BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Czubowicz K, Jęśko H, Wencel P, Lukiw WJ, Strosznajder RP. The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019;56:5436-55. [PMID: 30612333 DOI: 10.1007/s12035-018-1448-3] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 22.7] [Reference Citation Analysis]
Number Citing Articles
1 Motyl JA, Strosznajder JB, Wencel A, Strosznajder RP. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. Int J Mol Sci 2021;22:6277. [PMID: 34207975 DOI: 10.3390/ijms22126277] [Reference Citation Analysis]
2 Khorani M, Bobe G, Matthews DG, Magana AA, Caruso M, Gray NE, Quinn JF, Stevens JF, Soumyanath A, Maier CS. The Impact of the hAPP695SW Transgene and Associated Amyloid-β Accumulation on Murine Hippocampal Biochemical Pathways. JAD 2021. [DOI: 10.3233/jad-215084] [Reference Citation Analysis]
3 Wang X, Allen M, Li S, Quicksall ZS, Patel TA, Carnwath TP, Reddy JS, Carrasquillo MM, Lincoln SJ, Nguyen TT, Malphrus KG, Dickson DW, Crook JE, Asmann YW, Ertekin-Taner N. Deciphering cellular transcriptional alterations in Alzheimer's disease brains. Mol Neurodegener 2020;15:38. [PMID: 32660529 DOI: 10.1186/s13024-020-00392-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
4 Kalinichenko LS, Gulbins E, Kornhuber J, Müller CP. Sphingolipid control of cognitive functions in health and disease. Progress in Lipid Research 2022. [DOI: 10.1016/j.plipres.2022.101162] [Reference Citation Analysis]
5 D’angiolini S, Chiricosta L, Mazzon E. Sphingolipid Metabolism as a New Predictive Target Correlated with Aging and AD: A Transcriptomic Analysis. Medicina 2022;58:493. [DOI: 10.3390/medicina58040493] [Reference Citation Analysis]
6 McGarry A, Gaughan J, Hackmyer C, Lovett J, Khadeer M, Shaikh H, Pradhan B, Ferraro TN, Wainer IW, Moaddel R. Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Sci Rep 2020;10:20490. [PMID: 33235276 DOI: 10.1038/s41598-020-77526-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021;64:17656-89. [PMID: 34905377 DOI: 10.1021/acs.jmedchem.1c01571] [Reference Citation Analysis]
8 Chua XY, Ho LTY, Xiang P, Chew WS, Lam BWS, Chen CP, Ong WY, Lai MKP, Herr DR. Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment. Neuromolecular Med 2021;23:47-67. [PMID: 33180310 DOI: 10.1007/s12017-020-08632-0] [Reference Citation Analysis]
9 Liu NJ, Hou LP, Bao JJ, Wang LJ, Chen XY. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. Plant Commun 2021;2:100214. [PMID: 34746760 DOI: 10.1016/j.xplc.2021.100214] [Reference Citation Analysis]
10 Nadella V, Sharma L, Kumar P, Gupta P, Gupta UD, Tripathi S, Pothani S, Qadri SSYH, Prakash H. Sphingosine-1-Phosphate (S-1P) Promotes Differentiation of Naive Macrophages and Enhances Protective Immunity Against Mycobacterium tuberculosis. Front Immunol 2019;10:3085. [PMID: 32038629 DOI: 10.3389/fimmu.2019.03085] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Cuperlovic-Culf M, Badhwar A. Recent advances from metabolomics and lipidomics application in alzheimer's disease inspiring drug discovery. Expert Opin Drug Discov 2020;15:319-31. [PMID: 31619081 DOI: 10.1080/17460441.2020.1674808] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jaber VR, Zhao Y, Sharfman NM, Li W, Lukiw WJ. Addressing Alzheimer's Disease (AD) Neuropathology Using Anti-microRNA (AM) Strategies. Mol Neurobiol 2019;56:8101-8. [PMID: 31183807 DOI: 10.1007/s12035-019-1632-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
13 Gupta P, Khan FI, Ambreen D, Lai D, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI. Investigation of guanidinium chloride-induced unfolding pathway of sphingosine kinase 1. Int J Biol Macromol 2020;147:177-86. [PMID: 31917989 DOI: 10.1016/j.ijbiomac.2020.01.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
14 Hwang Y, Kim HC, Shin EJ. BKM120 alters the migration of doublecortin-positive cells in the dentate gyrus of mice. Pharmacol Res 2022;:106226. [PMID: 35460881 DOI: 10.1016/j.phrs.2022.106226] [Reference Citation Analysis]
15 Li Q, Shinde S, Grasso G, Caroli A, Abouhany R, Lanzillotta M, Pan G, Wan W, Rurack K, Sellergren B. Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles. Sci Rep 2020;10:9924. [PMID: 32555511 DOI: 10.1038/s41598-020-66802-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Gupta P, Mohammad T, Khan P, Alajmi MF, Hussain A, Rehman MT, Hassan MI. Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomed Pharmacother 2019;118:109245. [PMID: 31352240 DOI: 10.1016/j.biopha.2019.109245] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
17 Arsenault EJ, McGill CM, Barth BM. Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2. Neuromolecular Med 2021;23:25-46. [PMID: 33547562 DOI: 10.1007/s12017-021-08646-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Song Z, Xu Y, Deng W, Zhang L, Zhu H, Yu P, Qu Y, Zhao W, Han Y, Qin C. Brain Derived Exosomes Are a Double-Edged Sword in Alzheimer's Disease. Front Mol Neurosci 2020;13:79. [PMID: 32547364 DOI: 10.3389/fnmol.2020.00079] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
19 Pepe G, Cotugno M, Marracino F, Giova S, Capocci L, Forte M, Stanzione R, Bianchi F, Marchitti S, Di Pardo A, Sciarretta S, Rubattu S, Maglione V. Differential Expression of Sphingolipid Metabolizing Enzymes in Spontaneously Hypertensive Rats: A Possible Substrate for Susceptibility to Brain and Kidney Damage. Int J Mol Sci 2021;22:3796. [PMID: 33917593 DOI: 10.3390/ijms22073796] [Reference Citation Analysis]
20 Bhadwal P, Dahiya D, Shinde D, Vaiphei K, Math RGH, Randhawa V, Agnihotri N. LC-HRMS based approach to identify novel sphingolipid biomarkers in breast cancer patients. Sci Rep 2020;10:4668. [PMID: 32170160 DOI: 10.1038/s41598-020-61283-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Kim J, Lee Y, Lee S, Kim K, Song M, Lee J. Mesenchymal Stem Cell Therapy and Alzheimer's Disease: Current Status and Future Perspectives. J Alzheimers Dis. 2020;77:1-14. [PMID: 32741816 DOI: 10.3233/jad-200219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
22 Ma W, Zhang M, Liu S, Wang M, Shi Y, Yang T, Li X, Zhu L. Matrine alleviates astrogliosis through sphingosine 1-phosphate signaling in experimental autoimmune encephalomyelitis. Neurosci Lett 2020;715:134599. [PMID: 31722234 DOI: 10.1016/j.neulet.2019.134599] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Wang C, Xu T, Lachance BB, Zhong X, Shen G, Xu T, Tang C, Jia X. Critical roles of sphingosine kinase 1 in the regulation of neuroinflammation and neuronal injury after spinal cord injury. J Neuroinflammation 2021;18:50. [PMID: 33602274 DOI: 10.1186/s12974-021-02092-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Reference Citation Analysis]
25 Baranowska U, Holownia A, Chabowski A, Baranowski M. Pharmacological inhibition of sphingosine-1-phosphate lyase partially reverses spatial memory impairment in streptozotocin-diabetic rats. Mol Cell Neurosci 2020;107:103526. [PMID: 32622897 DOI: 10.1016/j.mcn.2020.103526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019;10:807. [PMID: 31427962 DOI: 10.3389/fphar.2019.00807] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
27 Khan FI, Gupta P, Roy S, Azum N, Alamry KA, Asiri AM, Lai D, Hassan MI. Mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. Int J Biol Macromol 2020;161:1496-505. [PMID: 32771517 DOI: 10.1016/j.ijbiomac.2020.07.280] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li W, Belwal T, Li L, Xu Y, Liu J, Zou L, Luo Z. Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021;147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Reference Citation Analysis]
29 Alessenko AV, Gutner UA, Nebogatikov VO, Shupik MA, Ustyugov AA. [The role of sphingolipids in pathogenesis of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2021;121:131-40. [PMID: 34481449 DOI: 10.17116/jnevro2021121081131] [Reference Citation Analysis]
30 Burtscher J, Di Pardo A, Maglione V, Schwarzer C, Squitieri F. Mitochondrial Respiration Changes in R6/2 Huntington's Disease Model Mice during Aging in a Brain Region Specific Manner. Int J Mol Sci 2020;21:E5412. [PMID: 32751413 DOI: 10.3390/ijms21155412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sproviero D, Gagliardi S, Zucca S, Arigoni M, Giannini M, Garofalo M, Olivero M, Dell'Orco M, Pansarasa O, Bernuzzi S, Avenali M, Cotta Ramusino M, Diamanti L, Minafra B, Perini G, Zangaglia R, Costa A, Ceroni M, Perrone-Bizzozero NI, Calogero RA, Cereda C. Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. Int J Mol Sci 2021;22:2737. [PMID: 33800495 DOI: 10.3390/ijms22052737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Shi XX, Zhu MF, Wang N, Huang YJ, Zhang MJ, Zhang C, Ali SA, Zhou WW, Zhang C, Mao C, Zhu ZR. Neutral Ceramidase Is Required for the Reproduction of Brown Planthopper, Nilaparvata lugens (Stål). Front Physiol 2021;12:629532. [PMID: 33716775 DOI: 10.3389/fphys.2021.629532] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021;15:666958. [PMID: 34220427 DOI: 10.3389/fnins.2021.666958] [Reference Citation Analysis]
34 Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021;11:1002. [PMID: 34356626 DOI: 10.3390/biom11071002] [Reference Citation Analysis]
35 Zhu S, Wu J, Hu J. Non-coding RNA in alcohol use disorder by affecting synaptic plasticity. Exp Brain Res 2022. [PMID: 35028694 DOI: 10.1007/s00221-022-06305-x] [Reference Citation Analysis]
36 Blank M, Hopf C. Spatially resolved mass spectrometry analysis of amyloid plaque-associated lipids. J Neurochem 2021;159:330-42. [PMID: 33048341 DOI: 10.1111/jnc.15216] [Reference Citation Analysis]
37 Gutner UA, Shupik MA. The Role of Sphingosine-1-Phosphate in Neurodegenerative Diseases. Russ J Bioorg Chem 2021;47:1155-71. [DOI: 10.1134/s1068162021050277] [Reference Citation Analysis]
38 Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020;141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Li HH, Lin YT, Laiakis EC, Goudarzi M, Weber W, Fornace AJ Jr. Serum Metabolomic Alterations Associated with Cesium-137 Internal Emitter Delivered in Various Dose Rates. Metabolites 2020;10:E270. [PMID: 32629836 DOI: 10.3390/metabo10070270] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Jęśko H, Wieczorek I, Wencel PL, Gąssowska-Dobrowolska M, Lukiw WJ, Strosznajder RP. Age-Related Transcriptional Deregulation of Genes Coding Synaptic Proteins in Alzheimer's Disease Murine Model: Potential Neuroprotective Effect of Fingolimod. Front Mol Neurosci 2021;14:660104. [PMID: 34305524 DOI: 10.3389/fnmol.2021.660104] [Reference Citation Analysis]
41 Jairajpuri DS, Mohammad T, Adhikari K, Gupta P, Hasan GM, Alajmi MF, Rehman MT, Hussain A, Hassan MI. Identification of Sphingosine Kinase-1 Inhibitors from Bioactive Natural Products Targeting Cancer Therapy. ACS Omega 2020;5:14720-9. [PMID: 32596609 DOI: 10.1021/acsomega.0c01511] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
42 Zhang Y, Zhang X, Lu M, Zou X. Ceramide-1-phosphate and its transfer proteins in eukaryotes. Chem Phys Lipids 2021;240:105135. [PMID: 34499882 DOI: 10.1016/j.chemphyslip.2021.105135] [Reference Citation Analysis]
43 Giovagnoni C, Ali M, Eijssen LMT, Maes R, Choe K, Mulder M, Kleinjans J, Del Sol A, Glaab E, Mastroeni D, Delvaux E, Coleman P, Losen M, Pishva E, Martinez-Martinez P, van den Hove DLA. Altered sphingolipid function in Alzheimer's disease; a gene regulatory network approach. Neurobiol Aging 2021;102:178-87. [PMID: 33773368 DOI: 10.1016/j.neurobiolaging.2021.02.001] [Reference Citation Analysis]
44 Miltenberger-miltenyi G, Cruz-machado AR, Saville J, Conceição VA, Calado Â, Lopes I, Fuller M, Fonseca JE. Increased monohexosylceramide levels in the serum of established rheumatoid arthritis patients. Rheumatology 2020;59:2085-9. [DOI: 10.1093/rheumatology/kez545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
45 Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021;236:4857-73. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Burtscher J, Maglione V, Di Pardo A, Millet GP, Schwarzer C, Zangrandi L. A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021;22:E582. [PMID: 33430140 DOI: 10.3390/ijms22020582] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
47 Angelopoulou E, Piperi C. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential. Neuromolecular Med 2019;21:227-38. [PMID: 31313064 DOI: 10.1007/s12017-019-08558-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
48 Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021;18:134-49. [PMID: 33397266 DOI: 10.2174/1567202617999210104220334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Simoes M, Saleh A, Choi Y, Airola MV, Haley JD, Coant N. Measurement of neutral ceramidase activity in vitro and in vivo. Analytical Biochemistry 2022. [DOI: 10.1016/j.ab.2022.114577] [Reference Citation Analysis]
50 Lee JY, Jin HK, Bae J. Sphingolipids in neuroinflammation: a potential target for diagnosis and therapy. BMB Rep 2020;53:28-34. [DOI: 10.5483/bmbrep.2020.53.1.278] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
51 Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020;159:133-69. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
52 Gupta P, Khan FI, Roy S, Anwar S, Dahiya R, Alajmi MF, Hussain A, Rehman MT, Lai D, Hassan MI. Functional implications of pH-induced conformational changes in the Sphingosine kinase 1. Spectrochim Acta A Mol Biomol Spectrosc 2020;225:117453. [PMID: 31446356 DOI: 10.1016/j.saa.2019.117453] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
53 Fais M, Dore A, Galioto M, Galleri G, Crosio C, Iaccarino C. Parkinson's Disease-Related Genes and Lipid Alteration. Int J Mol Sci 2021;22:7630. [PMID: 34299248 DOI: 10.3390/ijms22147630] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. J Agric Food Chem 2021;69:8929-43. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021;11:945. [PMID: 34202192 DOI: 10.3390/biom11070945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
56 Estes RE, Lin B, Khera A, Davis MY. Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Front Mol Neurosci 2021;14:788695. [PMID: 34987360 DOI: 10.3389/fnmol.2021.788695] [Reference Citation Analysis]
57 Sun W, Liu C, Zhou X, Li X, Chu X, Wang X, Han F. Serum lipidomics study reveals protective effects of Rhodiola crenulata extract on Alzheimer's disease rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020;1158:122346. [PMID: 32882532 DOI: 10.1016/j.jchromb.2020.122346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Bascuñana P, Möhle L, Brackhan M, Pahnke J. Fingolimod as a Treatment in Neurologic Disorders Beyond Multiple Sclerosis. Drugs R D 2020;20:197-207. [PMID: 32696271 DOI: 10.1007/s40268-020-00316-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
59 Dawoody Nejad L, Stumpe M, Rauch M, Hemphill A, Schneiter R, Bütikofer P, Serricchio M. Mitochondrial sphingosine-1-phosphate lyase is essential for phosphatidylethanolamine synthesis and survival of Trypanosoma brucei. Sci Rep 2020;10:8268. [PMID: 32427974 DOI: 10.1038/s41598-020-65248-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2021;8:86-132. [PMID: 33490374 DOI: 10.3934/Neuroscience.2021005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
61 Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020;143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
62 Jęśko H, Wencel PL, Wójtowicz S, Strosznajder J, Lukiw WJ, Strosznajder RP. Fingolimod Affects Transcription of Genes Encoding Enzymes of Ceramide Metabolism in Animal Model of Alzheimer's Disease. Mol Neurobiol 2020;57:2799-811. [PMID: 32356173 DOI: 10.1007/s12035-020-01908-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
63 Zhao H, Liu S, Chen M, Li J, Huang D, Zhu S. Synergistic effects of ascorbic acid and plant‐derived ceramide to enhance storability and boost antioxidant systems of postharvest strawberries. J Sci Food Agric 2019;99:6562-71. [DOI: 10.1002/jsfa.9937] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
64 Kornhuber J, Gulbins E. New Molecular Targets for Antidepressant Drugs. Pharmaceuticals (Basel) 2021;14:894. [PMID: 34577594 DOI: 10.3390/ph14090894] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Zeng M, Qi L, Guo Y, Zhu X, Tang X, Yong T, Xie Y, Wu Q, Zhang M, Chen D. Long-Term Administration of Triterpenoids From Ganoderma lucidum Mitigates Age-Associated Brain Physiological Decline via Regulating Sphingolipid Metabolism and Enhancing Autophagy in Mice. Front Aging Neurosci 2021;13:628860. [PMID: 34025387 DOI: 10.3389/fnagi.2021.628860] [Reference Citation Analysis]
66 Silva GD, Brochers-Lacchini FC, Leopoldino AM. How do sphingolipids play a role in epigenetic mechanisms and gene expression? Epigenomics 2021. [PMID: 34905958 DOI: 10.2217/epi-2021-0425] [Reference Citation Analysis]
67 Hwangbo N, Zhang X, Raftery D, Gu H, Hu S, Montine TJ, Quinn JF, Chung KA, Hiller AL, Wang D, Fei Q, Bettcher L, Zabetian CP, Peskind ER, Li G, Promislow DEL, Davis MY, Franks A. Predictive Modeling of Alzheimer’s and Parkinson’s Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites 2022;12:277. [DOI: 10.3390/metabo12040277] [Reference Citation Analysis]
68 Conte M, Medici V, Malagoli D, Chiariello A, Cirrincione A, Davin A, Chikhladze M, Vasuri F, Legname G, Ferrer I, Vanni S, Marcon G, Poloni TE, Guaita A, Franceschi C, Salvioli S. Expression pattern of perilipins in human brain during aging and in Alzheimer's disease. Neuropathol Appl Neurobiol 2021. [PMID: 34312912 DOI: 10.1111/nan.12756] [Reference Citation Analysis]
69 Flores-Romero H, Ros U, García-Sáez AJ. A lipid perspective on regulated cell death. Int Rev Cell Mol Biol 2020;351:197-236. [PMID: 32247580 DOI: 10.1016/bs.ircmb.2019.11.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
70 Bouscary A, Quessada C, René F, Spedding M, Turner BJ, Henriques A, Ngo ST, Loeffler JP. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Semin Cell Dev Biol 2021;112:82-91. [PMID: 33160824 DOI: 10.1016/j.semcdb.2020.10.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Shupik MA, Gutner UA, Ustyugov AA, Rezvykh AP, Funikov SY, Maloshitskaya OA, Sokolov SA, Lebedev AT, Alessenko AV. Changes in the Metabolism of Sphingomyelin and Ceramide in the Brain Structures and Spinal Cord of Transgenic Mice (FUS(1-359)) Modeling Amyotrophic Lateral Sclerosis. Russ J Bioorg Chem 2022;48:178-89. [DOI: 10.1134/s1068162022010137] [Reference Citation Analysis]
72 Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019;10:807. [PMID: 31417486 DOI: 10.3389/fneur.2019.00807] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
73 Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020;21:E1505. [PMID: 32098382 DOI: 10.3390/ijms21041505] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 24.5] [Reference Citation Analysis]
74 Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2020;325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
75 Meacci E, Garcia-Gil M. S1P/S1P Receptor Signaling in Neuromuscolar Disorders. Int J Mol Sci 2019;20:E6364. [PMID: 31861214 DOI: 10.3390/ijms20246364] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
76 Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target 2020;28:129-41. [PMID: 31280623 DOI: 10.1080/1061186X.2019.1641508] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
77 Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020;13:58. [PMID: 32351364 DOI: 10.3389/fnmol.2020.00058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]