur N, Shahsavari E, Taha M, Khudur LS, Koshlaf E, Osborn AM, Ball AS. Assessing the degradation efficacy of native PAH-degrading bacteria from aged, weathered soils in an Australian former gasworks site. Geoderma 2018;321:110-7. [DOI: 10.1016/j.geoderma.2018.02.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
6 Gui X, Xu W, Cao H, Ning P, Zhang Y, Li Y, Sheng Y. A novel phenol and ammonia recovery process for coal gasification wastewater altering the bacterial community and increasing pollutants removal in anaerobic/anoxic/aerobic system. Science of The Total Environment 2019;661:203-11. [DOI: 10.1016/j.scitotenv.2019.01.126] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
7 Omrani R, Spini G, Puglisi E, Saidane D. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 2018;29:187-209. [DOI: 10.1007/s10532-018-9823-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
8 Kotoky R, Das S, Singha LP, Pandey P, Singha KM. Biodegradation of Benzo(a)pyrene by biofilm forming and plant growth promoting Acinetobacter sp. strain PDB4 . Environmental Technology & Innovation 2017;8:256-68. [DOI: 10.1016/j.eti.2017.07.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
9 Kunacheva C, Le C, Soh YNA, Stuckey DC. Chemical Characterization of Low Molecular Weight Soluble Microbial Products in an Anaerobic Membrane Bioreactor. Environ Sci Technol 2017;51:2254-61. [DOI: 10.1021/acs.est.6b05791] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
10 Liu X, Ge W, Zhang X, Chai C, Wu J, Xiang D, Chen X. Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus sp. LXC combined with humic acid and spent mushroom substrate. Journal of Hazardous Materials 2019;379:120820. [DOI: 10.1016/j.jhazmat.2019.120820] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
11 Sun J, Pan L, Li Z, Zeng Q, Wang L, Zhu L. Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity. Environmental Pollution 2018;243:1509-16. [DOI: 10.1016/j.envpol.2018.09.112] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
12 Sonwani RK, Kim K, Zhang M, Tsang YF, Lee SS, Giri BS, Singh RS, Rai BN. Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives. Journal of Hazardous Materials 2021;416:125968. [DOI: 10.1016/j.jhazmat.2021.125968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Li J, Luo C, Song M, Dai Q, Jiang L, Zhang D, Zhang G. Biodegradation of Phenanthrene in Polycyclic Aromatic Hydrocarbon-Contaminated Wastewater Revealed by Coupling Cultivation-Dependent and -Independent Approaches. Environ Sci Technol 2017;51:3391-401. [PMID: 28181806 DOI: 10.1021/acs.est.6b04366] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
14 Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. Water Res 2021;201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Reference Citation Analysis]
15 An X, Cheng Y, Huang M, Sun Y, Wang H, Chen X, Wang J, Li D, Li C. Treating organic cyanide-containing groundwater by immobilization of a nitrile-degrading bacterium with a biofilm-forming bacterium using fluidized bed reactors. Environmental Pollution 2018;237:908-16. [DOI: 10.1016/j.envpol.2018.01.087] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
16 Ibrahim M, Makky EA, Azmi NS, Ismail J. Impact of incubation period on biodegradation of petroleum hydrocarbons from refinery wastewater in Kuantan, Malaysia by indigenous bacteria. Bioremediation Journal 2018;22:10-9. [DOI: 10.1080/10889868.2018.1476453] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Gholami F, Shavandi M, Dastgheib SMM, Amoozegar MA. The impact of calcium peroxide on groundwater bacterial diversity during naphthalene removal by permeable reactive barrier (PRB). Environ Sci Pollut Res 2019;26:35218-26. [DOI: 10.1007/s11356-019-06398-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Indelicato S, Orecchio S, Avellone G, Bellomo S, Ceraulo L, Di Leonardo R, Di Stefano V, Favara R, Candela EG, La Pica L, Morici S, Pecoraino G, Pisciotta A, Scaletta C, Vita F, Vizzini S, Bongiorno D. Effect of solid waste landfill organic pollutants on groundwater in three areas of Sicily (Italy) characterized by different vulnerability. Environ Sci Pollut Res 2017;24:16869-82. [DOI: 10.1007/s11356-017-9198-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
19 Li M, Yin H, Zhu M, Yu Y, Lu G, Dang Z. Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. Journal of Environmental Sciences 2021;107:65-76. [DOI: 10.1016/j.jes.2021.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Giongo A, Haag T, Medina-silva R, Heemann R, Pereira LM, Zamberlan PM, Valdez FP, Oliveira RR, Eizirik E, Viana AR, Ketzer JMM. Distinct deep subsurface microbial communities in two sandstone units separated by a mudstone layer. Geosci J 2020;24:267-74. [DOI: 10.1007/s12303-019-0028-5] [Reference Citation Analysis]
21 Bezza FA, Chirwa EMN. Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. J Hazard Mater 2017;321:218-27. [PMID: 27627697 DOI: 10.1016/j.jhazmat.2016.08.035] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
22 Hsia K, Chen C, Ou J, Lo K, Sheu Y, Kao C. Treatment of petroleum hydrocarbon-polluted groundwater with innovative in situ sulfate-releasing biobarrier. Journal of Cleaner Production 2021;295:126424. [DOI: 10.1016/j.jclepro.2021.126424] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
23 Xu S, Wang W, Zhu L. Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation. Science of The Total Environment 2019;653:1293-300. [DOI: 10.1016/j.scitotenv.2018.10.444] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
24 Qin W, Zhu Y, Fan F, Wang Y, Liu X, Ding A, Dou J. Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: Degradation pathway and effects of limiting electron acceptors or carbon source. Biochemical Engineering Journal 2017;121:131-8. [DOI: 10.1016/j.bej.2017.02.001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 8.6] [Reference Citation Analysis]
25 Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G. Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol 2017;26:923-36. [PMID: 28012222 DOI: 10.1111/mec.13978] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
26 Carroll SM, Peacock AD, Zimbron J, Alepidis KN, Clock JA. Demonstrating Contaminant Degradation at an MGP Site With Metabolic Gas Flux and Radio Carbon Dating: Demonstrating Contaminant Degradation at an MGP Site With Metabolic Gas Flux and Radio Carbon Dating. Remediation 2017;27:51-64. [DOI: 10.1002/rem.21508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]