BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Hu J, Liu X, Liu Y, Lv S, Dang J, Ji Y, He J, Yin L. Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Res 2019;12:999-1008. [DOI: 10.1007/s12274-019-2330-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhao D, Zhang W, Yu S, Xia S, Liu Y, Yang G. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01631-2] [Reference Citation Analysis]
2 Guan Y, Xing C, Tong T, Zhang X, Li J, Chen H, Zhu J, Kang Y, Pang J. Smart dual responsive nanocarriers with reactive oxygen species amplification assisted synergistic chemotherapy against prostate cancer. Journal of Colloid and Interface Science 2022;622:789-803. [DOI: 10.1016/j.jcis.2022.04.167] [Reference Citation Analysis]
3 Niu Y, Lu Y. Construction of pH ‐responsive core crosslinked micelles via thiol‐yne click reaction. J of Applied Polymer Sci. [DOI: 10.1002/app.52753] [Reference Citation Analysis]
4 Zhou J, Yin Q, Li S, Yang R, Lou R, Sun Y, Du B. A deep tumor penetration nanoplatform for glycolysis inhibition and antimetastasis of breast cancer. J Mater Chem B 2022;10:4306-20. [PMID: 35586908 DOI: 10.1039/d1tb01759d] [Reference Citation Analysis]
5 Li G, Pei M, Li X, Liu P. Fluorescent traceable nanoparticles by co-self-assembly of carbon dot-drug conjugate and biodegradable hyperbranched polymer for diagnosis and therapy. Particuology 2022;62:79-87. [DOI: 10.1016/j.partic.2021.04.016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rinaldi A, Caraffi R, Grazioli MV, Oddone N, Giardino L, Tosi G, Vandelli MA, Calzà L, Ruozi B, Duskey JT. Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers 2022;14:687. [DOI: 10.3390/polym14040687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Guo C, Su Y, Cheng Z, Chen Q, Guo H, Kong M, Chen D. Novel ROS-responsive marine biomaterial fucoidan nanocarriers with AIE effect and chemodynamic therapy. Int J Biol Macromol 2022:S0141-8130(22)00076-9. [PMID: 35041879 DOI: 10.1016/j.ijbiomac.2022.01.060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 He J, Xia K, Zhao B, Song W, Zheng Y, Xiao G, Wu H, Zheng N. Codelivery of High-Molecular-Weight Poly-porphyrins and HIF-1α Inhibitors for In Vivo Synergistic Anticancer Therapy. Biomacromolecules 2021;22:4783-93. [PMID: 34623134 DOI: 10.1021/acs.biomac.1c01073] [Reference Citation Analysis]
9 Xu X, Zeng Z, Ding X, Shan T, Liu Q, Chen M, Chen J, Xia M, He Y, Huang Z, Huang Y, Zhao C. Reactive oxygen species-activatable self-amplifying Watson-Crick base pairing-inspired supramolecular nanoprodrug for tumor-specific therapy. Biomaterials 2021;277:121128. [PMID: 34537502 DOI: 10.1016/j.biomaterials.2021.121128] [Reference Citation Analysis]
10 Su L, Liu Y, Li Y, An Y, Shi L. Responsive Polymeric Nanoparticles for Biofilm-infection Control. Chin J Polym Sci 2021;39:1376-91. [DOI: 10.1007/s10118-021-2610-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kang RH, Park J, Kim J, Chowdhury T, Oh JH, Kim J, Shin J, Kim M, Park CK, Lee S, Lee JY, Kim D. A Deep Dive: SIWV Tetra-Peptide Enhancing the Penetration of Nanotherapeutics into the Glioblastoma. ACS Biomater Sci Eng 2021. [PMID: 34196517 DOI: 10.1021/acsbiomaterials.1c00653] [Reference Citation Analysis]
12 Cao D, He H, Li W, Yan J, Wu J, Yin M, Zhou Y, Zhou Z, Yin L. A near-infrared light-controlled, oxygen-independent radical generating nano-system toward cancer therapy. Biomater Sci 2021;9:4054-65. [PMID: 33908463 DOI: 10.1039/d1bm00084e] [Reference Citation Analysis]
13 Cai Q, Jiang J, Zhang H, Ge P, Yang L, Zhu W. Reduction-Responsive Anticancer Nanodrug Using a Full Poly(ethylene glycol) Carrier. ACS Appl Mater Interfaces 2021;13:19387-97. [PMID: 33876927 DOI: 10.1021/acsami.1c04648] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
16 Hang L, Zhang T, Wen H, Liang L, Li W, Ma X, Jiang G. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res 2021;14:660-6. [DOI: 10.1007/s12274-020-3093-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Sun H, Zhong Z. 100th Anniversary of Macromolecular Science Viewpoint: Biological Stimuli-Sensitive Polymer Prodrugs and Nanoparticles for Tumor-Specific Drug Delivery. ACS Macro Lett 2020;9:1292-302. [PMID: 35638634 DOI: 10.1021/acsmacrolett.0c00488] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
18 Zhang Y, Fan X, Yu Y, Li W, Huang H, Zhang W, Hu Z, Li Z. Reduction‐sensitive carrier containing disulfide bond based on Pluronic F68 with cholesterol for drug delivery. Polym Int 2021;70:107-15. [DOI: 10.1002/pi.6099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Wang D, Wang S, Xia Y, Liu S, Jia R, Xu G, Zhan J, Lu Y. Preparation of ROS-responsive core crosslinked polycarbonate micelles with thioketal linkage. Colloids Surf B Biointerfaces 2020;195:111276. [PMID: 32763765 DOI: 10.1016/j.colsurfb.2020.111276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Yan J, Zhu R, Wu F, Zhao Z, Ye H, Hou M, Liu Y, Yin L. iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy. Nano Res 2020;13:2706-15. [DOI: 10.1007/s12274-020-2913-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
21 Thorat ND, Townley HE, Patil RM, Tofail SAM, Bauer J. Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer. Drug Discov Today 2020;25:1245-52. [PMID: 32371139 DOI: 10.1016/j.drudis.2020.04.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Xu Q, Li X, Zhang P, Wang Y. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B 2020;8:4331-9. [PMID: 32352128 DOI: 10.1039/d0tb00105h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
23 Cao H, Zhong S, Wang Q, Chen C, Tian J, Zhang W. Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release. J Mater Chem B 2020;8:478-83. [DOI: 10.1039/c9tb02120e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
24 Wu Y, Lv S, Li Y, He H, Ji Y, Zheng M, Liu Y, Yin L. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci 2020;8:949-59. [PMID: 31840696 DOI: 10.1039/c9bm01662g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
25 Su L, Li Y, Liu Y, An Y, Shi L. Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications. Macromol Biosci 2019;19:e1900289. [PMID: 31642591 DOI: 10.1002/mabi.201900289] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
26 Wu M, Ding Y, Li L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale. 2019;11:19658-19683. [PMID: 31612164 DOI: 10.1039/c9nr06651a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
27 Xu X, Zeng Z, Huang Z, Sun Y, Huang Y, Chen J, Ye J, Yang H, Yang C, Zhao C. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydr Polym 2020;229:115394. [PMID: 31826406 DOI: 10.1016/j.carbpol.2019.115394] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
28 Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019;20:2441-63. [PMID: 31117357 DOI: 10.1021/acs.biomac.9b00628] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 27.3] [Reference Citation Analysis]