BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dutta P, Lincoln J. Calcific Aortic Valve Disease: a Developmental Biology Perspective. Curr Cardiol Rep 2018;20:21. [PMID: 29520694 DOI: 10.1007/s11886-018-0968-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Nordquist EM, Dutta P, Kodigepalli KM, Mattern C, McDermott MR, Trask AJ, LaHaye S, Lindner V, Lincoln J. Tgfβ1-Cthrc1 Signaling Plays an Important Role in the Short-Term Reparative Response to Heart Valve Endothelial Injury. Arterioscler Thromb Vasc Biol 2021;41:2923-42. [PMID: 34645278 DOI: 10.1161/ATVBAHA.121.316450] [Reference Citation Analysis]
2 Bellasi A, Di Lullo L, Raggi P. Cardiovascular calcification: The emerging role of micronutrients. Atherosclerosis 2018;273:119-21. [PMID: 29705018 DOI: 10.1016/j.atherosclerosis.2018.04.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
3 Wang Y, Fang Y, Lu P, Wu B, Zhou B. NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease. Front Cardiovasc Med 2021;8:682298. [PMID: 34239905 DOI: 10.3389/fcvm.2021.682298] [Reference Citation Analysis]
4 Bensimon-Brito A, Ramkumar S, Boezio GLM, Guenther S, Kuenne C, Helker CSM, Sánchez-Iranzo H, Iloska D, Piesker J, Pullamsetti S, Mercader N, Beis D, Stainier DYR. TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Dev Cell 2020;52:9-20.e7. [PMID: 31786069 DOI: 10.1016/j.devcel.2019.10.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
5 Jenke A, Kistner J, Saradar S, Chekhoeva A, Yazdanyar M, Bergmann AK, Rötepohl MV, Lichtenberg A, Akhyari P. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model. Am J Physiol Heart Circ Physiol 2020;319:H1123-41. [PMID: 32986963 DOI: 10.1152/ajpheart.00651.2019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
6 Sikura KÉ, Potor L, Szerafin T, Zarjou A, Agarwal A, Arosio P, Poli M, Hendrik Z, Méhes G, Oros M, Posta N, Beke L, Fürtös I, Balla G, Balla J. Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arterioscler Thromb Vasc Biol 2019;39:413-31. [PMID: 30700131 DOI: 10.1161/ATVBAHA.118.312191] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
7 Shah TA, Rogers MB. Unanswered Questions Regarding Sex and BMP/TGF-β Signaling. J Dev Biol 2018;6:E14. [PMID: 29914150 DOI: 10.3390/jdb6020014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
8 Hsu CD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. Vasc Biol 2020;2:R59-71. [PMID: 32923975 DOI: 10.1530/VB-19-0031] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Owens WA, Walaszczyk A, Spyridopoulos I, Dookun E, Richardson GD. Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mech Ageing Dev 2021;198:111540. [PMID: 34237321 DOI: 10.1016/j.mad.2021.111540] [Reference Citation Analysis]
10 Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021;128:1344-70. [PMID: 33914601 DOI: 10.1161/CIRCRESAHA.121.318011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kodigepalli KM, Thatcher K, West T, Howsmon DP, Schoen FJ, Sacks MS, Breuer CK, Lincoln J. Biology and Biomechanics of the Heart Valve Extracellular Matrix. J Cardiovasc Dev Dis 2020;7:E57. [PMID: 33339213 DOI: 10.3390/jcdd7040057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhang B, Miller VM, Miller JD. Influences of Sex and Estrogen in Arterial and Valvular Calcification. Front Endocrinol (Lausanne) 2019;10:622. [PMID: 31620082 DOI: 10.3389/fendo.2019.00622] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
13 Qiao E, Huang Z, Wang W. Exploring potential genes and pathways related to calcific aortic valve disease. Gene 2022;808:145987. [PMID: 34600049 DOI: 10.1016/j.gene.2021.145987] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ma X, Zhao D, Yuan P, Li J, Yun Y, Cui Y, Zhang T, Ma J, Sun L, Ma H, Zhang Y, Zhang H, Zhang W, Huang J, Zou C, Wang Z. Endothelial-to-Mesenchymal Transition in Calcific Aortic Valve Disease. Acta Cardiol Sin 2020;36:183-94. [PMID: 32425433 DOI: 10.6515/ACS.202005_36(3).20200213A] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
15 Wang D, Xiong T, Yu W, Liu B, Wang J, Xiao K, She Q. Predicting the Key Genes Involved in Aortic Valve Calcification Through Integrated Bioinformatics Analysis. Front Genet 2021;12:650213. [PMID: 34046056 DOI: 10.3389/fgene.2021.650213] [Reference Citation Analysis]
16 Yu C, Wu D, Zhao C, Wu C. CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells. J Bone Miner Metab 2021;39:360-71. [PMID: 33070258 DOI: 10.1007/s00774-020-01164-4] [Reference Citation Analysis]
17 Yang L, Wu D, Li M, Zhu X, Tian Y, Chen Z, Li M, Zhang H, Liang D. Upregulation of microRNA-195 ameliorates calcific aortic valve disease by inhibiting VWF via suppression of the p38-MAPK signaling pathway. International Journal of Cardiology 2020;309:101-7. [DOI: 10.1016/j.ijcard.2020.01.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Balistreri CR. To the research of treatments for the typical calcific disease of old aortic valve in the omics era: Is the miR-195 a therapeutic signature via targetable p38-MAPK/VWF axis in bicuspid aortic valve? Int J Cardiol 2020;309:108-9. [PMID: 32204937 DOI: 10.1016/j.ijcard.2020.03.023] [Reference Citation Analysis]
19 O'Donnell A, Yutzey KE. Mechanisms of heart valve development and disease. Development 2020;147:dev183020. [PMID: 32620577 DOI: 10.1242/dev.183020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Dutta P, Kodigepalli KM, LaHaye S, Thompson JW, Rains S, Nagel C, Thatcher K, Hinton RB, Lincoln J. KPT-330 Prevents Aortic Valve Calcification via a Novel C/EBPβ Signaling Pathway. Circ Res 2021;128:1300-16. [PMID: 33601919 DOI: 10.1161/CIRCRESAHA.120.318503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Xu K, Xie S, Huang Y, Zhou T, Liu M, Zhu P, Wang C, Shi J, Li F, Sellke FW, Dong N. Cell-Type Transcriptome Atlas of Human Aortic Valves Reveal Cell Heterogeneity and Endothelial to Mesenchymal Transition Involved in Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol 2020;40:2910-21. [PMID: 33086873 DOI: 10.1161/ATVBAHA.120.314789] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
22 Vogl BJ, Niemi NR, Griffiths LG, Alkhouli MA, Hatoum H. Impact of calcific aortic valve disease on valve mechanics. Biomech Model Mechanobiol 2021. [PMID: 34687365 DOI: 10.1007/s10237-021-01527-4] [Reference Citation Analysis]
23 Dye B, Lincoln J. The Endocardium and Heart Valves. Cold Spring Harb Perspect Biol 2020;12:a036723. [PMID: 31988139 DOI: 10.1101/cshperspect.a036723] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Gunawan F, Gentile A, Gauvrit S, Stainier DYR, Bensimon-Brito A. Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish. Circ Res 2020;126:968-84. [PMID: 32070236 DOI: 10.1161/CIRCRESAHA.119.315992] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
25 Di Vito A, Donato A, Presta I, Mancuso T, Brunetti FS, Mastroroberto P, Amorosi A, Malara N, Donato G. Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021;22:E913. [PMID: 33477599 DOI: 10.3390/ijms22020913] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Menon V, Lincoln J. The Genetic Regulation of Aortic Valve Development and Calcific Disease. Front Cardiovasc Med 2018;5:162. [PMID: 30460247 DOI: 10.3389/fcvm.2018.00162] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
27 Stadelmann K, Weghofer A, Urbanczyk M, Maulana TI, Loskill P, Jones PD, Schenke-Layland K. Development of a bi-layered cryogenic electrospun polylactic acid scaffold to study calcific aortic valve disease in a 3D co-culture model. Acta Biomater 2021:S1742-7061(21)00780-7. [PMID: 34839029 DOI: 10.1016/j.actbio.2021.11.030] [Reference Citation Analysis]
28 En Q, Zeping H, Yuetang W, Xu W, Wei W. Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way. Mol Med 2021;27:156. [PMID: 34895136 DOI: 10.1186/s10020-021-00416-x] [Reference Citation Analysis]
29 Yang R, Tang Y, Chen X, Yang Y. Telocytes-derived extracellular vesicles alleviate aortic valve calcification by carrying miR-30b. ESC Heart Fail 2021. [PMID: 34165260 DOI: 10.1002/ehf2.13460] [Reference Citation Analysis]
30 Fu B, Zhang Y, Chen Q, Guo Z, Jiang N. Antibody microarray analysis of serum inflammatory cytokines in patients with calcific aortic valve disease. Ann Transl Med 2020;8:761. [PMID: 32647686 DOI: 10.21037/atm-20-4463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]