BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018;41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. Nanomaterials (Basel) 2021;11:1251. [PMID: 34068834 DOI: 10.3390/nano11051251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021;131:16-40. [PMID: 34153512 DOI: 10.1016/j.actbio.2021.06.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
3 Jang JH, Jeong SH, Lee YB. Enhanced Lymphatic Delivery of Methotrexate Using W/O/W Nanoemulsion: In Vitro Characterization and Pharmacokinetic Study. Pharmaceutics 2020;12:E978. [PMID: 33081266 DOI: 10.3390/pharmaceutics12100978] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Jeong SH, Jang JH, Lee YB. Oral delivery of topotecan in polymeric nanoparticles: Lymphatic distribution and pharmacokinetics. J Control Release 2021;335:86-102. [PMID: 34015399 DOI: 10.1016/j.jconrel.2021.05.017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Liu B, Zhang H, Ding Y. Au-Fe3O4 heterostructures for catalytic, analytical, and biomedical applications. Chinese Chemical Letters 2018;29:1725-30. [DOI: 10.1016/j.cclet.2018.12.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
6 Jang JH, Jeong SH, Lee YB. Preparation and In Vitro/In Vivo Characterization of Polymeric Nanoparticles Containing Methotrexate to Improve Lymphatic Delivery. Int J Mol Sci 2019;20:E3312. [PMID: 31284483 DOI: 10.3390/ijms20133312] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
7 De Oliveira TC, Tavares ME, Soares-sobrinho JL, Chaves LL. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. Journal of Drug Delivery Science and Technology 2022;68:103110. [DOI: 10.1016/j.jddst.2022.103110] [Reference Citation Analysis]
8 Bonaccorso A, Pepe V, Zappulla C, Cimino C, Pricoco A, Puglisi G, Giuliano F, Pignatello R, Carbone C. Sorafenib Repurposing for Ophthalmic Delivery by Lipid Nanoparticles: A Preliminary Study. Pharmaceutics 2021;13:1956. [PMID: 34834371 DOI: 10.3390/pharmaceutics13111956] [Reference Citation Analysis]
9 Jeong SH, Jang JH, Lee YB. Pharmacokinetic Comparison between Methotrexate-Loaded Nanoparticles and Nanoemulsions as Hard- and Soft-Type Nanoformulations: A Population Pharmacokinetic Modeling Approach. Pharmaceutics 2021;13:1050. [PMID: 34371740 DOI: 10.3390/pharmaceutics13071050] [Reference Citation Analysis]
10 Wang L, Subasic C, Minchin RF, Kaminskas LM. Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine (Lond) 2019;14:1605-21. [PMID: 31166140 DOI: 10.2217/nnm-2018-0478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]