BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007;47:209-56. [PMID: 17652773 DOI: 10.1007/s12013-007-0007-8] [Cited by in Crossref: 126] [Cited by in F6Publishing: 127] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Inoue M, Matsuoka H, Lesage F, Harada K. Lack of p11 expression facilitates acidity‐sensing function of TASK1 channels in mouse adrenal medullary cells. FASEB j 2018;33:455-68. [DOI: 10.1096/fj.201800407rr] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
2 Navarro-retamal C, Caballero J. Energetic differences between non-domain-swapped and domain-swapped chain connectivities in the K2P potassium channel TRAAK. RSC Adv 2018;8:26610-8. [DOI: 10.1039/c8ra04159h] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
3 Mant A, Williams S, Roncoroni L, Lowry E, Johnson D, O'Kelly I. N-glycosylation-dependent control of functional expression of background potassium channels K2P3.1 and K2P9.1. J Biol Chem 2013;288:3251-64. [PMID: 23250752 DOI: 10.1074/jbc.M112.405167] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
4 Bouhadfane M, Kaszás A, Rózsa B, Harris-Warrick RM, Vinay L, Brocard F. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin. Elife 2015;4:e06195. [PMID: 25781633 DOI: 10.7554/eLife.06195] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
5 Wells GD, Tang QY, Heler R, Tompkins-MacDonald GJ, Pritchard EN, Leys SP, Logothetis DE, Boland LM. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K₂P) from a marine sponge. J Exp Biol 2012;215:2435-44. [PMID: 22723483 DOI: 10.1242/jeb.066233] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
6 Clarke CE, Veale EL, Wyse K, Vandenberg JI, Mathie A. The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function. J Biol Chem. 2008;283:16985-16992. [PMID: 18417474 DOI: 10.1074/jbc.m801368200] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
7 Sun H. Different sensitivity of action potential generation to the rate of depolarization in vagal afferent A-fiber versus C-fiber neurons. J Neurophysiol 2021;125:2000-12. [PMID: 33881911 DOI: 10.1152/jn.00722.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, Piggins HD. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014;34:3607-21. [PMID: 24599460 DOI: 10.1523/JNEUROSCI.3388-13.2014] [Cited by in Crossref: 81] [Cited by in F6Publishing: 34] [Article Influence: 10.1] [Reference Citation Analysis]
9 Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021;254:367-80. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Reference Citation Analysis]
10 Weber M, Schmitt A, Wischmeyer E, Döring F. Excitability of pontine startle processing neurones is regulated by the two-pore-domain K + channel TASK-3 coupled to 5-HT 2C receptors. European Journal of Neuroscience 2008;28:931-40. [DOI: 10.1111/j.1460-9568.2008.06400.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
11 Shen C, Ma W, Zheng W, Huang H, Xia R, Li C, Zhu X. The antioxidant effects of riluzole on the APRE-19 celll model injury-induced by t-BHP. BMC Ophthalmol 2017;17:210. [PMID: 29169345 DOI: 10.1186/s12886-017-0614-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
12 Rivas-Ramírez P, Cadaveira-Mosquera A, Lamas JA, Reboreda A. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons. Eur J Neurosci 2015;42:1797-807. [PMID: 25899939 DOI: 10.1111/ejn.12930] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
13 Lloyd EE, Marrelli SP, Bryan RM Jr. cGMP does not activate two-pore domain K+ channels in cerebrovascular smooth muscle. Am J Physiol Heart Circ Physiol 2009;296:H1774-80. [PMID: 19363137 DOI: 10.1152/ajpheart.00082.2009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
14 Hughes S, Foster RG, Peirson SN, Hankins MW. Expression and localisation of two-pore domain (K2P) background leak potassium ion channels in the mouse retina. Sci Rep 2017;7:46085. [PMID: 28443635 DOI: 10.1038/srep46085] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
15 Luo Q, Fujita T, Jiang C, Kumamoto E. Carvacrol presynaptically enhances spontaneous excitatory transmission and produces outward current in adult rat spinal substantia gelatinosa neurons. Brain Research 2014;1592:44-54. [DOI: 10.1016/j.brainres.2014.10.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
16 Mathie A. Ion channels as novel therapeutic targets in the treatment of pain. J Pharm Pharmacol. 2010;62:1089-1095. [PMID: 20796186 DOI: 10.1111/j.2042-7158.2010.01131.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
17 Judge SI, Smith PJ. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics. Expert Opin Ther Pat 2009;19:433-60. [PMID: 19441925 DOI: 10.1517/13543770902765151] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
18 Lamas JA, Fernández-Fernández D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen Res 2019;14:1293-308. [PMID: 30964046 DOI: 10.4103/1673-5374.253506] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
19 Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 2009;29:8551-64. [PMID: 19571146 DOI: 10.1523/JNEUROSCI.5784-08.2009] [Cited by in Crossref: 118] [Cited by in F6Publishing: 84] [Article Influence: 9.1] [Reference Citation Analysis]
20 Braun G, Lengyel M, Enyedi P, Czirják G. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Br J Pharmacol 2015;172:1728-38. [PMID: 25409575 DOI: 10.1111/bph.13019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
21 Guo R, Zhang S, Xiao M, Qian F, He Z, Li D, Zhang X, Li H, Yang X, Wang M, Chai R, Tang M. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials. Biomaterials 2016;106:193-204. [PMID: 27566868 DOI: 10.1016/j.biomaterials.2016.08.019] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 11.5] [Reference Citation Analysis]
22 Lin X, Wu JF, Wang DM, Zhang J, Zhang WJ, Xue G. The correlation and role analysis of KCNK2/4/5/15 in Human Papillary Thyroid Carcinoma microenvironment. J Cancer 2020;11:5162-76. [PMID: 32742463 DOI: 10.7150/jca.45604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Enyedi P, Braun G, Czirják G. TRESK: the lone ranger of two-pore domain potassium channels. Mol Cell Endocrinol 2012;353:75-81. [PMID: 22115960 DOI: 10.1016/j.mce.2011.11.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
24 Stühmer W, Pardo LA. K(+) channels as therapeutic targets in oncology. Future Med Chem 2010;2:745-55. [PMID: 21426201 DOI: 10.4155/fmc.10.24] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
25 Hayoz S, Cubano L, Maldonado H, Bychkov R. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta. PLoS One 2013;8:e75077. [PMID: 24086441 DOI: 10.1371/journal.pone.0075077] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
26 Izquierdo P, Shiina H, Hirunpattarasilp C, Gillis G, Attwell D. Synapse development is regulated by microglial THIK-1 K+ channels. Proc Natl Acad Sci U S A 2021;118:e2106294118. [PMID: 34642249 DOI: 10.1073/pnas.2106294118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kanda H, Ling J, Tonomura S, Noguchi K, Matalon S, Gu JG. TREK-1 and TRAAK Are Principal K+ Channels at the Nodes of Ranvier for Rapid Action Potential Conduction on Mammalian Myelinated Afferent Nerves. Neuron 2019;104:960-971.e7. [PMID: 31630908 DOI: 10.1016/j.neuron.2019.08.042] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
28 Kubota K, Ohtake N, Ohbuchi K, Mase A, Imamura S, Sudo Y, Miyano K, Yamamoto M, Kono T, Uezono Y. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9. Am J Physiol Gastrointest Liver Physiol 2015;308:G579-90. [PMID: 25634809 DOI: 10.1152/ajpgi.00114.2014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 3.9] [Reference Citation Analysis]
29 Sauter DR, Sørensen CE, Rapedius M, Brüggemann A, Novak I. pH-sensitive K+ channel TREK-1 is a novel target in pancreatic cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2016;1862:1994-2003. [DOI: 10.1016/j.bbadis.2016.07.009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
30 Zheng H, Nam JH, Pang B, Shin DH, Kim JS, Chun YS, Park JW, Bang H, Kim WK, Earm YE, Kim SJ. Identification of the large-conductance background K+ channel in mouse B cells as TREK-2. Am J Physiol Cell Physiol 2009;297:C188-97. [PMID: 19439530 DOI: 10.1152/ajpcell.00052.2009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
31 Afzali AM, Ruck T, Herrmann AM, Iking J, Sommer C, Kleinschnitz C, Preuβe C, Stenzel W, Budde T, Wiendl H, Bittner S, Meuth SG. The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells. Am J Physiol Cell Physiol 2016;311:C583-95. [PMID: 27488672 DOI: 10.1152/ajpcell.00363.2015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
32 Viatchenko-Karpinski V, Ling J, Gu JG. Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats. Mol Brain 2018;11:40. [PMID: 29980241 DOI: 10.1186/s13041-018-0384-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
33 Kollewe A, Lau AY, Sullivan A, Roux B, Goldstein SA. A structural model for K2P potassium channels based on 23 pairs of interacting sites and continuum electrostatics. J Gen Physiol 2009;134:53-68. [PMID: 19564427 DOI: 10.1085/jgp.200910235] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
34 Egenberger B, Polleichtner G, Wischmeyer E, Döring F. N-linked glycosylation determines cell surface expression of two-pore-domain K+ channel TRESK. Biochemical and Biophysical Research Communications 2010;391:1262-7. [DOI: 10.1016/j.bbrc.2009.12.056] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
35 Czirják G, Enyedi P. The LQLP calcineurin docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel. J Biol Chem 2014;289:29506-18. [PMID: 25202008 DOI: 10.1074/jbc.M114.577684] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
36 Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2021;456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Williams RH, Burdakov D. Silencing of ventromedial hypothalamic neurons by glucose-stimulated K(+) currents. Pflugers Arch 2009;458:777-83. [PMID: 19238426 DOI: 10.1007/s00424-009-0650-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
38 Chang YT, Ling J, Gu JG. Effects of GABAB receptor activation on excitability of IB4-positive maxillary trigeminal ganglion neurons: Possible involvement of TREK2 activation. Mol Pain 2021;17:17448069211042963. [PMID: 34461754 DOI: 10.1177/17448069211042963] [Reference Citation Analysis]
39 Marsh B, Acosta C, Djouhri L, Lawson SN. Leak K⁺ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 2012;49:375-86. [PMID: 22273507 DOI: 10.1016/j.mcn.2012.01.002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 7.8] [Reference Citation Analysis]
40 Ładno W, Gawlak M, Szulczyk P, Nurowska E. Kinetic properties and adrenergic control of TREK-2-like channels in rat medial prefrontal cortex (mPFC) pyramidal neurons. Brain Res 2017;1665:95-104. [PMID: 28438532 DOI: 10.1016/j.brainres.2017.04.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
41 Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol 2017;8:43. [PMID: 28220076 DOI: 10.3389/fphys.2017.00043] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
42 Hermes ML, Renaud LP. Postsynaptic and presynaptic group II metabotropic glutamate receptor activation reduces neuronal excitability in rat midline paraventricular thalamic nucleus. J Pharmacol Exp Ther 2011;336:840-9. [PMID: 21139059 DOI: 10.1124/jpet.110.176149] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
43 Nogueira EF, Gerry D, Mantero F, Mariniello B, Rainey WE. The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas. Clin Endocrinol (Oxf) 2010;73:22-9. [PMID: 19878209 DOI: 10.1111/j.1365-2265.2009.03738.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 18] [Article Influence: 0.2] [Reference Citation Analysis]
44 Lamas JA. Mechanosensitive K2P channels, TREKking through the autonomic nervous system. In: Kamkin A, Lozinsky I, editors. Mechanically Gated Channels and their Regulation. Dordrecht: Springer Netherlands; 2012. pp. 35-68. [DOI: 10.1007/978-94-007-5073-9_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
45 Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W. The role of K₂p channels in anaesthesia and sleep. Pflugers Arch 2015;467:907-16. [PMID: 25482669 DOI: 10.1007/s00424-014-1654-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
46 Bista P, Meuth SG, Kanyshkova T, Cerina M, Pawlowski M, Ehling P, Landgraf P, Borsotto M, Heurteaux C, Pape HC, Baukrowitz T, Budde T. Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflugers Arch 2012;463:89-102. [PMID: 22083644 DOI: 10.1007/s00424-011-1056-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
47 Zúñiga L, Zúñiga R. Understanding the Cap Structure in K2P Channels. Front Physiol 2016;7:228. [PMID: 27378938 DOI: 10.3389/fphys.2016.00228] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
48 Masetti M, Berti C, Ocello R, Di Martino GP, Recanatini M, Fiegna C, Cavalli A. Multiscale Simulations of a Two-Pore Potassium Channel. J Chem Theory Comput 2016;12:5681-7. [DOI: 10.1021/acs.jctc.6b00972] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
49 Kanda H, Tonomura S, Gu JG. Effects of Cooling Temperatures via Thermal K2P Channels on Regeneration of High-Frequency Action Potentials at Nodes of Ranvier of Rat Aβ-Afferent Nerves. eNeuro 2021;8:ENEURO. [PMID: 34462308 DOI: 10.1523/ENEURO.0308-21.2021] [Reference Citation Analysis]
50 Mathie A, Rees KA, El Hachmane MF, Veale EL. Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 2010;8:276-86. [PMID: 21358977 DOI: 10.2174/157015910792246146] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
51 Maldonado PP, Vélez-Fort M, Levavasseur F, Angulo MC. Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter. J Neurosci 2013;33:2432-42. [PMID: 23392672 DOI: 10.1523/JNEUROSCI.1961-12.2013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 38] [Article Influence: 6.4] [Reference Citation Analysis]
52 Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers Arch 2015;467:917-29. [PMID: 25346157 DOI: 10.1007/s00424-014-1633-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
53 Dilly S, Poncin S, Lamy C, Liégeois J, Seutin V. Physiologie, pharmacologie et modélisation de canaux potassiques: Zoom sur les canaux SK. Med Sci (Paris) 2012;28:395-402. [DOI: 10.1051/medsci/2012284017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
54 Jing W, Zhang Y, Cai Q, Chen G, Wang L, Yang X, Zhong W. Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chem Neurosci 2018;10:348-57. [DOI: 10.1021/acschemneuro.8b00286] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
55 El Hachmane MF, Rees KA, Veale EL, Sumbayev VV, Mathie A. Enhancement of TWIK-related acid-sensitive potassium channel 3 (TASK3) two-pore domain potassium channel activity by tumor necrosis factor α. J Biol Chem 2014;289:1388-401. [PMID: 24307172 DOI: 10.1074/jbc.M113.500033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
56 Zúñiga R, Valenzuela C, Concha G, Brown N, Zúñiga L. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines. Int J Mol Sci 2018;19:E1033. [PMID: 29596383 DOI: 10.3390/ijms19041033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
57 Lamas JA, Rueda-Ruzafa L, Herrera-Pérez S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int J Mol Sci 2019;20:E2371. [PMID: 31091651 DOI: 10.3390/ijms20102371] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
58 Zúñiga L, Márquez V, González-Nilo FD, Chipot C, Cid LP, Sepúlveda FV, Niemeyer MI. Gating of a pH-sensitive K(2P) potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter. PLoS One 2011;6:e16141. [PMID: 21283586 DOI: 10.1371/journal.pone.0016141] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
59 Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T. The role of two-pore-domain background K⁺ (K₂p) channels in the thalamus. Pflugers Arch 2015;467:895-905. [PMID: 25346156 DOI: 10.1007/s00424-014-1632-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
60 Sonoda T, Lee SK, Birnbaumer L, Schmidt TM. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron 2018;99:754-767.e4. [PMID: 30017393 DOI: 10.1016/j.neuron.2018.06.032] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
61 Nam JH, Shin DH, Zheng H, Lee D, Park SJ, Park KS, Kim SJ. Expression of TASK-2 and its upregulation by B cell receptor stimulation in WEHI-231 mouse immature B cells. American Journal of Physiology-Cell Physiology 2011;300:C1013-22. [DOI: 10.1152/ajpcell.00475.2010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
62 Lorigo M, Oliveira N, Cairrao E. Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020;9:E1956. [PMID: 32854241 DOI: 10.3390/cells9091956] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Milac A, Anishkin A, Fatakia SN, Chow CC, Sukharev S, Guy HR. Structural models of TREK channels and their gating mechanism. Channels (Austin) 2011;5:23-33. [PMID: 21084863 DOI: 10.4161/chan.5.1.13905] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
64 Boland LM, Drzewiecki MM, Timoney G, Casey E. Inhibitory effects of polyunsaturated fatty acids on Kv4/KChIP potassium channels. Am J Physiol Cell Physiol 2009;296:C1003-14. [PMID: 19261906 DOI: 10.1152/ajpcell.00474.2008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
65 Czirják G, Vuity D, Enyedi P. Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J Biol Chem 2008;283:15672-80. [PMID: 18397886 DOI: 10.1074/jbc.M800712200] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
66 Sun H, Luo L, Lal B, Ma X, Chen L, Hann CL, Fulton AM, Leahy DJ, Laterra J, Li M. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun 2016;7:10339. [PMID: 26842342 DOI: 10.1038/ncomms10339] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
67 Beltrán L, Beltrán M, Aguado A, Gisselmann G, Hatt H. 2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2). Front Pharmacol 2013;4:63. [PMID: 23720627 DOI: 10.3389/fphar.2013.00063] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
68 Varshney A, Scott LJ, Welch RP, Erdos MR, Chines PS, Narisu N, Albanus RD, Orchard P, Wolford BN, Kursawe R, Vadlamudi S, Cannon ME, Didion JP, Hensley J, Kirilusha A; NISC Comparative Sequencing Program, Bonnycastle LL, Taylor DL, Watanabe R, Mohlke KL, Boehnke M, Collins FS, Parker SC, Stitzel ML. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A. 2017;114:2301-2306. [PMID: 28193859 DOI: 10.1073/pnas.1621192114] [Cited by in Crossref: 133] [Cited by in F6Publishing: 98] [Article Influence: 26.6] [Reference Citation Analysis]
69 Burgos P, Zúñiga R, Domínguez P, Delgado-López F, Plant LD, Zúñiga L. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons. Biochem Biophys Res Commun 2014;453:754-60. [PMID: 25305496 DOI: 10.1016/j.bbrc.2014.10.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
70 Kim SE, Kim MH, Woo J, Kim SJ. Dual regulatory effects of PI(4,5)P2 on TREK-2 K+ channel through antagonizing interaction between the alkaline residues (K330 and R355-357) in the cytosolic C-terminal helix. Korean J Physiol Pharmacol 2020;24:555-61. [PMID: 33093276 DOI: 10.4196/kjpp.2020.24.6.555] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Ma L, Zhang X, Zhou M, Chen H. Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 2012;287:37145-53. [PMID: 22948150 DOI: 10.1074/jbc.M112.398164] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
72 Boland LM, Drzewiecki MM. Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys 2008;52:59-84. [PMID: 18830821 DOI: 10.1007/s12013-008-9027-2] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 5.5] [Reference Citation Analysis]
73 Viatchenko-Karpinski V, Gu JG. Effects of cooling temperatures and low pH on membrane properties and voltage-dependent currents of rat nociceptive-like trigeminal ganglion neurons. Mol Pain 2018;14:1744806918814350. [PMID: 30380987 DOI: 10.1177/1744806918814350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Franco R, Panayiotidis MI, de la Paz LD. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008;216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.0] [Reference Citation Analysis]
75 Bagriantsev SN, Ang KH, Gallardo-Godoy A, Clark KA, Arkin MR, Renslo AR, Minor DL Jr. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem Biol 2013;8:1841-51. [PMID: 23738709 DOI: 10.1021/cb400289x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
76 Hermann A, Donato R, Weiger TM, Chazin WJ. S100 calcium binding proteins and ion channels. Front Pharmacol 2012;3:67. [PMID: 22539925 DOI: 10.3389/fphar.2012.00067] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
77 Parelkar NK, Silswal N, Jansen K, Vaughn J, Bryan RM Jr, Andresen J. 2,2,2-trichloroethanol activates a nonclassical potassium channel in cerebrovascular smooth muscle and dilates the middle cerebral artery. J Pharmacol Exp Ther 2010;332:803-10. [PMID: 19955488 DOI: 10.1124/jpet.109.162313] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
78 Shi T, Yao XG, Li M, Heizhati M, Li XF, Wen L, He YY, Yao L, Wang YC, Hong J, Li NF. Genetic variants of rs1275988 and rs2586886 in TWIK-related acid-sensitive K+ channel-1 gene may be potential risk factors for obese patients with obstructive sleep apnea. Chin Med J (Engl) 2019;132:2059-65. [PMID: 31436597 DOI: 10.1097/CM9.0000000000000401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Xiao R, Liu J, Xu XZ. Thermosensation and longevity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015;201:857-67. [PMID: 26101089 DOI: 10.1007/s00359-015-1021-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
80 Li WC, Xiong ZY, Huang PZ, Liao YJ, Li QX, Yao ZC, Liao YD, Xu SL, Zhou H, Wang QL, Huang H, Zhang P, Lin JZ, Liu B, Ren J, Hu KP. KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma. Aging (Albany NY) 2019;11:8169-82. [PMID: 31581133 DOI: 10.18632/aging.102311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
81 Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron 2018;97:299-312.e6. [PMID: 29290552 DOI: 10.1016/j.neuron.2017.12.002] [Cited by in Crossref: 161] [Cited by in F6Publishing: 141] [Article Influence: 32.2] [Reference Citation Analysis]
82 Inoue M, Matsuoka H, Harada K, Mugishima G, Kameyama M. TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Pflugers Arch - Eur J Physiol 2020;472:911-22. [DOI: 10.1007/s00424-020-02403-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
83 Książek A, Ladno W, Szulczyk B, Grzelka K, Szulczyk P. Properties of BK-type Ca(+) (+)-dependent K(+) channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages. Front Cell Neurosci 2013;7:185. [PMID: 24312002 DOI: 10.3389/fncel.2013.00185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
84 O'Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. Pflugers Arch 2015;467:1133-42. [PMID: 25413469 DOI: 10.1007/s00424-014-1641-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
85 Beltrán LR, Dawid C, Beltrán M, Levermann J, Titt S, Thomas S, Pürschel V, Satalik M, Gisselmann G, Hofmann T, Hatt H. The Effect of Pungent and Tingling Compounds from Piper nigrum L. on Background K+ Currents. Front Pharmacol 2017;8:408. [PMID: 28694780 DOI: 10.3389/fphar.2017.00408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
86 Huntemann N, Bittner S, Bock S, Meuth SG, Ruck T. Mini-Review: Two Brothers in Crime - The Interplay of TRESK and TREK in Human Diseases. Neurosci Lett 2021;769:136376. [PMID: 34852287 DOI: 10.1016/j.neulet.2021.136376] [Reference Citation Analysis]
87 Breton JD, Stuart GJ. GABAB receptors in neocortical and hippocampal pyramidal neurons are coupled to different potassium channels. Eur J Neurosci 2017;46:2859-66. [PMID: 29131436 DOI: 10.1111/ejn.13777] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
88 Valero-Aracama MJ, Sauvage MM, Yoshida M. Environmental enrichment modulates intrinsic cellular excitability of hippocampal CA1 pyramidal cells in a housing duration and anatomical location-dependent manner. Behav Brain Res 2015;292:209-18. [PMID: 26048427 DOI: 10.1016/j.bbr.2015.05.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
89 Shah MM, Hammond RS, Hoffman DA. Dendritic ion channel trafficking and plasticity. Trends Neurosci 2010;33:307-16. [PMID: 20363038 DOI: 10.1016/j.tins.2010.03.002] [Cited by in Crossref: 93] [Cited by in F6Publishing: 84] [Article Influence: 7.8] [Reference Citation Analysis]
90 Inanobe A, Kurachi Y. Membrane channels as integrators of G-protein-mediated signaling. Biochim Biophys Acta 2014;1838:521-31. [PMID: 24028827 DOI: 10.1016/j.bbamem.2013.08.018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
91 Kamuene JM, Xu Y, Plant LD. The Pharmacology of Two-Pore Domain Potassium Channels. Handb Exp Pharmacol 2021. [PMID: 33880623 DOI: 10.1007/164_2021_462] [Reference Citation Analysis]
92 Maîtrejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A. Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. Plant Physiol 2011;156:1783-96. [PMID: 21697507 DOI: 10.1104/pp.111.177816] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
93 Mathie A, Al-Moubarak E, Veale EL. Gating of two pore domain potassium channels. J Physiol 2010;588:3149-56. [PMID: 20566661 DOI: 10.1113/jphysiol.2010.192344] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 4.7] [Reference Citation Analysis]
94 Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015;95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
95 Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014;94:1249-85. [PMID: 25287864 DOI: 10.1152/physrev.00008.2014] [Cited by in Crossref: 112] [Cited by in F6Publishing: 109] [Article Influence: 14.0] [Reference Citation Analysis]
96 Cadaveira-Mosquera A, Ribeiro SJ, Reboreda A, Pérez M, Lamas JA. Activation of TREK currents by the neuroprotective agent riluzole in mouse sympathetic neurons. J Neurosci 2011;31:1375-85. [PMID: 21273422 DOI: 10.1523/JNEUROSCI.2791-10.2011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
97 Saito K, Moore R, Negishi M. Nuclear receptor CAR specifically activates the two-pore K+ channel Kcnk1 gene in male mouse livers, which attenuates phenobarbital-induced hepatic hyperplasia. Toxicol Sci 2013;132:151-61. [PMID: 23291559 DOI: 10.1093/toxsci/kfs338] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
98 Benson M, Iñiguez-Lluhí JA, Martens J. Sumo Modification of Ion Channels. Adv Exp Med Biol 2017;963:127-41. [PMID: 28197910 DOI: 10.1007/978-3-319-50044-7_8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
99 Ramírez D, Arévalo B, Martínez G, Rinné S, Sepúlveda FV, Decher N, González W. Side Fenestrations Provide an "Anchor" for a Stable Binding of A1899 to the Pore of TASK-1 Potassium Channels. Mol Pharm 2017;14:2197-208. [PMID: 28494157 DOI: 10.1021/acs.molpharmaceut.7b00005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
100 Lazniewska J, Weiss N. The “Sweet” Side of Ion Channels. In: Nilius B, Gudermann T, Jahn R, Lill R, Offermanns S, Petersen OH, editors. Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167. Cham: Springer International Publishing; 2014. pp. 67-114. [DOI: 10.1007/112_2014_20] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
101 López-Cayuqueo KI, Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP. TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function. Pflugers Arch 2015;467:1043-53. [PMID: 25315981 DOI: 10.1007/s00424-014-1627-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
102 Busserolles J, Tsantoulas C, Eschalier A, López García JA. Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain 2016;157:S7-S14. [DOI: 10.1097/j.pain.0000000000000368] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 9.2] [Reference Citation Analysis]
103 Rivas-Ramírez P, Reboreda A, Rueda-Ruzafa L, Herrera-Pérez S, Lamas JA. Contribution of KCNQ and TREK Channels to the Resting Membrane Potential in Sympathetic Neurons at Physiological Temperature. Int J Mol Sci 2020;21:E5796. [PMID: 32806753 DOI: 10.3390/ijms21165796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
104 Dobrovinskaya O, Delgado-Enciso I, Quintero-Castro LJ, Best-Aguilera C, Rojas-Sotelo RM, Pottosin I. Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. Biomed Res Int 2015;2015:750203. [PMID: 25866806 DOI: 10.1155/2015/750203] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
105 Concha G, Bustos D, Zúñiga R, Catalán MA, Zúñiga L. The Insensitivity of TASK-3 K₂P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure. Int J Mol Sci 2018;19:E2437. [PMID: 30126179 DOI: 10.3390/ijms19082437] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
106 Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A, Renslo AR, Minor DL Jr. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K2P Channels. ACS Chem Neurosci 2018;9:3153-65. [PMID: 30089357 DOI: 10.1021/acschemneuro.8b00337] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
107 Reed A, Kohl P, Peyronnet R. Molecular candidates for cardiac stretch-activated ion channels. Glob Cardiol Sci Pract 2014;2014:9-25. [PMID: 25405172 DOI: 10.5339/gcsp.2014.19] [Cited by in Crossref: 18] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
108 Honasoge A, Shelton KA, Sontheimer H. Autocrine regulation of glioma cell proliferation via pHe-sensitive K(+) channels. Am J Physiol Cell Physiol 2014;306:C493-505. [PMID: 24380845 DOI: 10.1152/ajpcell.00097.2013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
109 Mao Q, Yuan J, Ming X, Wu S, Chen L, Bekker A, Yang T, Tao YX. Role of dorsal root ganglion K2p1.1 in peripheral nerve injury-induced neuropathic pain. Mol Pain 2017;13:1744806917701135. [PMID: 28326939 DOI: 10.1177/1744806917701135] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
110 Ehling P, Cerina M, Budde T, Meuth SG, Bittner S. The CNS under pathophysiologic attack--examining the role of K₂p channels. Pflugers Arch 2015;467:959-72. [PMID: 25482672 DOI: 10.1007/s00424-014-1664-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
111 Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015;93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
112 Pottosin II, Bonales-Alatorre E, Valencia-Cruz G, Mendoza-Magaña ML, Dobrovinskaya OR. TRESK-like potassium channels in leukemic T cells. Pflugers Arch 2008;456:1037-48. [PMID: 18506476 DOI: 10.1007/s00424-008-0481-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
113 Tu N, Liang D, Zhang P. Whole-exome sequencing and genome-wide evolutionary analyses identify novel candidate genes associated with infrared perception in pit vipers. Sci Rep 2020;10:13033. [PMID: 32747674 DOI: 10.1038/s41598-020-69843-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
114 Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT. Methamphetamine decreases K+ channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 2019;148:29-45. [PMID: 30295919 DOI: 10.1111/jnc.14606] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
115 de la Peña E, Mälkiä A, Vara H, Caires R, Ballesta JJ, Belmonte C, Viana F. The influence of cold temperature on cellular excitability of hippocampal networks. PLoS One 2012;7:e52475. [PMID: 23300680 DOI: 10.1371/journal.pone.0052475] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
116 Kieseier BC, Hartung HP. Targeting two-pore domain potassium channels - a promising strategy for treating T cell mediated autoimmunity. Exp Neurol 2013;247:286-8. [PMID: 23353639 DOI: 10.1016/j.expneurol.2013.01.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
117 Wang HR, Wu M, Yu H, Long S, Stevens A, Engers DW, Sackin H, Daniels JS, Dawson ES, Hopkins CR, Lindsley CW, Li M, McManus OB. Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133. ACS Chem Biol 2011;6:845-56. [PMID: 21615117 DOI: 10.1021/cb200146a] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 4.8] [Reference Citation Analysis]
118 Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D. TASK Channels Pharmacology: New Challenges in Drug Design. J Med Chem 2019;62:10044-58. [PMID: 31260312 DOI: 10.1021/acs.jmedchem.9b00248] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
119 Kollert S, Dombert B, Döring F, Wischmeyer E. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling. Sci Rep 2015;5:12548. [PMID: 26224542 DOI: 10.1038/srep12548] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
120 Zhao KQ, Xiong G, Wilber M, Cohen NA, Kreindler JL. A role for two-pore K⁺ channels in modulating Na⁺ absorption and Cl⁻ secretion in normal human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012;302:L4-L12. [PMID: 21964404 DOI: 10.1152/ajplung.00102.2011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.5] [Reference Citation Analysis]
121 Bodnár M, Schlichthörl G, Daut J. The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle. Pflugers Arch 2015;467:1069-79. [PMID: 25539776 DOI: 10.1007/s00424-014-1678-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
122 Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. J Physiol Biochem 2015;71:601-10. [PMID: 26271386 DOI: 10.1007/s13105-015-0422-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
123 Suzuki Y, Tsutsumi K, Miyamoto T, Yamamura H, Imaizumi Y. Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. PLoS One 2017;12:e0186252. [PMID: 29016681 DOI: 10.1371/journal.pone.0186252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
124 Vivier D, Bennis K, Lesage F, Ducki S. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target? J Med Chem 2016;59:5149-57. [PMID: 26588045 DOI: 10.1021/acs.jmedchem.5b00671] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
125 Cadaveira-Mosquera A, Pérez M, Reboreda A, Rivas-Ramírez P, Fernández-Fernández D, Lamas JA. Expression of K2P channels in sensory and motor neurons of the autonomic nervous system. J Mol Neurosci 2012;48:86-96. [PMID: 22544515 DOI: 10.1007/s12031-012-9780-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
126 Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T. The pore structure and gating mechanism of K2P channels. EMBO J 2011;30:3607-19. [PMID: 21822218 DOI: 10.1038/emboj.2011.268] [Cited by in Crossref: 127] [Cited by in F6Publishing: 117] [Article Influence: 11.5] [Reference Citation Analysis]
127 Mathie A, Veale EL. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch - Eur J Physiol 2015;467:931-43. [DOI: 10.1007/s00424-014-1655-3] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 7.8] [Reference Citation Analysis]
128 Kim S, Lee Y, Tak HM, Park HJ, Sohn YS, Hwang S, Han J, Kang D, Lee KW. Identification of blocker binding site in mouse TRESK by molecular modeling and mutational studies. Biochim Biophys Acta 2013;1828:1131-42. [PMID: 23200789 DOI: 10.1016/j.bbamem.2012.11.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
129 Shamayeva K, Spurna K, Kulik N, Kale D, Munko O, Spurny P, Zayats V, Ludwig J. MPM motifs of the yeast SKT protein Trk1 can assemble to form a functional K+-translocation system. Biochim Biophys Acta Biomembr 2021;1863:183513. [PMID: 33245894 DOI: 10.1016/j.bbamem.2020.183513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]