BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018;34:573-88. [PMID: 29582250 DOI: 10.1007/s12264-018-0219-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Daisy Precilla S, Biswas I, Kuduvalli SS, Anitha TS. Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin signaling in GBM - Could combination therapy checkmate the collusion? Cell Signal 2022;:110350. [PMID: 35525406 DOI: 10.1016/j.cellsig.2022.110350] [Reference Citation Analysis]
2 Ding X, Deng G, Liu J, Liu B, Yuan F, Yang X, Chen Q. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway. Brain Res 2019;1717:117-26. [PMID: 30935831 DOI: 10.1016/j.brainres.2019.03.035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
3 Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021;12:666693. [PMID: 33927728 DOI: 10.3389/fimmu.2021.666693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018;19:E3540. [PMID: 30424016 DOI: 10.3390/ijms19113540] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
5 Zeng KW, Wang JK, Wang LC, Guo Q, Liu TT, Wang FJ, Feng N, Zhang XW, Liao LX, Zhao MM, Liu D, Jiang Y, Tu P. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity. Signal Transduct Target Ther 2021;6:71. [PMID: 33602894 DOI: 10.1038/s41392-020-00447-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020;57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
7 Wang F, Zhang Y, Zhou X, Chen X, Xiang J, Fan M, Yu Y, Cai Y, Wu H, Huang S, He N, Hu Z, Ding G, Jin X. Circular RNA CircPPP1CB Suppresses Tumorigenesis by Interacting With the MiR-1307-3p/SMG1 Axis in Human Bladder Cancer. Front Cell Dev Biol 2021;9:704683. [PMID: 34595165 DOI: 10.3389/fcell.2021.704683] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Dong Q, Wang D, Li L, Wang J, Li Q, Duan L, Yin H, Wang X, Liu Y, Yuan G, Pan Y. Biochanin A Sensitizes Glioblastoma to Temozolomide by Inhibiting Autophagy. Mol Neurobiol 2022;59:1262-72. [PMID: 34981417 DOI: 10.1007/s12035-021-02674-6] [Reference Citation Analysis]
9 Ni Y, Liu B, Wu X, Liu J, Ba R, Zhao C. FOXG1 Directly Suppresses Wnt5a During the Development of the Hippocampus. Neurosci Bull 2021;37:298-310. [PMID: 33389683 DOI: 10.1007/s12264-020-00618-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018;19:E1212. [PMID: 29659554 DOI: 10.3390/ijms19041212] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
11 Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019;38:323. [PMID: 31331376 DOI: 10.1186/s13046-019-1320-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
12 Wu X, Feng F, Yang C, Zhang M, Cheng Y, Zhao Y, Wang Y, Che F, Zhang J, Heng X. Upregulated Expression of CUX1 Correlates with Poor Prognosis in Glioma Patients: a Bioinformatic Analysis. J Mol Neurosci 2019;69:527-37. [PMID: 31377983 DOI: 10.1007/s12031-019-01355-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
13 Mahony C, O'Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021;22:10757. [PMID: 34639097 DOI: 10.3390/ijms221910757] [Reference Citation Analysis]
14 Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019;8:E726. [PMID: 31311204 DOI: 10.3390/cells8070726] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
15 Uram Ł, Misiorek M, Pichla M, Filipowicz-Rachwał A, Markowicz J, Wołowiec S, Wałajtys-Rode E. The Effect of Biotinylated PAMAM G3 Dendrimers Conjugated with COX-2 Inhibitor (celecoxib) and PPARγ Agonist (Fmoc-L-Leucine) on Human Normal Fibroblasts, Immortalized Keratinocytes and Glioma Cells in Vitro. Molecules 2019;24:E3801. [PMID: 31652556 DOI: 10.3390/molecules24203801] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021;13:5557. [PMID: 34771718 DOI: 10.3390/cancers13215557] [Reference Citation Analysis]
17 Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson's Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull 2021;37:1010-24. [PMID: 34128188 DOI: 10.1007/s12264-021-00711-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019;133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
19 Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020;10:400. [PMID: 33199680 DOI: 10.1038/s41398-020-01086-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021;9:619. [PMID: 34070746 DOI: 10.3390/biomedicines9060619] [Reference Citation Analysis]
21 Kim JT, Li C, Weiss HL, Zhou Y, Liu C, Wang Q, Evers BM. Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells. Cells 2019;8:E1106. [PMID: 31546785 DOI: 10.3390/cells8091106] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
22 Ke S, Li J, Zhao L, Yang J, Zhao X, Zhang W, Qiu X, Yang X, Zhou J, Tong Y, Zhu X, Liu X, Yang Y, Qiao Z, Bu T, Wang F. The Gender-Specific Interaction of DVL3 and GSK3β Polymorphisms on Major Depressive Disorder Susceptibility in a Chinese Han Population: A Case-Control Study. Oxidative Medicine and Cellular Longevity 2022;2022:1-10. [DOI: 10.1155/2022/2633127] [Reference Citation Analysis]
23 Im DU, Kim SC, Chau GC, Um SH. Carbamazepine Enhances Adipogenesis by Inhibiting Wnt/β-catenin Expression. Cells 2019;8:E1460. [PMID: 31752244 DOI: 10.3390/cells8111460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
24 Tewari D, Bawari S, Sharma S, DeLiberto LK, Bishayee A. Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021;227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Ragab N, Viehweger F, Bauer J, Geyer N, Yang M, Seils A, Belharazem D, Brembeck FH, Schildhaus HU, Marx A, Hahn H, Simon-Keller K. Canonical WNT/β-Catenin Signaling Plays a Subordinate Role in Rhabdomyosarcomas. Front Pediatr 2018;6:378. [PMID: 30568936 DOI: 10.3389/fped.2018.00378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018;9:1357. [PMID: 30546308 DOI: 10.3389/fphar.2018.01357] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
27 Lu J, Zhang T, Sun H, Wang S, Liu M. Protective effects of dioscin against cartilage destruction in a monosodium iodoacetate (MIA)-indcued osteoarthritis rat model. Biomedicine & Pharmacotherapy 2018;108:1029-38. [DOI: 10.1016/j.biopha.2018.09.075] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
28 Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021;11:737776. [PMID: 34631571 DOI: 10.3389/fonc.2021.737776] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Du P, Chen M, Deng C, Zhu C. microRNA-199a downregulation alleviates hyperuricemic nephropathy via the PPARγ/β-catenin axis. J Recept Signal Transduct Res 2021;:1-9. [PMID: 34431454 DOI: 10.1080/10799893.2021.1967392] [Reference Citation Analysis]
30 Xu Z, Lodge R, Power C, Cohen EA, Hobman TC. The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis. mBio 2020;11:e03395-19. [PMID: 32127461 DOI: 10.1128/mBio.03395-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
31 Zhang X, Kang Y, Kong W, Zhang Y, Ju T. Relationship between peroxisome proliferator-activated receptor-γ mRNA expression and intracranial aneurysm rupture. Eur J Inflamm 2021;19:205873922110287. [DOI: 10.1177/20587392211028720] [Reference Citation Analysis]
32 Mazon M, Julien J, Ung R, Picard S, Hamoudi D, Tam R, Filiatrault J, Frenette J, Mac‐way F, Carreau M. Deletion of the Fanconi Anemia C Gene in Mice Leads to Skeletal Anomalies and Defective Bone Mineralization and Microarchitecture. J Bone Miner Res 2018;33:2007-20. [DOI: 10.1002/jbmr.3546] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Zhang W, Hou J, Yan X, Leng J, Li R, Zhang J, Xing J, Chen C, Wang Z, Li W. Platycodon grandiflorum Saponins Ameliorate Cisplatin-Induced Acute Nephrotoxicity through the NF-κB-Mediated Inflammation and PI3K/Akt/Apoptosis Signaling Pathways. Nutrients 2018;10:E1328. [PMID: 30235825 DOI: 10.3390/nu10091328] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
34 Wang J, Liu J, Sun G, Meng H, Wang J, Guan Y, Yin Y, Zhao Z, Dong X, Yin S, Li H, Cheng Y, Wu H, Wu A, Yu X, Chen L. Glioblastoma extracellular vesicles induce the tumour-promoting transformation of neural stem cells. Cancer Lett. 2019;466:1-12. [PMID: 31521694 DOI: 10.1016/j.canlet.2019.09.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
35 Yang J, Shi BY. Dickkopf (Dkk)-2 is a beige fat-enriched adipokine to regulate adipogenesis. Biochem Biophys Res Commun 2021;548:211-6. [PMID: 33647798 DOI: 10.1016/j.bbrc.2021.02.068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci 2019;9:98. [PMID: 31827764 DOI: 10.1186/s13578-019-0362-3] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
37 Xu X, Shen X, Feng W, Yang D, Jin L, Wang J, Wang M, Ting Z, Xue F, Zhang J, Meng C, Chen R, Zheng X, Du L, Xuan L, Wang Y, Xie T, Huang Z. D-galactose induces senescence of glioblastoma cells through YAP-CDK6 pathway. Aging (Albany NY) 2020;12:18501-21. [PMID: 32991321 DOI: 10.18632/aging.103819] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Leng X, Ma J, Liu Y, Shen S, Yu H, Zheng J, Liu X, Liu L, Chen J, Zhao L, Ruan X, Xue Y. Mechanism of piR-DQ590027/MIR17HG regulating the permeability of glioma conditioned normal BBB. J Exp Clin Cancer Res 2018;37:246. [PMID: 30305135 DOI: 10.1186/s13046-018-0886-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]