BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ray S, Kalia VC. Biomedical Applications of Polyhydroxyalkanoates. Indian J Microbiol 2017;57:261-9. [PMID: 28904409 DOI: 10.1007/s12088-017-0651-7] [Cited by in Crossref: 51] [Cited by in F6Publishing: 28] [Article Influence: 10.2] [Reference Citation Analysis]
Number Citing Articles
1 Oliveira-Filho ER, de Macedo MA, Lemos ACC, Adams F, Merkel OM, Taciro MK, Gomez JGC, Silva LF. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate. Int J Biol Macromol 2022;213:902-14. [PMID: 35690163 DOI: 10.1016/j.ijbiomac.2022.06.024] [Reference Citation Analysis]
2 Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2019;37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Cited by in Crossref: 96] [Cited by in F6Publishing: 82] [Article Influence: 24.0] [Reference Citation Analysis]
3 Kim M, Noda I, Park Y. Study on melting and crystallization of PHBHx thin films using IR and 2D correlation spectroscopy. Bulletin Korean Chem Soc. [DOI: 10.1002/bkcs.12437] [Reference Citation Analysis]
4 Patel SKS, Sandeep K, Singh M, Singh GP, Lee J, Bhatia SK, Kalia VC. Biotechnological Application of Polyhydroxyalkanoates and Their Composites as Anti-microbials Agents. In: Kalia VC, editor. Biotechnological Applications of Polyhydroxyalkanoates. Singapore: Springer; 2019. pp. 207-25. [DOI: 10.1007/978-981-13-3759-8_8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
5 Roman DL, Isvoran A, Filip M, Ostafe V, Zinn M. In silico Assessment of Pharmacological Profile of Low Molecular Weight Oligo-Hydroxyalkanoates. Front Bioeng Biotechnol 2020;8:584010. [PMID: 33324621 DOI: 10.3389/fbioe.2020.584010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Ahmadi F, Zinatizadeh AA, Asadi A. The effect of different operational strategies on polyhydroxyalkanoates (PHAs) production at short-term biomass enrichment. Journal of Environmental Chemical Engineering 2020;8:103531. [DOI: 10.1016/j.jece.2019.103531] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
7 Purohit HJ. Aligning Microbial Biodiversity for Valorization of Biowastes: Conception to Perception. Indian J Microbiol 2019;59:391-400. [PMID: 31762500 DOI: 10.1007/s12088-019-00826-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
8 Liu H, Kumar V, Jia L, Sarsaiya S, Kumar D, Juneja A, Zhang Z, Sindhu R, Binod P, Bhatia SK, Awasthi MK. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. Chemosphere 2021;284:131427. [PMID: 34323796 DOI: 10.1016/j.chemosphere.2021.131427] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ferre-guell A, Winterburn J. Increased production of polyhydroxyalkanoates with controllable composition and consistent material properties by fed-batch fermentation. Biochemical Engineering Journal 2019;141:35-42. [DOI: 10.1016/j.bej.2018.10.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
10 Manikandan NA, Pakshirajan K, Pugazhenthi G. Techno-economic assessment of a sustainable and cost-effective bioprocess for large scale production of polyhydroxybutyrate. Chemosphere 2021;284:131371. [PMID: 34323807 DOI: 10.1016/j.chemosphere.2021.131371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kumar V, Darnal S, Kumar S, Kumar S, Singh D. Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194. Bioresour Technol 2021;319:124235. [PMID: 33254459 DOI: 10.1016/j.biortech.2020.124235] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
12 Kumar M, Rathour R, Singh R, Sun Y, Pandey A, Gnansounou E, Andrew Lin K, Tsang DC, Thakur IS. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production 2020;263:121500. [DOI: 10.1016/j.jclepro.2020.121500] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 18.5] [Reference Citation Analysis]
13 Papaneophytou C, Katsipis G, Halevas E, Pantazaki AA. Polyhydroxyalkanoates Applications in Drug Carriers. In: Kalia VC, editor. Biotechnological Applications of Polyhydroxyalkanoates. Singapore: Springer; 2019. pp. 77-124. [DOI: 10.1007/978-981-13-3759-8_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Behera S, Priyadarshanee M, Vandana, Das S. Properties, biochemical synthesis, and their applications. Chemosphere 2022;:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ghosh S, Coons J, Yeager C, Halley P, Chemodanov A, Belgorodsky B, Gozin M, Chen GQ, Golberg A. Halophyte biorefinery for polyhydroxyalkanoates production from Ulva sp. Hydrolysate with Haloferax mediterranei in pneumatically agitated bioreactors and ultrasound harvesting. Bioresour Technol 2021;:125964. [PMID: 34728090 DOI: 10.1016/j.biortech.2021.125964] [Reference Citation Analysis]
16 Nanda S, Patra BR, Patel R, Bakos J, Dalai AK. Innovations in applications and prospects of bioplastics and biopolymers: a review. Environ Chem Lett 2021;:1-17. [PMID: 34867134 DOI: 10.1007/s10311-021-01334-4] [Reference Citation Analysis]
17 Ang SL, Sivashankari R, Shaharuddin B, Chuah J, Tsuge T, Abe H, Sudesh K. Potential Applications of Polyhydroxyalkanoates as a Biomaterial for the Aging Population. Polymer Degradation and Stability 2020;181:109371. [DOI: 10.1016/j.polymdegradstab.2020.109371] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
18 Dalton B, Bhagabati P, De Micco J, Padamati RB, O’connor K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022;12:319. [DOI: 10.3390/catal12030319] [Reference Citation Analysis]
19 Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. Materials (Basel) 2022;15:1410. [PMID: 35207952 DOI: 10.3390/ma15041410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kumar V, Thakur V, Ambika, Kumar S, Singh D. Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiology Letters 2018;365. [DOI: 10.1093/femsle/fny144] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
21 Li J, Zhang X, Udduttula A, Fan ZS, Chen JH, Sun AR, Zhang P. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Front Bioeng Biotechnol 2021;9:763031. [PMID: 34993185 DOI: 10.3389/fbioe.2021.763031] [Reference Citation Analysis]
22 Krishnan S, Chinnadurai GS, Ravishankar K, Raghavachari D, Perumal P. Valorization of agro-wastes for the biosynthesis and characterization of polyhydroxybutyrate by Bacillus sp. isolated from rice bran dumping yard. 3 Biotech 2021;11:202. [PMID: 33927992 DOI: 10.1007/s13205-021-02722-x] [Reference Citation Analysis]
23 Schmid MT, Sykacek E, O'connor K, Omann M, Mundigler N, Neureiter M. Pilot scale production and evaluation of mechanical and thermal properties of P( 3HB ) from Bacillus megaterium cultivated on desugarized sugar beet molasses. J Appl Polym Sci 2022;139:51503. [DOI: 10.1002/app.51503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. International Materials Reviews. [DOI: 10.1080/09506608.2022.2069451] [Reference Citation Analysis]
25 Grigore ME, Grigorescu RM, Iancu L, Ion R, Zaharia C, Andrei ER. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. Journal of Biomaterials Science, Polymer Edition 2019;30:695-712. [DOI: 10.1080/09205063.2019.1605866] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 11.7] [Reference Citation Analysis]
26 Wu X, Liu R, Lao TT. Therapeutic compression materials and wound dressings for chronic venous insufficiency: A comprehensive review. J Biomed Mater Res B Appl Biomater 2020;108:892-909. [PMID: 31339655 DOI: 10.1002/jbm.b.34443] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Kourilova X, Pernicova I, Vidlakova M, Krejcirik R, Mrazova K, Hrubanova K, Krzyzanek V, Nebesarova J, Obruca S. Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis. Bioengineering (Basel) 2021;8:141. [PMID: 34677214 DOI: 10.3390/bioengineering8100141] [Reference Citation Analysis]
28 Muneer F, Rasul I, Azeem F, Siddique MH, Zubair M, Nadeem H. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J Polym Environ 2020;28:2301-23. [DOI: 10.1007/s10924-020-01772-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 9.5] [Reference Citation Analysis]
29 Ray S, Kalia VC. Polyhydroxyalkanoate Production and Degradation Patterns in Bacillus Species. Indian J Microbiol 2017;57:387-92. [PMID: 29151638 DOI: 10.1007/s12088-017-0676-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
30 Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. Bioresour Technol 2021;337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Reference Citation Analysis]
31 Samper MD, Bertomeu D, Arrieta MP, Ferri JM, López-Martínez J. Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials (Basel) 2018;11:E1886. [PMID: 30279367 DOI: 10.3390/ma11101886] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 7.8] [Reference Citation Analysis]
32 Basnett P, Marcello E, Lukasiewicz B, Panchal B, Nigmatullin R, Knowles JC, Roy I. Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. J Mater Sci: Mater Med 2018;29. [DOI: 10.1007/s10856-018-6183-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
33 Nandakumar A, Chuah J, Sudesh K. Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews 2021;147:111237. [DOI: 10.1016/j.rser.2021.111237] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 14.0] [Reference Citation Analysis]
34 Azuraini MJ, Vigneswari S, Huong K, Khairul WM, H.p.s. AK, Ramakrishna S, Amirul AA. Surface Modification of Sponge-like Porous Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Gelatine Blend Scaffolds for Potential Biomedical Applications. Polymers 2022;14:1710. [DOI: 10.3390/polym14091710] [Reference Citation Analysis]
35 Jangra MR, Batra R, Passricha N, Sikka VK. Cloning, Sequencing and In Silico Analysis of phbC Gene from Pseudomonas spp. Indian J Microbiol 2019;59:58-63. [PMID: 30728631 DOI: 10.1007/s12088-018-0767-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Kumar V, Kumar S, Singh D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int J Biol Macromol 2020;147:1255-67. [PMID: 31739043 DOI: 10.1016/j.ijbiomac.2019.09.253] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
37 Ray S, Sharma R, Kalia VC. Co-utilization of Crude Glycerol and Biowastes for Producing Polyhydroxyalkanoates. Indian J Microbiol 2018;58:33-8. [PMID: 29434395 DOI: 10.1007/s12088-017-0702-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
38 Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresour Technol 2021;326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 23.0] [Reference Citation Analysis]
39 Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers (Basel) 2020;12:E512. [PMID: 32120773 DOI: 10.3390/polym12030512] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Drusilla Wendy Y, Nor Fauziah M, Siti Baidurah Y, Tong W, Lee C. Production and characterization of polyhydroxybutyrate (PHB) BY Burkholderia cepacia BPT1213 using waste glycerol as carbon source. Biocatalysis and Agricultural Biotechnology 2022. [DOI: 10.1016/j.bcab.2022.102310] [Reference Citation Analysis]
41 Greene AF, Vaidya A, Collet C, Wade KR, Patel M, Gaugler M, West M, Petcu M, Parker K. 3D-Printed Enzyme-Embedded Plastics. Biomacromolecules 2021;22:1999-2009. [PMID: 33870685 DOI: 10.1021/acs.biomac.1c00105] [Reference Citation Analysis]
42 Kundrat V, Cernekova N, Kovalcik A, Enev V, Marova I. Drug Release Kinetics of Electrospun PHB Meshes. Materials (Basel) 2019;12:E1924. [PMID: 31207921 DOI: 10.3390/ma12121924] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
43 Spałek J, Ociepa P, Deptuła P, Piktel E, Daniluk T, Król G, Góźdź S, Bucki R, Okła S. Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022;23:2575. [PMID: 35269718 DOI: 10.3390/ijms23052575] [Reference Citation Analysis]
44 Kalia VC. Mining Metagenomes for Novel Bioactive Molecules. In: Kalia VC, Shouche Y, Purohit HJ, Rahi P, editors. Mining of Microbial Wealth and MetaGenomics. Singapore: Springer; 2017. pp. 1-9. [DOI: 10.1007/978-981-10-5708-3_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
45 Gupta S, Singh GP, Kumawat S. Petri Net Recommender System to Model Metabolic Pathway of Polyhydroxyalkanoates: . International Journal of Knowledge and Systems Science 2019;10:42-59. [DOI: 10.4018/ijkss.2019040103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
46 Guimarães TC, Araújo ES, Hernández-macedo ML, López JA. Polyhydroxyalkanoates: Biosynthesis from Alternative Carbon Sources and Analytic Methods: A Short Review. J Polym Environ. [DOI: 10.1007/s10924-022-02403-7] [Reference Citation Analysis]
47 Zher Neoh S, Fey Chek M, Tiang Tan H, Linares-pastén JA, Nandakumar A, Hakoshima T, Sudesh K. Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology 2022. [DOI: 10.1016/j.crbiot.2022.01.002] [Reference Citation Analysis]