BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pyszko J, Strosznajder JB. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol Neurobiol 2014;50:38-48. [PMID: 24399507 DOI: 10.1007/s12035-013-8622-4] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Kuperberg SJ, Wadgaonkar R. Sepsis-Associated Encephalopathy: The Blood-Brain Barrier and the Sphingolipid Rheostat. Front Immunol 2017;8:597. [PMID: 28670310 DOI: 10.3389/fimmu.2017.00597] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 9.2] [Reference Citation Analysis]
2 Chan JP, Brown J, Hark B, Nolan A, Servello D, Hrobuchak H, Staab TA. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans. Front Genet 2017;8:132. [PMID: 28983319 DOI: 10.3389/fgene.2017.00132] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
3 Chen L, Xia Y, Lu J, Xie Q, Ye A, Sun W. A 50-Hz magnetic-field exposure promotes human amniotic cells proliferation via SphK-S1P-S1PR cascade mediated ERK signaling pathway. Ecotoxicol Environ Saf 2020;194:110407. [PMID: 32146198 DOI: 10.1016/j.ecoenv.2020.110407] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Motyl J, Strosznajder JB. Sphingosine kinase 1/sphingosine-1-phosphate receptors dependent signalling in neurodegenerative diseases. The promising target for neuroprotection in Parkinson’s disease. Pharmacological Reports 2018;70:1010-4. [DOI: 10.1016/j.pharep.2018.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
5 Rahar B, Chawla S, Tulswani R, Saxena S. Acute Hypobaric Hypoxia-Mediated Biochemical/Metabolic Shuffling and Differential Modulation of S1PR-SphK in Cardiac and Skeletal Muscles. High Alt Med Biol 2019;20:78-88. [PMID: 30892968 DOI: 10.1089/ham.2018.0046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Motyl JA, Strosznajder JB, Wencel A, Strosznajder RP. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. Int J Mol Sci 2021;22:6277. [PMID: 34207975 DOI: 10.3390/ijms22126277] [Reference Citation Analysis]
7 Pariyar R, Lamichhane R, Jung HJ, Kim SY, Seo J. Sulfuretin Attenuates MPP⁺-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways. Int J Mol Sci 2017;18:E2753. [PMID: 29257079 DOI: 10.3390/ijms18122753] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
8 Łukomska A, Baranowska-Bosiacka I, Budkowska M, Pilutin A, Tarnowski M, Dec K, Dołęgowska B, Metryka E, Chlubek D, Gutowska I. The effect of low levels of lead (Pb) in the blood on levels of sphingosine-1-phosphate (S1P) and expression of S1P receptor 1 in the brain of the rat in the perinatal period. Chemosphere 2017;166:221-9. [PMID: 27697711 DOI: 10.1016/j.chemosphere.2016.09.067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
9 Xue G, Chen JP, Li Y, Zhang ZQ, Zhu JL, Dong W. MicroRNA-6862 inhibition elevates sphingosine kinase 1 and protects neuronal cells from MPP+-induced apoptosis. Aging (Albany NY) 2020;13:1369-82. [PMID: 33414358 DOI: 10.18632/aging.202335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015;27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 6.3] [Reference Citation Analysis]
11 Diarte-Añazco EMG, Méndez-Lara KA, Pérez A, Alonso N, Blanco-Vaca F, Julve J. Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. Int J Mol Sci 2019;20:E6273. [PMID: 31842389 DOI: 10.3390/ijms20246273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
12 Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019;10:807. [PMID: 31427962 DOI: 10.3389/fphar.2019.00807] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
13 Du B, Jin N, Zhu X, Lu D, Jin C, Li Z, Han C, Zhang Y, Lai D, Liu K, Wei R. A prospective study of serum metabolomic and lipidomic changes in myopic children and adolescents. Exp Eye Res 2020;199:108182. [PMID: 32781198 DOI: 10.1016/j.exer.2020.108182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Guo Z, Cao W, Zhao S, Han Z, Han B. Protection against 1-methyl-4-phenyl pyridinium-induced neurotoxicity in human neuroblastoma SH-SY5Y cells by Soyasaponin I by the activation of the phosphoinositide 3-kinase/AKT/GSK3β pathway. Neuroreport 2016;27:730-6. [PMID: 27196724 DOI: 10.1097/WNR.0000000000000603] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Alessenko AV, Albi E. Exploring Sphingolipid Implications in Neurodegeneration. Front Neurol 2020;11:437. [PMID: 32528400 DOI: 10.3389/fneur.2020.00437] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
16 Zhang N, Tang C, Ma Q, Wang W, Shi M, Zhou X, Chen F, Ma C, Li X, Chen G, Gao D. Comprehensive serum metabolic and proteomic characterization on cognitive dysfunction in Parkinson's disease. Ann Transl Med 2021;9:559. [PMID: 33987257 DOI: 10.21037/atm-20-4583] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Qian Y, Xu S, Yang X, Xiao Q. Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J Neurosci Res 2018;96:253-64. [PMID: 28752899 DOI: 10.1002/jnr.24119] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
18 Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020;13:58. [PMID: 32351364 DOI: 10.3389/fnmol.2020.00058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
19 Di Santo S, Widmer HR. Paracrine factors for neurodegenerative disorders: special emphasis on Parkinson's disease. Neural Regen Res 2016;11:570-1. [PMID: 27212915 DOI: 10.4103/1673-5374.180739] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
20 Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015;16:5076-124. [PMID: 25751724 DOI: 10.3390/ijms16035076] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
21 Motyl J, Wencel PL, Cieślik M, Strosznajder RP, Strosznajder JB. Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: implications for neurodegenerative disorders. Mol Neurobiol 2018;55:727-40. [PMID: 28050792 DOI: 10.1007/s12035-016-0317-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
22 Zindo FT, Malan SF, Omoruyi SI, Enogieru AB, Ekpo OE, Joubert J. Design, synthesis and evaluation of pentacycloundecane and hexacycloundecane propargylamine derivatives as multifunctional neuroprotective agents. European Journal of Medicinal Chemistry 2019;163:83-94. [DOI: 10.1016/j.ejmech.2018.11.051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Mazi TA, Sarode GV, Czlonkowska A, Litwin T, Kim K, Shibata NM, Medici V. Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes. Int J Mol Sci 2019;20:E5937. [PMID: 31779102 DOI: 10.3390/ijms20235937] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
24 Chung MY, Park SY, Chung JO, Cho DH, Chung DJ. Plasma sphingosine 1-phosphate concentrations and cardiovascular autonomic neuropathy in individuals with type 2 diabetes. Sci Rep 2020;10:12768. [PMID: 32728147 DOI: 10.1038/s41598-020-69566-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lötsch J, Lerch F, Djaldetti R, Tegder I, Ultsch A. Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). Big Data Anal 2018;3. [DOI: 10.1186/s41044-018-0032-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
26 Motyl J, Przykaza Ł, Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018;135:139-50. [DOI: 10.1016/j.neuropharm.2018.02.023] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 8.8] [Reference Citation Analysis]
27 Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017;8:36898-929. [PMID: 28415564 DOI: 10.18632/oncotarget.16370] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
28 Jo S, Park KW, Hwang YS, Lee SH, Ryu HS, Chung SJ. Microarray Genotyping Identifies New Loci Associated with Dementia in Parkinson's Disease. Genes (Basel) 2021;12:1975. [PMID: 34946922 DOI: 10.3390/genes12121975] [Reference Citation Analysis]
29 Zhao Q, Ye J, Wei N, Fong C, Dong X. Protection against MPP(+)-induced neurotoxicity in SH-SY5Y cells by tormentic acid via the activation of PI3-K/Akt/GSK3β pathway. Neurochem Int 2016;97:117-23. [PMID: 26994872 DOI: 10.1016/j.neuint.2016.03.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
30 Czubowicz K, Cieślik M, Pyszko J, Strosznajder JB, Strosznajder RP. Sphingosine-1-phosphate and its effect on glucose deprivation/glucose reload stress: from gene expression to neuronal survival. Mol Neurobiol 2015;51:1300-8. [PMID: 25056275 DOI: 10.1007/s12035-014-8807-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
31 Karunakaran I, van Echten-Deckert G. Sphingosine 1-phosphate - A double edged sword in the brain. Biochim Biophys Acta Biomembr 2017;1859:1573-82. [PMID: 28315304 DOI: 10.1016/j.bbamem.2017.03.008] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
32 Zhao P, Yang X, Yang L, Li M, Wood K, Liu Q, Zhu X. Neuroprotective effects of fingolimod in mouse models of Parkinson's disease. FASEB J 2017;31:172-9. [PMID: 27671228 DOI: 10.1096/fj.201600751R] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
33 Czubowicz K, Jęśko H, Wencel P, Lukiw WJ, Strosznajder RP. The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019;56:5436-55. [PMID: 30612333 DOI: 10.1007/s12035-018-1448-3] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 22.7] [Reference Citation Analysis]
34 Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021;10:2452. [PMID: 34572099 DOI: 10.3390/cells10092452] [Reference Citation Analysis]
35 Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021;11:945. [PMID: 34202192 DOI: 10.3390/biom11070945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Ghrelin mitigates MPP+-induced cytotoxicity: Involvement of ERK1/2-mediated Nrf2/HO-1 and endoplasmic reticulum stress PERK signaling pathway. Peptides 2020;133:170374. [PMID: 32814076 DOI: 10.1016/j.peptides.2020.170374] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
37 Gómez-López S, Martínez-Silva AV, Montiel T, Osorio-Gómez D, Bermúdez-Rattoni F, Massieu L, Escalante-Alcalde D. Neural ablation of the PARK10 candidate Plpp3 leads to dopaminergic transmission deficits without neurodegeneration. Sci Rep 2016;6:24028. [PMID: 27063549 DOI: 10.1038/srep24028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
38 Cieślik M, Czapski GA, Strosznajder JB. The Molecular Mechanism of Amyloid β42 Peptide Toxicity: The Role of Sphingosine Kinase-1 and Mitochondrial Sirtuins. PLoS One 2015;10:e0137193. [PMID: 26334640 DOI: 10.1371/journal.pone.0137193] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
39 Denya I, Malan SF, Enogieru AB, Omoruyi SI, Ekpo OE, Kapp E, Zindo FT, Joubert J. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer's disease. Medchemcomm 2018;9:357-70. [PMID: 30108930 DOI: 10.1039/c7md00569e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 3.8] [Reference Citation Analysis]
40 Xicoy H, Wieringa B, Martens GJM. The Role of Lipids in Parkinson's Disease. Cells 2019;8:E27. [PMID: 30621069 DOI: 10.3390/cells8010027] [Cited by in Crossref: 63] [Cited by in F6Publishing: 48] [Article Influence: 21.0] [Reference Citation Analysis]
41 Ghasemi R, Dargahi L, Ahmadiani A. Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage. Pharmacological Research 2016;104:156-64. [DOI: 10.1016/j.phrs.2015.11.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
42 Sivasubramanian M, Kanagaraj N, Dheen ST, Tay SS. Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson's disease and in MPP+ -treated MN9D cells in vitro. Neuroscience 2015;290:636-48. [PMID: 25637806 DOI: 10.1016/j.neuroscience.2015.01.032] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
43 D'Aprile C, Prioni S, Mauri L, Prinetti A, Grassi S. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell Signal 2021;80:109929. [PMID: 33493577 DOI: 10.1016/j.cellsig.2021.109929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Kapp E, Visser H, Sampson SL, Malan SF, Streicher EM, Foka GB, Warner DF, Omoruyi SI, Enogieru AB, Ekpo OE, Zindo FT, Joubert J. Versatility of 7-Substituted Coumarin Molecules as Antimycobacterial Agents, Neuronal Enzyme Inhibitors and Neuroprotective Agents. Molecules 2017;22:E1644. [PMID: 28973990 DOI: 10.3390/molecules22101644] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
45 Blokhin V, Shupik M, Gutner U, Pavlova E, Lebedev AT, Maloshitskaya O, Bogdanov V, Sokolov S, Alessenko A, Ugrumov M. The Sphingolipid Asset Is Altered in the Nigrostriatal System of Mice Models of Parkinson’s Disease. Biomolecules 2022;12:93. [DOI: 10.3390/biom12010093] [Reference Citation Analysis]
46 Truman JP, Ruiz CF, Trayssac M, Mao C, Hannun YA, Obeid LM. Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation. FASEB J 2021;35:e21284. [PMID: 33484475 DOI: 10.1096/fj.202001814RR] [Reference Citation Analysis]
47 O'Sullivan SA, Velasco-Estevez M, Dev KK. Demyelination induced by oxidative stress is regulated by sphingosine 1-phosphate receptors. Glia 2017;65:1119-36. [PMID: 28375547 DOI: 10.1002/glia.23148] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]