BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang R, Chen Z, Liu M, Deng Y, Li S, He N. The aptamers generated from HepG2 cells. Sci China Chem 2017;60:786-92. [DOI: 10.1007/s11426-016-0491-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Z, Tang C, Zhao L, Xu L, Zhou W, Dong Z, Yang Y, Xie Q, Fang X. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 2019;11:10106-13. [PMID: 31089660 DOI: 10.1039/c9nr01589b] [Cited by in Crossref: 30] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
2 Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. Adv Biosyst 2019;3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
3 Zhou W, Zhao L, Yuan H, Xu L, Tan W, Song Y, Fang X. A new small cell lung cancer biomarker identified by Cell-SELEX generated aptamers. Experimental Cell Research 2019;382:111478. [DOI: 10.1016/j.yexcr.2019.06.023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
4 Guo Z, Liu Y, He N, Deng Y, Jin L. Discussion of the protein characterization techniques used in the identification of membrane protein targets corresponding to tumor cell aptamers. Chinese Chemical Letters 2021;32:40-7. [DOI: 10.1016/j.cclet.2020.11.061] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
5 Shao C, Liu Y, Qi J, Su Y, Chen Y, Xu H, Lin Z, Guan H. Real-time detection of the interaction between alpha-fetoprotein and its ssDNA aptamer by dual polarization interferometry. New J Chem 2018;42:19564-70. [DOI: 10.1039/c8nj04200d] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
6 Gu H, Duan N, Xia Y, Hun X, Wang H, Wang Z. Magnetic Separation-Based Multiple SELEX for Effectively Selecting Aptamers against Saxitoxin, Domoic Acid, and Tetrodotoxin. J Agric Food Chem 2018;66:9801-9. [PMID: 30153406 DOI: 10.1021/acs.jafc.8b02771] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
7 Kaur H. Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta Gen Subj 2018;1862:2323-9. [PMID: 30059712 DOI: 10.1016/j.bbagen.2018.07.029] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 11.5] [Reference Citation Analysis]
8 He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chinese Chemical Letters 2021;32:1593-602. [DOI: 10.1016/j.cclet.2020.12.054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 16.0] [Reference Citation Analysis]
9 Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS Appl Bio Mater 2020;3:2674-85. [DOI: 10.1021/acsabm.9b00928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, He N. Aptasensors for pesticide detection. Biosens Bioelectron 2019;130:174-84. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Cited by in Crossref: 81] [Cited by in F6Publishing: 56] [Article Influence: 27.0] [Reference Citation Analysis]
11 Yu X, Wang Y, Yang H, Huang X. Prediction of the binding affinity of aptamers against the influenza virus. SAR QSAR Environ Res 2019;30:51-62. [PMID: 30638061 DOI: 10.1080/1062936X.2018.1558416] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Liu M, Yang T, Chen Z, Wang Z, He N. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells. Biomater Sci 2018;6:3152-9. [PMID: 30349922 DOI: 10.1039/c8bm00787j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 7.7] [Reference Citation Analysis]
13 Sun D, Lu J, Luo Z, Zhang L, Liu P, Chen Z. Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron 2018;120:8-14. [PMID: 30142479 DOI: 10.1016/j.bios.2018.08.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
14 Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
15 Guo Z, Jin B, Fang Y, Deng Y, Chen Z, Chen H, Li S, Leung P, Wang H, Cai L, He N. Selected aptamer specially combing 5-8F cells based on automatic screening instrument. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.01.081] [Reference Citation Analysis]
16 Cheng W, Xu J, Guo Z, Yang D, Chen X, Yan W, Miao P. Hydrothermal synthesis of N,S co-doped carbon nanodots for highly selective detection of living cancer cells. J Mater Chem B 2018;6:5775-80. [PMID: 32254984 DOI: 10.1039/c8tb01271g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
17 Li Q, Zhao D, Shao X, Lin S, Xie X, Liu M, Ma W, Shi S, Lin Y. Aptamer-Modified Tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery. ACS Appl Mater Interfaces 2017;9:36695-701. [PMID: 28991436 DOI: 10.1021/acsami.7b13328] [Cited by in Crossref: 94] [Cited by in F6Publishing: 89] [Article Influence: 18.8] [Reference Citation Analysis]