BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol 2013;53:92-107. [PMID: 23001867 DOI: 10.1007/s12033-012-9598-4] [Cited by in Crossref: 235] [Cited by in F6Publishing: 219] [Article Influence: 26.1] [Reference Citation Analysis]
Number Citing Articles
1 Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020;9:1. [PMID: 33375151 DOI: 10.3390/vaccines9010001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Guo M, Li J, Teng Z, Ren M, Dong H, Zhang Y, Ru J, Du P, Sun S, Guo H. Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease. Vaccines (Basel) 2021;9:891. [PMID: 34452016 DOI: 10.3390/vaccines9080891] [Reference Citation Analysis]
3 Yuan R, Ge F, Liang Y, Zhou Y, Yang L, Wang Q. Viruslike Element-Tagged Nanoparticle Inductively Coupled Plasma Mass Spectrometry Signal Multiplier: Membrane Biomarker Mediated Cell Counting. Anal Chem 2019;91:4948-52. [DOI: 10.1021/acs.analchem.9b00749] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
4 González-gamboa I, Manrique P, Sánchez F, Ponz F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. Journal of Biotechnology 2017;254:17-24. [DOI: 10.1016/j.jbiotec.2017.06.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
5 Gedvilaite A, Kucinskaite-Kodze I, Lasickiene R, Timinskas A, Vaitiekaite A, Ziogiene D, Zvirbliene A. Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes. Viruses 2015;7:4204-29. [PMID: 26230706 DOI: 10.3390/v7082818] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
6 Zhai L, Anderson D, Bruckner E, Tumban E. Novel expression of coat proteins from thermophilic bacteriophage ΦIN93 and evaluation for assembly into virus-like particles. Protein Expr Purif 2021;187:105932. [PMID: 34214599 DOI: 10.1016/j.pep.2021.105932] [Reference Citation Analysis]
7 Han JY, Song JM, Seo SH, Wang C, Lee S, Lee H, Kim S, Choi E. Ty1-fused protein-body formation for spatial organization of metabolic pathways in Saccharomyces cerevisiae. Biotechnol Bioeng 2018;115:694-704. [DOI: 10.1002/bit.26493] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
8 Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother 2016;12:2075-89. [PMID: 27159879 DOI: 10.1080/21645515.2016.1158368] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
9 Gollapudi D, Wycuff DL, Schwartz RM, Cooper JW, Cheng K. Development of high‐throughput and high sensitivity capillary gel electrophoresis platform method for Western, Eastern, and Venezuelan equine encephalitis (WEVEE) virus like particles (VLPs) purity determination and characterization. ELECTROPHORESIS 2017;38:2610-21. [DOI: 10.1002/elps.201700217] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
10 Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem 2018;65:306-22. [PMID: 28972297 DOI: 10.1002/bab.1617] [Cited by in Crossref: 66] [Cited by in F6Publishing: 48] [Article Influence: 13.2] [Reference Citation Analysis]
11 Fettelschoss-Gabriel A, Fettelschoss V, Thoms F, Giese C, Daniel M, Olomski F, Kamarachev J, Birkmann K, Bühler M, Kummer M, Zeltins A, Marti E, Kündig TM, Bachmann MF. Treating insect-bite hypersensitivity in horses with active vaccination against IL-5. J Allergy Clin Immunol 2018;142:1194-1205.e3. [PMID: 29627082 DOI: 10.1016/j.jaci.2018.01.041] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
12 Weiss VU, Pogan R, Zoratto S, Bond KM, Boulanger P, Jarrold MF, Lyktey N, Pahl D, Puffler N, Schelhaas M, Selivanovitch E, Uetrecht C, Allmaier G. Virus-like particle size and molecular weight/mass determination applying gas-phase electrophoresis (native nES GEMMA). Anal Bioanal Chem 2019;411:5951-62. [PMID: 31280479 DOI: 10.1007/s00216-019-01998-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
13 Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021;23:3693-706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
14 Hillebrandt N, Vormittag P, Bluthardt N, Dietrich A, Hubbuch J. Integrated Process for Capture and Purification of Virus-Like Particles: Enhancing Process Performance by Cross-Flow Filtration. Front Bioeng Biotechnol 2020;8:489. [PMID: 32671023 DOI: 10.3389/fbioe.2020.00489] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Sánchez-rodríguez SP, Enrriquez-avila JV, Soto-fajardo JM, Peña-montes C, Bustos-jaimes I. In Vitro Encapsulation of Heterologous dsDNA Into Human Parvovirus B19 Virus-Like Particles. Mol Biotechnol 2015;57:309-17. [DOI: 10.1007/s12033-014-9823-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
16 Ghosh S, Banerjee M. A smart viral vector for targeted delivery of hydrophobic drugs. Sci Rep 2021;11:7030. [PMID: 33782428 DOI: 10.1038/s41598-021-86198-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Cielens I, Jackevica L, Strods A, Kazaks A, Ose V, Bogans J, Pumpens P, Renhofa R. Mosaic RNA phage VLPs carrying domain III of the West Nile virus E protein. Mol Biotechnol 2014;56:459-69. [PMID: 24570176 DOI: 10.1007/s12033-014-9743-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
18 Chen CW, Saubi N, Joseph-Munné J. Design Concepts of Virus-Like Particle-Based HIV-1 Vaccines. Front Immunol 2020;11:573157. [PMID: 33117367 DOI: 10.3389/fimmu.2020.573157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Marasini N, Skwarczynski M, Toth I. Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines 2014;13:1361-76. [PMID: 25155636 DOI: 10.1586/14760584.2014.936852] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 9.6] [Reference Citation Analysis]
20 Steppert P, Burgstaller D, Klausberger M, Tover A, Berger E, Jungbauer A. Quantification and characterization of virus-like particles by size-exclusion chromatography and nanoparticle tracking analysis. J Chromatogr A 2017;1487:89-99. [PMID: 28110946 DOI: 10.1016/j.chroma.2016.12.085] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
21 Newsted D, Fallahi F, Golshani A, Azizi A. Advances and challenges in mucosal adjuvant technology. Vaccine 2015;33:2399-405. [PMID: 25865473 DOI: 10.1016/j.vaccine.2015.03.096] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
22 Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016;45:6213-49. [DOI: 10.1039/c6cs00177g] [Cited by in Crossref: 93] [Cited by in F6Publishing: 21] [Article Influence: 15.5] [Reference Citation Analysis]
23 Zeltins A. Protein Complexes and Virus-Like Particle Technology. In: Harris JR, Bhella D, editors. Virus Protein and Nucleoprotein Complexes. Singapore: Springer; 2018. pp. 379-405. [DOI: 10.1007/978-981-10-8456-0_16] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
24 Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015;10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 7.3] [Reference Citation Analysis]
25 Rodríguez-Limas WA, Sekar K, Tyo KE. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotechnol 2013;24:1089-93. [PMID: 23481378 DOI: 10.1016/j.copbio.2013.02.008] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 6.7] [Reference Citation Analysis]
26 Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020;11:576748. [PMID: 33133094 DOI: 10.3389/fimmu.2020.576748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Yamaji H, Konishi E. Production of Japanese Encephalitis Virus-Like Particles Using Insect Cell Expression Systems. Methods Mol Biol 2016;1404:365-75. [PMID: 27076311 DOI: 10.1007/978-1-4939-3389-1_25] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
28 Nika L, Wallner J, Palmberger D, Koczka K, Vorauer-uhl K, Grabherr R. Expression of full-length HER2 protein in Sf 9 insect cells and its presentation on the surface of budded virus-like particles. Protein Expression and Purification 2017;136:27-38. [DOI: 10.1016/j.pep.2017.06.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
29 Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2017;584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
30 Shi T, Han P, You C, Zhang YPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018;3:186-95. [PMID: 30345404 DOI: 10.1016/j.synbio.2018.05.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
31 Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018;9:1093. [PMID: 29868035 DOI: 10.3389/fimmu.2018.01093] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 12.3] [Reference Citation Analysis]
32 Lee KZ, Basnayake Pussepitiyalage V, Lee YH, Loesch-Fries LS, Harris MT, Hemmati S, Solomon KV. Engineering Tobacco Mosaic Virus and Its Virus-Like-Particles for Synthesis of Biotemplated Nanomaterials. Biotechnol J 2021;16:e2000311. [PMID: 33135368 DOI: 10.1002/biot.202000311] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Moreno N, Mena I, Angulo I, Gómez Y, Crisci E, Montoya M, Castón JR, Blanco E, Bárcena J. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses. Sci Rep 2016;6:31844. [PMID: 27549017 DOI: 10.1038/srep31844] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
34 Naskalska A, Dabrowska A, Nowak P, Szczepanski A, Jasik K, Milewska A, Ochman M, Zeglen S, Rajfur Z, Pyrc K. Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One 2018;13:e0203489. [PMID: 30183777 DOI: 10.1371/journal.pone.0203489] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
35 Webby MN, Sullivan MP, Yegambaram KM, Radjainia M, Keown JR, Kingston RL. A method for analyzing the composition of viral nucleoprotein complexes, produced by heterologous expression in bacteria. Virology 2019;527:159-68. [PMID: 30529564 DOI: 10.1016/j.virol.2018.11.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020;15:1719-34. [PMID: 32462968 DOI: 10.2217/nnm-2020-0163] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
37 Lin YL, Hu YC, Liang CC, Lin SY, Liang YC, Yuan HP, Chiang BL. Enterovirus-71 virus-like particles induce the activation and maturation of human monocyte-derived dendritic cells through TLR4 signaling. PLoS One 2014;9:e111496. [PMID: 25360749 DOI: 10.1371/journal.pone.0111496] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
38 Smith MT, Hawes AK, Bundy BC. Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr Opin Biotechnol 2013;24:620-6. [PMID: 23465756 DOI: 10.1016/j.copbio.2013.01.011] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 8.0] [Reference Citation Analysis]
39 Kalnciema I, Balke I, Skrastina D, Ose V, Zeltins A. Potato Virus M-Like Nanoparticles: Construction and Characterization. Mol Biotechnol 2015;57:982-92. [DOI: 10.1007/s12033-015-9891-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
40 Fender P. Use of dodecahedron "VLPs" as an alternative to the whole adenovirus. Methods Mol Biol 2014;1089:61-70. [PMID: 24132477 DOI: 10.1007/978-1-62703-679-5_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
41 Pham MD, Epperla CP, Hsieh CL, Chang W, Chang HC. Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. Anal Chem 2017;89:6527-34. [PMID: 28548489 DOI: 10.1021/acs.analchem.7b00627] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
42 Cervera L, Gòdia F, Tarrés-freixas F, Aguilar-gurrieri C, Carrillo J, Blanco J, Gutiérrez-granados S. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 2019;103:7367-84. [DOI: 10.1007/s00253-019-10038-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
43 Minkner R, Baba R, Kurosawa Y, Suzuki S, Kato T, Kobayashi S, Park EY. Purification of human papillomavirus-like particles expressed in silkworm using a Bombyx mori nucleopolyhedrovirus bacmid expression system. Journal of Chromatography B 2018;1096:39-47. [DOI: 10.1016/j.jchromb.2018.08.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
44 Donaldson B, Al-barwani F, Young V, Scullion S, Ward V, Young S. Virus-Like Particles, a Versatile Subunit Vaccine Platform. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit Vaccine Delivery. New York: Springer; 2015. pp. 159-80. [DOI: 10.1007/978-1-4939-1417-3_9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
45 Lu Y, Swartz JR. Functional properties of flagellin as a stimulator of innate immunity. Sci Rep 2016;6:18379. [PMID: 26755208 DOI: 10.1038/srep18379] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
46 Yu X, Feizpour A, Ramirez NG, Wu L, Akiyama H, Xu F, Gummuluru S, Reinhard BM. Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells. Nat Commun 2014;5:4136. [PMID: 24947940 DOI: 10.1038/ncomms5136] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
47 Kim SH, Park YC, Song JM. Evaluation of the antigenic stability of influenza virus like particles after exposure to acidic or basic pH. Clin Exp Vaccine Res 2021;10:252-8. [PMID: 34703808 DOI: 10.7774/cevr.2021.10.3.252] [Reference Citation Analysis]
48 Bustos-Jaimes I, Soto-Román RA, Gutiérrez-Landa IA, Valadez-García J, Segovia-Trinidad CL. Construction of protein-functionalized virus-like particles of parvovirus B19. J Biotechnol 2017;263:55-63. [PMID: 28935566 DOI: 10.1016/j.jbiotec.2017.09.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
49 Schmidt R, Beltzig LC, Sawatsky B, Dolnik O, Dietzel E, Krähling V, Volz A, Sutter G, Becker S, von Messling V. Generation of therapeutic antisera for emerging viral infections. NPJ Vaccines 2018;3:42. [PMID: 30323953 DOI: 10.1038/s41541-018-0082-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
50 Kramer K, Al-Barwani F, Baird MA, Young VL, Larsen DS, Ward VK, Young SL. Functionalisation of Virus-Like Particles Enhances Antitumour Immune Responses. J Immunol Res 2019;2019:5364632. [PMID: 30729137 DOI: 10.1155/2019/5364632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
51 Minkner R, Xu J, Zagst H, Wätzig H, Kato T, Oltmann-norden I, Park EY. A systematic and methodical approach for the efficient purification of recombinant protein from silkworm larval hemolymph. Journal of Chromatography B 2020;1138:121964. [DOI: 10.1016/j.jchromb.2019.121964] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Chen Q, Sun Q, Molino NM, Wang S, Boder ET, Chen W. Sortase A-mediated multi-functionalization of protein nanoparticles. Chem Commun 2015;51:12107-10. [DOI: 10.1039/c5cc03769g] [Cited by in Crossref: 40] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
53 Nakamura Y, Yamada S, Nishikawa S, Matsuura K. DNA-modified artificial viral capsids self-assembled from DNA-conjugated β-annulus peptide. J Pept Sci 2017;23:636-43. [PMID: 28133866 DOI: 10.1002/psc.2967] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
54 Yadav R, Zhai L, Tumban E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019;12:E18. [PMID: 31877975 DOI: 10.3390/v12010018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
55 Sánchez-Rodríguez SP, Morán-García Adel C, Bolonduro O, Dordick JS, Bustos-Jaimes I. Enhanced assembly and colloidal stabilization of primate erythroparvovirus 1 virus-like particles for improved surface engineering. Acta Biomater 2016;35:206-14. [PMID: 26911883 DOI: 10.1016/j.actbio.2016.02.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
56 Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020;41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
57 Tan FH, Kong JC, Ng JF, Alitheen NB, Wong CL, Yong CY, Lee KW. Recombinant turnip yellow mosaic virus coat protein as a potential nanocarrier. J Appl Microbiol 2021. [PMID: 33629458 DOI: 10.1111/jam.15048] [Reference Citation Analysis]
58 Choi YR, Kim HJ, Lee JY, Kang HA, Kim H. Chromatographically-purified capsid proteins of red-spotted grouper nervous necrosis virus expressed in Saccharomyces cerevisiae form virus-like particles. Protein Expression and Purification 2013;89:162-8. [DOI: 10.1016/j.pep.2013.03.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
59 Ruiz V, Mozgovoj MV, Dus Santos MJ, Wigdorovitz A. Plant-produced viral bovine vaccines: what happened during the last 10 years? Plant Biotechnol J 2015;13:1071-7. [PMID: 26250843 DOI: 10.1111/pbi.12440] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
60 Sinnuengnong R, Attasart P, Smith DR, Panyim S, Assavalapsakul W. Administration of co-expressed Penaeus stylirostris densovirus-like particles and dsRNA-YHV-Pro provide protection against yellow head virus in shrimp. J Biotechnol 2018;267:63-70. [PMID: 29307838 DOI: 10.1016/j.jbiotec.2018.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hernández-Soto A, Chacón-Cerdas R. RNAi Crop Protection Advances. Int J Mol Sci 2021;22:12148. [PMID: 34830030 DOI: 10.3390/ijms222212148] [Reference Citation Analysis]
62 Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. Adv Mater 2019;31:1902791. [DOI: 10.1002/adma.201902791] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 18.0] [Reference Citation Analysis]
63 Skrastina D, Petrovskis I, Petraityte R, Sominskaya I, Ose V, Lieknina I, Bogans J, Sasnauskas K, Pumpens P. Chimeric derivatives of hepatitis B virus core particles carrying major epitopes of the rubella virus E1 glycoprotein. Clin Vaccine Immunol 2013;20:1719-28. [PMID: 24006140 DOI: 10.1128/CVI.00533-13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
64 Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J Control Release 2019;297:79-90. [PMID: 30659906 DOI: 10.1016/j.jconrel.2019.01.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
65 Sominskaya I, Skrastina D, Petrovskis I, Dishlers A, Berza I, Mihailova M, Jansons J, Akopjana I, Stahovska I, Dreilina D, Ose V, Pumpens P. A VLP library of C-terminally truncated Hepatitis B core proteins: correlation of RNA encapsidation with a Th1/Th2 switch in the immune responses of mice. PLoS One 2013;8:e75938. [PMID: 24086668 DOI: 10.1371/journal.pone.0075938] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
66 Ftouh M, Kalboussi N, Abid N, Sfar S, Mignet N, Bahloul B. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Res 2021;2021:6741290. [PMID: 34721558 DOI: 10.1155/2021/6741290] [Reference Citation Analysis]
67 Alvandi N, Rajabnejad M, Taghvaei Z, Esfandiari N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target 2021;:1-15. [PMID: 34210232 DOI: 10.1080/1061186X.2021.1949600] [Reference Citation Analysis]
68 Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016;240:394-413. [PMID: 26860287 DOI: 10.1016/j.jconrel.2016.02.014] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 11.2] [Reference Citation Analysis]
69 Tomé-Amat J, Fleischer L, Parker SA, Bardliving CL, Batt CA. Secreted production of assembled Norovirus virus-like particles from Pichia pastoris. Microb Cell Fact 2014;13:134. [PMID: 25201129 DOI: 10.1186/s12934-014-0134-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
70 Kolotilin I, Topp E, Cox E, Devriendt B, Conrad U, Joensuu J, Stöger E, Warzecha H, McAllister T, Potter A, McLean MD, Hall JC, Menassa R. Plant-based solutions for veterinary immunotherapeutics and prophylactics. Vet Res 2014;45:117. [PMID: 25559098 DOI: 10.1186/s13567-014-0117-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
71 Pleckaityte M, Bremer CM, Gedvilaite A, Kucinskaite-Kodze I, Glebe D, Zvirbliene A. Construction of polyomavirus-derived pseudotype virus-like particles displaying a functionally active neutralizing antibody against hepatitis B virus surface antigen. BMC Biotechnol 2015;15:85. [PMID: 26370129 DOI: 10.1186/s12896-015-0203-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
72 Santillán-uribe JS, Valadez-garcía J, Morán-garcía ADC, Santillán-uribe HC, Bustos-jaimes I. Peptide display on a surface loop of human parvovirus B19 VP2: Assembly and characterization of virus-like particles. Virus Research 2015;201:1-7. [DOI: 10.1016/j.virusres.2015.02.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
73 Naim HY. Applications and challenges of multivalent recombinant vaccines. Hum Vaccin Immunother 2013;9:457-61. [PMID: 23249651 DOI: 10.4161/hv.23220] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
74 González-davis O, Chauhan K, Zapian-merino S, Vazquez-duhalt R. Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules 2020;146:415-21. [DOI: 10.1016/j.ijbiomac.2019.12.272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
75 Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021;11:1690-702. [PMID: 33408775 DOI: 10.7150/thno.53691] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
76 Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3:13. [PMID: 23532930 DOI: 10.3389/fcimb.2013.00013] [Cited by in Crossref: 256] [Cited by in F6Publishing: 227] [Article Influence: 28.4] [Reference Citation Analysis]
77 Mcnulty MJ, Schwartz A, Delzio J, Karuppanan K, Jacobson A, Hart O, Dandekar A, Giritch A, Nandi S, Gleba Y, Mcdonald KA. Affinity Sedimentation and Magnetic Separation With Plant-Made Immunosorbent Nanoparticles for Therapeutic Protein Purification. Front Bioeng Biotechnol 2022;10:865481. [DOI: 10.3389/fbioe.2022.865481] [Reference Citation Analysis]
78 Deng L, Wang B. A Perspective on Nanoparticle Universal Influenza Vaccines. ACS Infect Dis 2018;4:1656-65. [DOI: 10.1021/acsinfecdis.8b00206] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
79 Aves KL, Goksøyr L, Sander AF. Advantages and Prospects of Tag/Catcher Mediated Antigen Display on Capsid-Like Particle-Based Vaccines. Viruses 2020;12:E185. [PMID: 32041299 DOI: 10.3390/v12020185] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
80 Grosch JS, Yang J, Shen A, Sereda YV, Ortoleva PJ. Broad spectrum assessment of the epitope fluctuation--Immunogenicity hypothesis. Vaccine 2015;33:5945-9. [PMID: 26187254 DOI: 10.1016/j.vaccine.2015.06.111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
81 Besson S, Vragniau C, Vassal-Stermann E, Dagher MC, Fender P. The Adenovirus Dodecahedron: Beyond the Platonic Story. Viruses 2020;12:E718. [PMID: 32630840 DOI: 10.3390/v12070718] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
82 Großhans S, Wang G, Hubbuch J. Water on hydrophobic surfaces: mechanistic modeling of polyethylene glycol-induced protein precipitation. Bioprocess Biosyst Eng 2019;42:513-20. [PMID: 30535587 DOI: 10.1007/s00449-018-2054-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
83 Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017;55:220-30. [PMID: 28243941 DOI: 10.1007/s12275-017-7058-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
84 Wu F, Zhang S, Zhang Y, Mo R, Yan F, Wang H, Wong G, Chi H, Wang T, Feng N, Gao Y, Xia X, Zhao Y, Yang S. A Chimeric Sudan Virus-Like Particle Vaccine Candidate Produced by a Recombinant Baculovirus System Induces Specific Immune Responses in Mice and Horses. Viruses 2020;12:E64. [PMID: 31947873 DOI: 10.3390/v12010064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Hsu CW, Chang MH, Chang HW, Wu TY, Chang YC. Parenterally Administered Porcine Epidemic Diarrhea Virus-Like Particle-Based Vaccine Formulated with CCL25/28 Chemokines Induces Systemic and Mucosal Immune Protectivity in Pigs. Viruses 2020;12:E1122. [PMID: 33023277 DOI: 10.3390/v12101122] [Reference Citation Analysis]
86 Eiben S, Koch C, Altintoprak K, Southan A, Tovar G, Laschat S, Weiss IM, Wege C. Plant virus-based materials for biomedical applications: Trends and prospects. Advanced Drug Delivery Reviews 2019;145:96-118. [DOI: 10.1016/j.addr.2018.08.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 12.3] [Reference Citation Analysis]
87 Jeong KH, Kim HJ, Kim HJ. Current status and future directions of fish vaccines employing virus-like particles. Fish Shellfish Immunol 2020;100:49-57. [PMID: 32130976 DOI: 10.1016/j.fsi.2020.02.060] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
88 Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale 2017;9:1356-92. [PMID: 28067384 DOI: 10.1039/c6nr07315h] [Cited by in Crossref: 74] [Cited by in F6Publishing: 26] [Article Influence: 18.5] [Reference Citation Analysis]
89 Dos Santos WG. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother 2021;136:111272. [PMID: 33486212 DOI: 10.1016/j.biopha.2021.111272] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 25.0] [Reference Citation Analysis]
90 Thérien A, Bédard M, Carignan D, Rioux G, Gauthier-Landry L, Laliberté-Gagné MÈ, Bolduc M, Savard P, Leclerc D. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. J Nanobiotechnology 2017;15:54. [PMID: 28720097 DOI: 10.1186/s12951-017-0289-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
91 Wu FC, Zhang H, Zhou Q, Wu M, Ballard Z, Tian Y, Wang JY, Niu ZW, Huang Y. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles. Chem Commun (Camb) 2014;50:4007-9. [PMID: 24592400 DOI: 10.1039/c3cc49137d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
92 Lee YT, Ko EJ, Hwang HS, Lee JS, Kim KH, Kwon YM, Kang SM. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages. Int J Nanomedicine 2015;10:4491-505. [PMID: 26203246 DOI: 10.2147/IJN.S83493] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
93 Gonzalez-Cruz P, Gill HS. Demystifying particle-based oral vaccines. Expert Opin Drug Deliv 2021;:1-17. [PMID: 34148474 DOI: 10.1080/17425247.2021.1946511] [Reference Citation Analysis]
94 Theillet G, Grard G, Galla M, Maisse C, Enguehard M, Cresson M, Dalbon P, Leparc-Goffart IL, Bedin F. Detection of chikungunya virus-specific IgM on laser-cut paper-based device using pseudo-particles as capture antigen. J Med Virol 2019;91:899-910. [PMID: 30734316 DOI: 10.1002/jmv.25420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021;11:334. [PMID: 33920215 DOI: 10.3390/life11040334] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
96 Yan F, Banadyga L, Zhao Y, Zhao Z, Schiffman Z, Huang P, Li E, Wang C, Gao Y, Feng N, Wang T, Wang H, Xia X, Wang C, Yang S, Qiu X. Peste des Petits Ruminants Virus-Like Particles Induce a Potent Humoral and Cellular Immune Response in Goats. Viruses 2019;11:E918. [PMID: 31590353 DOI: 10.3390/v11100918] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Rangel G, Bárcena J, Moreno N, Mata CP, Castón JR, Alejo A, Blanco E. Chimeric RHDV Virus-Like Particles Displaying Foot-and-Mouth Disease Virus Epitopes Elicit Neutralizing Antibodies and Confer Partial Protection in Pigs. Vaccines (Basel) 2021;9:470. [PMID: 34066934 DOI: 10.3390/vaccines9050470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Minkner R, Park EY. Purification of virus-like particles (VLPs) expressed in the silkworm Bombyx mori. Biotechnol Lett 2018;40:659-66. [PMID: 29383470 DOI: 10.1007/s10529-018-2516-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
99 Špakova A, Šimoliūnas E, Batiuškaitė R, Pajeda S, Meškys R, Petraitytė-Burneikienė R. Self-Assembly of Tail Tube Protein of Bacteriophage vB_EcoS_NBD2 into Extremely Long Polytubes in E. coli and S. cerevisiae. Viruses 2019;11:E208. [PMID: 30832262 DOI: 10.3390/v11030208] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
100 Chang YH, Chiao DJ, Hsu YL, Lin CC, Wu HL, Shu PY, Chang SF, Chang JH, Kuo SC. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020;12:E336. [PMID: 32204533 DOI: 10.3390/v12030336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Fontana D, Etcheverrigaray M, Kratje R, Prieto C. Development of Rabies Virus-Like Particles for Vaccine Applications: Production, Characterization, and Protection Studies. Methods Mol Biol 2016;1403:155-66. [PMID: 27076129 DOI: 10.1007/978-1-4939-3387-7_7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
102 Kaewborisuth C, Wanitchang A, Koonpaew S, Srisutthisamphan K, Saenboonrueng J, Im-erbsin R, Inthawong M, Sunyakumthorn P, Thaweerattanasinp T, Tanwattana N, Jantraphakorn Y, Reed MC, Lugo-roman LA, Hunsawong T, Klungthong C, Jones AR, Fernandez S, Teeravechyan S, Lombardini ED, Jongkaewwattana A. Chimeric Virus-like Particle-Based COVID-19 Vaccine Confers Strong Protection against SARS-CoV-2 Viremia in K18-hACE2 Mice. Vaccines 2022;10:786. [DOI: 10.3390/vaccines10050786] [Reference Citation Analysis]
103 Raeeszadeh-Sarmazdeh M, Hartzell E, Price JV, Chen W. Protein Nanoparticles as Multifunctional Biocatalysts and Health Assessment Sensors. Curr Opin Chem Eng 2016;13:109-18. [PMID: 30370212 DOI: 10.1016/j.coche.2016.08.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
104 Shenoy GN. When Little Things Make a Big Difference. Immunol Invest 2020;49:692-7. [PMID: 33043772 DOI: 10.1080/08820139.2020.1831774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
105 Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019;10:22. [PMID: 30733717 DOI: 10.3389/fimmu.2019.00022] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 25.7] [Reference Citation Analysis]
106 Chang J, Gorzelnik KV, Thongchol J, Zhang J. Structural Assembly of Qβ Virion and Its Diverse Forms of Virus-like Particles. Viruses 2022;14:225. [DOI: 10.3390/v14020225] [Reference Citation Analysis]
107 Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials. Adv Mater 2013;25:5215-56. [DOI: 10.1002/adma.201302215] [Cited by in Crossref: 183] [Cited by in F6Publishing: 155] [Article Influence: 20.3] [Reference Citation Analysis]
108 Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity? Therap Adv Gastroenterol 2019;12:1756284819836620. [PMID: 30936943 DOI: 10.1177/1756284819836620] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 18.3] [Reference Citation Analysis]
109 Savina K, Sreekumar R, Soonu VK, Variyar EJ. Various vaccine platforms in the field of COVID-19. Beni-Suef Univ J Basic Appl Sci 2022;11. [DOI: 10.1186/s43088-022-00215-1] [Reference Citation Analysis]
110 Dishlers A, Skrastina D, Renhofa R, Petrovskis I, Ose V, Lieknina I, Jansons J, Pumpens P, Sominskaya I. The Hepatitis B Virus Core Variants that Expose Foreign C-Terminal Insertions on the Outer Surface of Virus-Like Particles. Mol Biotechnol 2015;57:1038-49. [PMID: 26446016 DOI: 10.1007/s12033-015-9895-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
111 Schindewolf C, Menachery VD. Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism. Viruses 2019;11:E74. [PMID: 30658390 DOI: 10.3390/v11010074] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 15.0] [Reference Citation Analysis]
112 Li X, Meng X, Wang S, Li Z, Yang L, Tu L, Diao W, Yu C, Yu Y, Yan C, Wang L. Virus-like particles of recombinant PCV2b carrying FMDV-VP1 epitopes induce both anti-PCV and anti-FMDV antibody responses. Appl Microbiol Biotechnol 2018;102:10541-50. [PMID: 30338355 DOI: 10.1007/s00253-018-9361-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
113 Tohidi F, Sadat SM, Bolhassani A, Yaghobi R, Larijani MS. Induction of a Robust Humoral Response using HIV-1 VLP MPER-V3 as a Novel Candidate Vaccine in BALB/c Mice. CHR 2019;17:33-41. [DOI: 10.2174/1570162x17666190306124218] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
114 Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. Curr Opin Solid State Mater Sci 2021;25:100964. [PMID: 34729031 DOI: 10.1016/j.cossms.2021.100964] [Reference Citation Analysis]
115 Nikitin NA, Malinin AS, Trifonova EA, Rakhnyanskaya AA, Yaroslavov AA, Karpova OV, Atabekov JG. Proteins immobilization on the surface of modified plant viral particles coated with hydrophobic polycations. J Biomater Sci Polym Ed 2014;25:1743-54. [PMID: 25121344 DOI: 10.1080/09205063.2014.946877] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
116 Wang Z, Liu M, Zhao H, Wang P, Ma W, Zhang Y, Wu W, Peng C. Induction of Robust and Specific Humoral and Cellular Immune Responses by Bovine Viral Diarrhea Virus Virus-Like Particles (BVDV-VLPs) Engineered with Baculovirus Expression Vector System. Vaccines (Basel) 2021;9:350. [PMID: 33917272 DOI: 10.3390/vaccines9040350] [Reference Citation Analysis]
117 Fu Y, Li J. A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Res 2016;211:9-16. [PMID: 26415756 DOI: 10.1016/j.virusres.2015.08.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
118 Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021;19:59. [PMID: 33632278 DOI: 10.1186/s12951-021-00806-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
119 Al-Barwani F, Young SL, Baird MA, Larsen DS, Ward VK. Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS One 2014;9:e104523. [PMID: 25122183 DOI: 10.1371/journal.pone.0104523] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
120 Lutz H, Popowski KD, Dinh PC, Cheng K. Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. Adv Nanobiomed Res 2021;:2000063. [PMID: 33681865 DOI: 10.1002/anbr.202000063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Forano C, Bruna F, Mousty C, Prevot V. Interactions between Biological Cells and Layered Double Hydroxides: Towards Functional Materials. Chem Rec 2018;18:1150-66. [PMID: 29517856 DOI: 10.1002/tcr.201700102] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
122 Glasgow J, Tullman-Ercek D. Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 2014;98:5847-58. [PMID: 24816622 DOI: 10.1007/s00253-014-5787-3] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 6.0] [Reference Citation Analysis]
123 Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021;9:7878-908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Reference Citation Analysis]
124 Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines 2016;15:1281-93. [PMID: 27058302 DOI: 10.1080/14760584.2016.1175942] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
125 Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016;17:E1715. [PMID: 27754367 DOI: 10.3390/ijms17101715] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
126 Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2015;11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
127 Crews DW, Dombroski JA, King MR. Prophylactic Cancer Vaccines Engineered to Elicit Specific Adaptive Immune Response. Front Oncol 2021;11:626463. [PMID: 33869008 DOI: 10.3389/fonc.2021.626463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
128 Lu Y, Chan W, Ko BY, VanLang CC, Swartz JR. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci U S A 2015;112:12360-5. [PMID: 26392546 DOI: 10.1073/pnas.1510533112] [Cited by in Crossref: 77] [Cited by in F6Publishing: 64] [Article Influence: 11.0] [Reference Citation Analysis]
129 Lee H, Benjamin CE, Nowak CM, Tuong LH, Welch RP, Chen Z, Dharmarwardana M, Murray KW, Bleris L, D'Arcy S, Gassensmith JJ. Regulating the Uptake of Viral Nanoparticles in Macrophage and Cancer Cells via a pH Switch. Mol Pharm 2018;15:2984-90. [PMID: 29787282 DOI: 10.1021/acs.molpharmaceut.8b00348] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
130 Letarov AV, Biryukova YK, Epremyan AS, Shevelev AB. Prospects of the use of bacteriophage-based virus-like particles in the creation of anthrax vaccines. Appl Biochem Microbiol 2016;52:818-27. [DOI: 10.1134/s0003683816090040] [Reference Citation Analysis]
131 Lan NT, Kim HJ, Han HJ, Lee DC, Kang BK, Han SY, Moon H, Kim HJ. Stability of virus-like particles of red-spotted grouper nervous necrosis virus in the aqueous state, and the vaccine potential of lyophilized particles. Biologicals 2018;51:25-31. [PMID: 29174141 DOI: 10.1016/j.biologicals.2017.11.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
132 Chu KB, Quan FS. Virus-Like Particle Vaccines Against Respiratory Viruses and Protozoan Parasites. Curr Top Microbiol Immunol 2021;433:77-106. [PMID: 33650036 DOI: 10.1007/82_2021_232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
133 Zaveckas M, Snipaitis S, Pesliakas H, Nainys J, Gedvilaite A. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography. Journal of Chromatography B 2015;991:21-8. [DOI: 10.1016/j.jchromb.2015.04.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
134 Hovlid ML, Lau JL, Breitenkamp K, Higginson CJ, Laufer B, Manchester M, Finn MG. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS Nano 2014;8:8003-14. [PMID: 25073013 DOI: 10.1021/nn502043d] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 7.6] [Reference Citation Analysis]
135 Lu W, Zhao Z, Huang Y, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. International Journal of Biological Macromolecules 2022;200:487-97. [DOI: 10.1016/j.ijbiomac.2022.01.108] [Reference Citation Analysis]
136 Ladd Effio C, Oelmeier SA, Hubbuch J. High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography. Vaccine 2016;34:1259-67. [PMID: 26845741 DOI: 10.1016/j.vaccine.2016.01.035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
137 Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017;2:3. [PMID: 29263864 DOI: 10.1038/s41541-017-0006-8] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
138 Li X, Xu X, Jin A, Jia Q, Zhou H, Kang S, Lou Y, Gao J, Lu J. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion. Nanoscale Res Lett 2013;8:401. [PMID: 24074276 DOI: 10.1186/1556-276X-8-401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
139 Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 2018;17:833-49. [PMID: 30173619 DOI: 10.1080/14760584.2018.1516552] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 11.3] [Reference Citation Analysis]
140 Vivekanandhan K, Shanmugam P, Barabadi H, Arumugam V, Daniel Raj Daniel Paul Raj D, Sivasubramanian M, Ramasamy S, Anand K, Boomi P, Chandrasekaran B, Arokiyaraj S, Saravanan M. Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Perspectives. Front Mol Biosci 2021;8:604447. [PMID: 33763450 DOI: 10.3389/fmolb.2021.604447] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
141 Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019;38:430. [PMID: 31661003 DOI: 10.1186/s13046-019-1443-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
142 Moradi Vahdat M, Hemmati F, Ghorbani A, Rutkowska D, Afsharifar A, Eskandari MH, Rezaei N, Niazi A. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. Biotechnol Rep (Amst) 2021;29:e00605. [PMID: 33732633 DOI: 10.1016/j.btre.2021.e00605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Zaveckas M, Goda K, Ziogiene D, Gedvilaite A. Purification of recombinant trichodysplasia spinulosa–associated polyomavirus VP1-derived virus-like particles using chromatographic techniques. Journal of Chromatography B 2018;1090:7-13. [DOI: 10.1016/j.jchromb.2018.05.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
144 Yin Z, Wu X, Kaczanowska K, Sungsuwan S, Comellas Aragones M, Pett C, Yu J, Baniel C, Westerlind U, Finn MG, Huang X. Antitumor Humoral and T Cell Responses by Mucin-1 Conjugates of Bacteriophage Qβ in Wild-type Mice. ACS Chem Biol 2018;13:1668-76. [PMID: 29782143 DOI: 10.1021/acschembio.8b00313] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
145 Caparco AA, Dautel DR, Champion JA. Protein Mediated Enzyme Immobilization. Small 2022;:e2106425. [PMID: 35182030 DOI: 10.1002/smll.202106425] [Reference Citation Analysis]
146 Yin Y, Zhang S, Cai C, Zhang J, Dong D, Guo Q, Fu L, Xu J, Chen W. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine. Immunobiology 2014;219:97-103. [PMID: 24054942 DOI: 10.1016/j.imbio.2013.08.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
147 Masarapu H, Patel BK, Chariou PL, Hu H, Gulati NM, Carpenter BL, Ghiladi RA, Shukla S, Steinmetz NF. Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules 2017;18:4141-53. [PMID: 29144726 DOI: 10.1021/acs.biomac.7b01196] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 7.6] [Reference Citation Analysis]
148 Gerstweiler L, Billakanti J, Bi J, Middelberg A. Comparative evaluation of integrated purification pathways for bacterial modular polyomavirus major capsid protein VP1 to produce virus-like particles using high throughput process technologies. J Chromatogr A 2021;1639:461924. [PMID: 33545579 DOI: 10.1016/j.chroma.2021.461924] [Reference Citation Analysis]
149 Hema M, Vishnu Vardhan G, Savithri H, Murthy M. Emerging Trends in the Development of Plant Virus-Based Nanoparticles and Their Biomedical Applications. Recent Developments in Applied Microbiology and Biochemistry. Elsevier; 2019. pp. 61-82. [DOI: 10.1016/b978-0-12-816328-3.00006-4] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
150 Thoms F, Jennings GT, Maudrich M, Vogel M, Haas S, Zeltins A, Hofmann-Lehmann R, Riond B, Grossmann J, Hunziker P, Fettelschoss-Gabriel A, Senti G, Kündig TM, Bachmann MF. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects. J Allergy Clin Immunol 2019;144:193-203. [PMID: 31056187 DOI: 10.1016/j.jaci.2019.01.050] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
151 Zhu WZ, Wen YC, Lin SY, Chen TC, Chen HW. Anti-Influenza Protective Efficacy of a H6 Virus-Like Particle in Chickens. Vaccines (Basel) 2020;8:E465. [PMID: 32825685 DOI: 10.3390/vaccines8030465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
152 Zhitnyuk Y, Gee P, Lung MS, Sasakawa N, Xu H, Saito H, Hotta A. Efficient mRNA delivery system utilizing chimeric VSVG-L7Ae virus-like particles. Biochemical and Biophysical Research Communications 2018;505:1097-102. [DOI: 10.1016/j.bbrc.2018.09.113] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
153 Koho T, Ihalainen TO, Stark M, Uusi-Kerttula H, Wieneke R, Rahikainen R, Blazevic V, Marjomäki V, Tampé R, Kulomaa MS, Hytönen VP. His-tagged norovirus-like particles: A versatile platform for cellular delivery and surface display. Eur J Pharm Biopharm 2015;96:22-31. [PMID: 26170162 DOI: 10.1016/j.ejpb.2015.07.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
154 Yang L, Xiao A, Wang H, Zhang X, Zhang Y, Li Y, Wei Y, Liu W, Chen C. A VLP-Based Vaccine Candidate Protects Mice against Japanese Encephalitis Virus Infection. Vaccines 2022;10:197. [DOI: 10.3390/vaccines10020197] [Reference Citation Analysis]
155 Al-Barwani F, Donaldson B, Pelham SJ, Young SL, Ward VK. Antigen delivery by virus-like particles for immunotherapeutic vaccination. Ther Deliv 2014;5:1223-40. [PMID: 25491672 DOI: 10.4155/tde.14.74] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
156 Wang X, Hou C, Yu C, Xu Z, Li Y, Tian Q, Xia N, Li N, Yan L, Wang W. Precise Self-assembly of Janus Pyramid Heteroclusters into Core-Corona Nanodots and Nanodot Supracrystals: Implications for the Construction of Virus-like Particles and Nanomaterials. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c00530] [Reference Citation Analysis]
157 Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019;105:117-59. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
158 Del Carmen Morán-García A, Rivera-Toledo E, Echeverría O, Vázquez-Nin G, Gómez B, Bustos-Jaimes I. Peptide presentation on primate erythroparvovirus 1 virus-like particles: In vitro assembly, stability and immunological properties. Virus Res 2016;224:12-8. [PMID: 27523978 DOI: 10.1016/j.virusres.2016.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
159 Wang W, Voigt A, Sundmacher K. The interaction of protein-coated bionanoparticles and surface receptors reevaluated: how important is the number of bonds? Soft Matter 2016;12:6451-62. [DOI: 10.1039/c6sm00995f] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
160 Ko EJ, Kwon YM, Lee JS, Hwang HS, Yoo SE, Lee YN, Lee YT, Kim MC, Cho MK, Lee YR, Quan FS, Song JM, Lee S, Moore ML, Kang SM. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. Nanomedicine 2015;11:99-108. [PMID: 25109662 DOI: 10.1016/j.nano.2014.07.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
161 Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? Nanomaterials (Basel) 2020;10:E1645. [PMID: 32825737 DOI: 10.3390/nano10091645] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 19.5] [Reference Citation Analysis]
162 Keikha R, Daliri K, Jebali A. The Use of Nanobiotechnology in Immunology and Vaccination. Vaccines (Basel) 2021;9:74. [PMID: 33494441 DOI: 10.3390/vaccines9020074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
163 Jia X, Xue Y, Li H, Fu D, Wang W, Wu Y. The capsid assembly-induced luminescence enhancement (AILE) of DNA-protected silver nanoclusters and an in situ application. New J Chem 2018;42:17492-8. [DOI: 10.1039/c8nj03179g] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
164 Ding X, Liu D, Booth G, Gao W, Lu Y. Virus-Like Particle Engineering: From Rational Design to Versatile Applications. Biotechnol J 2018;13:e1700324. [PMID: 29453861 DOI: 10.1002/biot.201700324] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
165 Changotra H, Vij A. Rotavirus virus-like particles (RV-VLPs) vaccines: An update. Rev Med Virol 2017;27:e1954. [DOI: 10.1002/rmv.1954] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
166 Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015;115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Cited by in Crossref: 418] [Cited by in F6Publishing: 397] [Article Influence: 59.7] [Reference Citation Analysis]
167 Wei Y, Kumar P, Wahome N, Mantis NJ, Middaugh CR. Biomedical Applications of Lumazine Synthase. Journal of Pharmaceutical Sciences 2018;107:2283-96. [DOI: 10.1016/j.xphs.2018.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
168 Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022:S1359-6446(22)00173-8. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Reference Citation Analysis]
169 Špakova A, Dalgėdienė I, Insodaitė R, Sasnauskienė A, Žvirblienė A, Petraitytė-Burneikienė R. vB_EcoS_NBD2 bacteriophage-originated polytubes as a carrier for the presentation of foreign sequences. Virus Res 2020;290:198194. [PMID: 33058966 DOI: 10.1016/j.virusres.2020.198194] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
170 Nika L, Cuadrado-Castano S, Asthagiri Arunkumar G, Grünwald-Gruber C, McMahon M, Koczka K, García-Sastre A, Krammer F, Grabherr R. An HER2-Displaying Virus-Like Particle Vaccine Protects from Challenge with Mammary Carcinoma Cells in a Mouse Model. Vaccines (Basel) 2019;7:E41. [PMID: 31137559 DOI: 10.3390/vaccines7020041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
171 Walther C, Dürauer A. Microscale disruption of microorganisms for parallelized process development. Biotechnol J 2017;12. [PMID: 28632332 DOI: 10.1002/biot.201600579] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
172 Manuel-Cabrera CA, Vallejo-Cardona AA, Padilla-Camberos E, Hernández-Gutiérrez R, Herrera-Rodríguez SE, Gutiérrez-Ortega A. Self-assembly of hexahistidine-tagged tobacco etch virus capsid protein into microfilaments that induce IgG2-specific response against a soluble porcine reproductive and respiratory syndrome virus chimeric protein. Virol J 2016;13:196. [PMID: 27894314 DOI: 10.1186/s12985-016-0651-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
173 Dai S, Zhang T, Zhang Y, Wang H, Deng F. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice. Virol Sin 2018;33:213-26. [PMID: 29774519 DOI: 10.1007/s12250-018-0030-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
174 Anzaghe M, Schülke S, Scheurer S. Virus-Like Particles as Carrier Systems to Enhance Immunomodulation in Allergen Immunotherapy. Curr Allergy Asthma Rep 2018;18:71. [PMID: 30362017 DOI: 10.1007/s11882-018-0827-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
175 Toprani VM, Cheng Y, Wahome N, Khasa H, Kueltzo LA, Schwartz RM, Middaugh CR, Joshi SB, Volkin DB. Structural Characterization and Formulation Development of a Trivalent Equine Encephalitis Virus-Like Particle Vaccine Candidate. J Pharm Sci 2018;107:2544-58. [PMID: 29883665 DOI: 10.1016/j.xphs.2018.05.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
176 Srinivasan A, Rastogi A, Ayyavoo V, Srivastava S. Nanotechnology-based approaches for the development of diagnostics, therapeutics, and vaccines. Monoclon Antib Immunodiagn Immunother 2014;33:186-91. [PMID: 24937250 DOI: 10.1089/mab.2014.0045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
177 Liu X, Fang Y, Zhou P, Lu Y, Zhang Q, Xiao S, Dong Z, Pan L, Lv J, Zhang Z, Zhang Y, Wang Y. Chimeric virus-like particles elicit protective immunity against serotype O foot-and-mouth disease virus in guinea pigs. Appl Microbiol Biotechnol 2017;101:4905-14. [PMID: 28365796 DOI: 10.1007/s00253-017-8246-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
178 Davitt CJ, Lavelle EC. Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 2015;91:52-69. [PMID: 25817337 DOI: 10.1016/j.addr.2015.03.007] [Cited by in Crossref: 77] [Cited by in F6Publishing: 73] [Article Influence: 11.0] [Reference Citation Analysis]
179 Venereo-sanchez A, Simoneau M, Lanthier S, Chahal P, Bourget L, Ansorge S, Gilbert R, Henry O, Kamen A. Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line. Vaccine 2017;35:4220-8. [DOI: 10.1016/j.vaccine.2017.06.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
180 Steppert P, Burgstaller D, Klausberger M, Berger E, Aguilar PP, Schneider TA, Kramberger P, Tover A, Nöbauer K, Razzazi-fazeli E, Jungbauer A. Purification of HIV-1 gag virus-like particles and separation of other extracellular particles. Journal of Chromatography A 2016;1455:93-101. [DOI: 10.1016/j.chroma.2016.05.053] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
181 Assenberg R, Wan PT, Geisse S, Mayr LM. Advances in recombinant protein expression for use in pharmaceutical research. Current Opinion in Structural Biology 2013;23:393-402. [DOI: 10.1016/j.sbi.2013.03.008] [Cited by in Crossref: 115] [Cited by in F6Publishing: 92] [Article Influence: 12.8] [Reference Citation Analysis]
182 Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2015;6:30675-703. [PMID: 26362400 DOI: 10.18632/oncotarget.5169] [Cited by in Crossref: 116] [Cited by in F6Publishing: 106] [Article Influence: 19.3] [Reference Citation Analysis]
183 von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY. Breaking Down the Barriers to Precision Cancer Nanomedicine. Trends in Biotechnology 2017;35:159-71. [DOI: 10.1016/j.tibtech.2016.07.006] [Cited by in Crossref: 162] [Cited by in F6Publishing: 134] [Article Influence: 32.4] [Reference Citation Analysis]
184 Rampoldi A, Crooke SN, Preininger MK, Jha R, Maxwell J, Ding L, Spearman P, Finn MG, Xu C. Targeted Elimination of Tumorigenic Human Pluripotent Stem Cells Using Suicide-Inducing Virus-like Particles. ACS Chem Biol 2018;13:2329-38. [PMID: 29979576 DOI: 10.1021/acschembio.8b00490] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
185 Kelemen RE, Erickson SB, Chatterjee A. Synthesis at the interface of virology and genetic code expansion. Curr Opin Chem Biol 2018;46:164-71. [PMID: 30086446 DOI: 10.1016/j.cbpa.2018.07.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
186 Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacological Research 2016;107:57-65. [DOI: 10.1016/j.phrs.2016.03.002] [Cited by in Crossref: 119] [Cited by in F6Publishing: 117] [Article Influence: 19.8] [Reference Citation Analysis]
187 Lua LH, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg AP. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 2014;111:425-40. [PMID: 24347238 DOI: 10.1002/bit.25159] [Cited by in Crossref: 188] [Cited by in F6Publishing: 175] [Article Influence: 20.9] [Reference Citation Analysis]
188 Chen Z, Boyd SD, Calvo JS, Murray KW, Mejia GL, Benjamin CE, Welch RP, Winkler DD, Meloni G, D'Arcy S, Gassensmith JJ. Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjug Chem 2017;28:2277-83. [PMID: 28787574 DOI: 10.1021/acs.bioconjchem.7b00305] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
189 Masoomi Dezfooli S, Gutierrez-maddox N, Alfaro A, Seyfoddin A. Encapsulation for delivering bioactives in aquaculture. Rev Aquacult 2019;11:631-60. [DOI: 10.1111/raq.12250] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
190 Daube SS, Bar-ziv RH. Protein nanomachines assembly modes: cell-free expression and biochip perspectives: Protein nanomachines assembly modes. WIREs Nanomed Nanobiotechnol 2013;5:613-28. [DOI: 10.1002/wnan.1234] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
191 Abisoye-Ogunniyan A, Carrano IM, Weilhammer DR, Gilmore SF, Fischer NO, Pal S, de la Maza LM, Coleman MA, Rasley A. A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Front Pharmacol 2021;12:768461. [PMID: 34899322 DOI: 10.3389/fphar.2021.768461] [Reference Citation Analysis]
192 Sungsuwan S, Wu X, Huang X. Evaluation of Virus-Like Particle-Based Tumor-Associated Carbohydrate Immunogen in a Mouse Tumor Model. Methods Enzymol 2017;597:359-76. [PMID: 28935111 DOI: 10.1016/bs.mie.2017.06.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
193 Barajas D, Aponte-Ubillus JJ, Akeefe H, Cinek T, Peltier J, Gold D. Generation of infectious recombinant Adeno-associated virus in Saccharomyces cerevisiae. PLoS One 2017;12:e0173010. [PMID: 28355224 DOI: 10.1371/journal.pone.0173010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
194 Liu J, Dai S, Wang M, Hu Z, Wang H, Deng F. Virus like particle-based vaccines against emerging infectious disease viruses. Virol Sin 2016;31:279-87. [PMID: 27405928 DOI: 10.1007/s12250-016-3756-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
195 Kim HJ, Cho SY, Park MH, Kim HJ. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res 2018;41:544-53. [PMID: 29637494 DOI: 10.1007/s12272-018-1024-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
196 Schumacher J, Bacic T, Staritzbichler R, Daneschdar M, Klamp T, Arnold P, Jägle S, Türeci Ö, Markl J, Sahin U. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018;16:39. [PMID: 29653575 DOI: 10.1186/s12951-018-0363-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
197 Hwang HS, Kwon YM, Lee JS, Yoo SE, Lee YN, Ko EJ, Kim MC, Cho MK, Lee YT, Jung YJ, Lee JY, Li JD, Kang SM. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis. Antiviral Res 2014;110:115-23. [PMID: 25110201 DOI: 10.1016/j.antiviral.2014.07.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
198 Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, Lumaca A, Del Biondo P, Paganelli R, Di Giampaolo L. Nanoparticle-based immunotherapy: state of the art and future perspectives. Expert Rev Clin Immunol 2020;16:513-25. [PMID: 32343153 DOI: 10.1080/1744666X.2020.1762572] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
199 Yamaji H. Suitability and perspectives on using recombinant insect cells for the production of virus-like particles. Appl Microbiol Biotechnol 2014;98:1963-70. [PMID: 24407451 DOI: 10.1007/s00253-013-5474-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
200 Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020;10:291-312. [PMID: 32292625 DOI: 10.1016/j.jpha.2020.01.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
201 Kim H, Kim H. Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol 2017;64:111-23. [DOI: 10.1111/lam.12695] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
202 Almoheer R, Abd Wahid ME, Zakaria HA, Jonet MAB, Al-shaibani MM, Al-gheethi A, Addis SNK. Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines 2022;10:315. [DOI: 10.3390/vaccines10020315] [Reference Citation Analysis]
203 Stavis SM, Fagan JA, Stopa M, Liddle JA. Nanoparticle Manufacturing – Heterogeneity through Processes to Products. ACS Appl Nano Mater 2018;1:4358-85. [DOI: 10.1021/acsanm.8b01239] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
204 Kato T, Yui M, Deo VK, Park EY. Development of Rous sarcoma Virus-like Particles Displaying hCC49 scFv for Specific Targeted Drug Delivery to Human Colon Carcinoma Cells. Pharm Res 2015;32:3699-707. [PMID: 26047779 DOI: 10.1007/s11095-015-1730-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
205 Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev 2021;171:215-39. [PMID: 33428995 DOI: 10.1016/j.addr.2021.01.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 20.0] [Reference Citation Analysis]
206 Tekewe A, Connors NK, Sainsbury F, Wibowo N, Lua LH, Middelberg AP. A rapid and simple screening method to identify conditions for enhanced stability of modular vaccine candidates. Biochemical Engineering Journal 2015;100:50-8. [DOI: 10.1016/j.bej.2015.04.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
207 Petrescu DS, Blum AS. Viral-based nanomaterials for plasmonic and photonic materials and devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1508. [PMID: 29418076 DOI: 10.1002/wnan.1508] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
208 Tekewe A, Connors NK, Middelberg AP, Lua LH. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci 2016;25:1507-16. [PMID: 27222486 DOI: 10.1002/pro.2953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
209 Ren F, Swevers L, Lu Q, Zhao Y, Yan J, Li H, Sun J. Effect of mutations in capsid shell protein on the assembly of BmCPV virus-like particles. J Gen Virol 2021;102. [PMID: 33331809 DOI: 10.1099/jgv.0.001542] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
210 Kim G, Kim J, Kim SM, Kato T, Yoon J, Noh S, Park EY, Park C, Lee T, Choi JW. Fabrication of MERS-nanovesicle biosensor composed of multi-functional DNA aptamer/graphene-MoS2 nanocomposite based on electrochemical and surface-enhanced Raman spectroscopy. Sens Actuators B Chem 2022;352:131060. [PMID: 34785863 DOI: 10.1016/j.snb.2021.131060] [Reference Citation Analysis]
211 Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016;105:113-32. [PMID: 26509554 DOI: 10.1002/bip.22759] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 9.2] [Reference Citation Analysis]
212 Herrera Estrada LP, Champion JA. Protein nanoparticles for therapeutic protein delivery. Biomater Sci 2015;3:787-99. [DOI: 10.1039/c5bm00052a] [Cited by in Crossref: 63] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
213 Feng Q, He Y, Lu J. Virus-Like Particles Produced in Pichia Pastoris Induce Protective Immune Responses Against Coxsackievirus A16 in Mice. Med Sci Monit 2016;22:3370-82. [PMID: 27659054 DOI: 10.12659/msm.900380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
214 Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol 2021;16:1-14. [PMID: 32807876 DOI: 10.1038/s41565-020-0739-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
215 Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018;118:11519-74. [PMID: 30281290 DOI: 10.1021/acs.chemrev.8b00038] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 9.8] [Reference Citation Analysis]
216 Blundell ELCJ, Mayne LJ, Billinge ER, Platt M. Emergence of tunable resistive pulse sensing as a biosensor. Anal Methods 2015;7:7055-66. [DOI: 10.1039/c4ay03023k] [Cited by in Crossref: 38] [Article Influence: 5.4] [Reference Citation Analysis]
217 Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020;11:1100. [PMID: 32582186 DOI: 10.3389/fimmu.2020.01100] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
218 Corsi F, Mazzucchelli S. The potential of protein-based nanocages for imaging and drug delivery. Therapeutic Delivery 2016;7:149-51. [DOI: 10.4155/tde.15.95] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
219 Jhunjhunwala S. Biomaterials for Engineering Immune Responses. J Indian Inst Sci 2018;98:49-68. [DOI: 10.1007/s41745-018-0063-7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
220 Singh A, Kaur G, Singh S, Singh N, Saxena G, Verma PC. Recombinant Plant Engineering for Immunotherapeutic Production. Curr Mol Biol Rep 2017;3:306-16. [PMID: 32226727 DOI: 10.1007/s40610-017-0078-2] [Reference Citation Analysis]
221 Teng Z, Sun S, Chen H, Huang J, Du P, Dong H, Xu X, Mu S, Zhang Z, Guo H. Golden-star nanoparticles as adjuvant effectively promotes immune response to foot-and-mouth disease virus-like particles vaccine. Vaccine 2018;36:6752-60. [PMID: 30268733 DOI: 10.1016/j.vaccine.2018.09.030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
222 Mertens BS, Velev OD. Characterization and control of surfactant-mediated Norovirus interactions. Soft Matter 2015;11:8621-31. [PMID: 26378627 DOI: 10.1039/c5sm01778e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
223 Wi GR, Hwang JY, Kwon MG, Kim HJ, Kang HA, Kim HJ. Protective immunity against nervous necrosis virus in convict grouper Epinephelus septemfasciatus following vaccination with virus-like particles produced in yeast Saccharomyces cerevisiae. Vet Microbiol 2015;177:214-8. [PMID: 25759291 DOI: 10.1016/j.vetmic.2015.02.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
224 Campbell K, Young VL, Donaldson BC, Woodall MJ, Shields NJ, Walker GF, Ward VK, Young SL. Delivering Two Tumour Antigens Survivin and Mucin-1 on Virus-Like Particles Enhances Anti-Tumour Immune Responses. Vaccines (Basel) 2021;9:463. [PMID: 34066318 DOI: 10.3390/vaccines9050463] [Reference Citation Analysis]
225 Arevalo MT, Wong TM, Ross TM. Expression and Purification of Virus-like Particles for Vaccination. J Vis Exp 2016. [PMID: 27286040 DOI: 10.3791/54041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
226 Pan X, Lü P, Zhang M, Hu Z, Li G, Ma S, Feng F, Chen K, Yao Q. Expression analysis of Bombyx mori bidensovirus structural proteins and assembly of virus-like particles in insect cells. Curr Microbiol 2014;69:567-73. [PMID: 24916668 DOI: 10.1007/s00284-014-0613-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
227 Stanley S. Biological nanoparticles and their influence on organisms. Current Opinion in Biotechnology 2014;28:69-74. [DOI: 10.1016/j.copbio.2013.11.014] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 6.6] [Reference Citation Analysis]
228 Zhang B, Yin S, Wang Y, Su Z, Bi J. Cost-effective purification process development for chimeric hepatitis B core (HBc) virus-like particles assisted by molecular dynamic simulation. Eng Life Sci 2021;21:438-52. [PMID: 34140854 DOI: 10.1002/elsc.202000104] [Reference Citation Analysis]
229 Yang C, Huang K. Clinical Applications of Virus-like Particles: Opportunities and Challenges. Curr Protein Pept Sci 2019;20:488-9. [PMID: 30942144 DOI: 10.2174/138920372005190327120752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
230 Zahirović A, Lunder M. Microbial Delivery Vehicles for Allergens and Allergen-Derived Peptides in Immunotherapy of Allergic Diseases. Front Microbiol 2018;9:1449. [PMID: 30013543 DOI: 10.3389/fmicb.2018.01449] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
231 Marin A, Chowdhury A, Valencia SM, Zacharia A, Kirnbauer R, Roden RBS, Pinto LA, Shoemaker RH, Marshall JD, Andrianov AK. Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine. Nanomedicine 2021;33:102359. [PMID: 33476764 DOI: 10.1016/j.nano.2021.102359] [Reference Citation Analysis]
232 Hruškovicová J, Bhide K, Petroušková P, Tkáčová Z, Mochnáčová E, Čurlík J, Bhide M, Kulkarni A. Engineering the Single Domain Antibodies Targeting Receptor Binding Motifs Within the Domain III of West Nile Virus Envelope Glycoprotein. Front Microbiol 2022;13:801466. [DOI: 10.3389/fmicb.2022.801466] [Reference Citation Analysis]
233 Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018;118:7409-531. [PMID: 30052023 DOI: 10.1021/acs.chemrev.7b00678] [Cited by in Crossref: 227] [Cited by in F6Publishing: 189] [Article Influence: 56.8] [Reference Citation Analysis]
234 Goffar MG, Deo VK, Kato T, Park EY. Dual display hemagglutinin 1 and 5 on the surface of enveloped virus-like particles in silkworm expression system. Protein Expr Purif 2022;:106106. [PMID: 35525404 DOI: 10.1016/j.pep.2022.106106] [Reference Citation Analysis]
235 Zhang H, Qian P, Liu L, Qian S, Chen H, Li X. Virus-like particles of chimeric recombinant porcine circovirus type 2 as antigen vehicle carrying foreign epitopes. Viruses 2014;6:4839-55. [PMID: 25490764 DOI: 10.3390/v6124839] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
236 Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018;9:2224. [PMID: 30337923 DOI: 10.3389/fimmu.2018.02224] [Cited by in Crossref: 140] [Cited by in F6Publishing: 119] [Article Influence: 35.0] [Reference Citation Analysis]
237 Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
238 Kato T, Machida Y, Takemura K, Xu J, Park EY. Preparation of divalent antigen-displaying enveloped virus-like particles using a single recombinant Bombyx mori nucleopolyhedrovirus bacmid in silkworms. J Biotechnol 2020;323:92-7. [PMID: 32771428 DOI: 10.1016/j.jbiotec.2020.08.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
239 Queiroz AMV, Oliveira JWF, Moreno CJ, Guérin DMA, Silva MS. VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021;9:220. [PMID: 33807516 DOI: 10.3390/vaccines9030220] [Reference Citation Analysis]
240 Balke I, Reseviča G, Zeltins A. Isolation and Characterization of Two Distinct Types of Unmodified Spherical Plant Sobemovirus-Like Particles for Diagnostic and Technical Uses. Methods Mol Biol 2018;1776:19-34. [PMID: 29869232 DOI: 10.1007/978-1-4939-7808-3_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]