BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schlüter A, Aksan B, Fioravanti R, Valente S, Mai A, Mauceri D. Histone Deacetylases Contribute to Excitotoxicity-Triggered Degeneration of Retinal Ganglion Cells In Vivo. Mol Neurobiol 2019;56:8018-34. [PMID: 31161423 DOI: 10.1007/s12035-019-01658-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023;60:2330-54. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Reference Citation Analysis]
2 You M, Rong R, Zeng Z, Fan C, Li H, Yang Q, Ji D. Integrated analysis of long non-coding RNAs and mRNAs associated with glaucoma in vitro. Front Endocrinol (Lausanne) 2023;14:1087442. [PMID: 36923213 DOI: 10.3389/fendo.2023.1087442] [Reference Citation Analysis]
3 Chen H, Xie C, Chen Q, Zhuang S. HDAC11, an emerging therapeutic target for metabolic disorders. Front Endocrinol 2022;13:989305. [DOI: 10.3389/fendo.2022.989305] [Reference Citation Analysis]
4 Chang HH, Chang YY, Tsai BC, Chen LJ, Chang AC, Chuang JY, Gean PW, Hsueh YS. A Selective Histone Deacetylase Inhibitor Induces Autophagy and Cell Death via SCNN1A Downregulation in Glioblastoma Cells. Cancers (Basel) 2022;14:4537. [PMID: 36139696 DOI: 10.3390/cancers14184537] [Reference Citation Analysis]
5 Mauceri D. Role of Epigenetic Mechanisms in Chronic Pain. Cells 2022;11:2613. [PMID: 36010687 DOI: 10.3390/cells11162613] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Litke C, Hagenston AM, Kenkel AK, Paldy E, Lu J, Kuner R, Mauceri D. Organic anion transporter 1 is an HDAC4-regulated mediator of nociceptive hypersensitivity in mice. Nat Commun 2022;13:875. [PMID: 35169129 DOI: 10.1038/s41467-022-28357-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Cheng F, Zheng B, Wang J, Zhao G, Yao Z, Niu Z, He W. Histone deacetylase 10, a potential epigenetic target for therapy. Biosci Rep 2021;41:BSR20210462. [PMID: 33997894 DOI: 10.1042/BSR20210462] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J 2021. [PMID: 33891374 DOI: 10.1111/febs.15895] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
9 DeGregorio-Rocasolano N, Guirao V, Ponce J, Melià-Sorolla M, Aliena-Valero A, García-Serran A, Salom JB, Dávalos A, Martí-Sistac O, Gasull T. Comparative Proteomics Unveils LRRFIP1 as a New Player in the DAPK1 Interactome of Neurons Exposed to Oxygen and Glucose Deprivation. Antioxidants (Basel) 2020;9:E1202. [PMID: 33265962 DOI: 10.3390/antiox9121202] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Kelada M, Hill D, Yap TE, Manzar H, Cordeiro MF. Innovations and revolutions in reducing retinal ganglion cell loss in glaucoma. Expert Review of Ophthalmology 2021;16:33-46. [DOI: 10.1080/17469899.2021.1835470] [Reference Citation Analysis]
11 Schmitt HM, Grosser JA, Schlamp CL, Nickells RW. Targeting HDAC3 in the DBA/2J spontaneous mouse model of glaucoma. Exp Eye Res 2020;200:108244. [PMID: 32971093 DOI: 10.1016/j.exer.2020.108244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 D'Mello SR. Histone deacetylase-3: Friend and foe of the brain. Exp Biol Med (Maywood) 2020;245:1130-41. [PMID: 32486848 DOI: 10.1177/1535370220928278] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Schlüter A, Aksan B, Diem R, Fairless R, Mauceri D. VEGFD Protects Retinal Ganglion Cells and, consequently, Capillaries against Excitotoxic Injury. Mol Ther Methods Clin Dev 2020;17:281-99. [PMID: 32055648 DOI: 10.1016/j.omtm.2019.12.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
14 Schlüter A, Rossberger S, Dannehl D, Janssen JM, Vorwald S, Hanne J, Schultz C, Mauceri D, Engelhardt M. Dynamic Regulation of Synaptopodin and the Axon Initial Segment in Retinal Ganglion Cells During Postnatal Development. Front Cell Neurosci 2019;13:318. [PMID: 31417359 DOI: 10.3389/fncel.2019.00318] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]