BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Young P, Taylor M, Fallowfield HJ. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World J Microbiol Biotechnol 2017;33. [DOI: 10.1007/s11274-017-2282-x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 9.6] [Reference Citation Analysis]
Number Citing Articles
1 Mathew MM, Khatana K, Vats V, Dhanker R, Kumar R, Dahms H, Hwang J. Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review. Front Microbiol 2022;12:801051. [DOI: 10.3389/fmicb.2021.801051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Hülsen T, Sander EM, Jensen PD, Batstone DJ. Application of purple phototrophic bacteria in a biofilm photobioreactor for single cell protein production: Biofilm vs suspended growth. Water Res 2020;181:115909. [PMID: 32492592 DOI: 10.1016/j.watres.2020.115909] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 García-galán MJ, Monllor-alcaraz LS, Postigo C, Uggetti E, López de Alda M, Díez-montero R, García J. Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas. Environmental Pollution 2020;265:114579. [DOI: 10.1016/j.envpol.2020.114579] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
4 Ghosh A, Sarkar S, Gayen K, Bhowmick TK. Effects of carbon, nitrogen, and phosphorus supplements on growth and biochemical composition of Podohedriella sp. (MCC44) isolated from northeast India. Environ Prog Sustainable Energy 2020;39. [DOI: 10.1002/ep.13378] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
5 Vassalle L, García-galán MJ, Aquino SF, Afonso RJDCF, Ferrer I, Passos F, R Mota C. Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere 2020;248:125969. [DOI: 10.1016/j.chemosphere.2020.125969] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
6 Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PN, Tay JH. Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews 2020;118:109563. [DOI: 10.1016/j.rser.2019.109563] [Cited by in Crossref: 49] [Cited by in F6Publishing: 26] [Article Influence: 24.5] [Reference Citation Analysis]
7 Chuka-ogwude D, Ogbonna J, Moheimani NR. A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Research 2020;47:101841. [DOI: 10.1016/j.algal.2020.101841] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 22.0] [Reference Citation Analysis]
8 Dayana Priyadharshini S, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Environ Pollut 2021;290:117989. [PMID: 34433126 DOI: 10.1016/j.envpol.2021.117989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Delanka-pedige HM, Cheng X, Munasinghe-arachchige SP, Abeysiriwardana-arachchige IS, Xu J, Nirmalakhandan N, Zhang Y. Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. Algal Research 2020;47:101865. [DOI: 10.1016/j.algal.2020.101865] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 15.5] [Reference Citation Analysis]
10 Mandal S, Shurin JB, Efroymson RA, Mathews TJ. Heterogeneity in Nitrogen Sources Enhances Productivity and Nutrient Use Efficiency in Algal Polycultures. Environ Sci Technol 2018;52:3769-76. [PMID: 29466661 DOI: 10.1021/acs.est.7b05318] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
11 Couto E, Calijuri ML, Assemany P, Cecon PR. Evaluation of high rate ponds operational and design strategies for algal biomass production and domestic wastewater treatment. Sci Total Environ 2021;791:148362. [PMID: 34412414 DOI: 10.1016/j.scitotenv.2021.148362] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Chambonniere P, Bronlund J, Guieysse B. Pathogen removal in high-rate algae pond: state of the art and opportunities. J Appl Phycol 2021;33:1501-11. [DOI: 10.1007/s10811-020-02354-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yang J, Shi W, Fang F, Guo J, Lu L, Xiao Y, Jiang X. Exploring the feasibility of sewage treatment by algal–bacterial consortia. Critical Reviews in Biotechnology 2020;40:169-79. [DOI: 10.1080/07388551.2019.1709796] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Torres-franco A, Passos F, Figueredo C, Mota C, Muñoz R. Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance. Rev Environ Sci Biotechnol 2021;20:209-35. [DOI: 10.1007/s11157-020-09556-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
15 Young P, Taylor MJ, Buchanan N, Lewis J, Fallowfield HJ. Case study on the effect continuous CO2 enrichment, via biogas scrubbing, has on biomass production and wastewater treatment in a high rate algal pond. Journal of Environmental Management 2019;251:109614. [DOI: 10.1016/j.jenvman.2019.109614] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 García-galán MJ, Arashiro L, Santos LH, Insa S, Rodríguez-mozaz S, Barceló D, Ferrer I, Garfí M. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems. Journal of Hazardous Materials 2020;390:121771. [DOI: 10.1016/j.jhazmat.2019.121771] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 11.5] [Reference Citation Analysis]
17 Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered 2022;13:10412-53. [PMID: 35441582 DOI: 10.1080/21655979.2022.2056823] [Reference Citation Analysis]
18 Brauko KM, Cabral A, Costa NV, Hayden J, Dias CEP, Leite ES, Westphal RD, Mueller CM, Hall-spencer JM, Rodrigues RR, Rörig LR, Pagliosa PR, Fonseca AL, Alarcon OE, Horta PA. Marine Heatwaves, Sewage and Eutrophication Combine to Trigger Deoxygenation and Biodiversity Loss: A SW Atlantic Case Study. Front Mar Sci 2020;7:590258. [DOI: 10.3389/fmars.2020.590258] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Pous N, Hidalgo M, Serra T, Colomer J, Colprim J, Salvadó V. Assessment of zooplankton-based eco-sustainable wastewater treatment at laboratory scale. Chemosphere 2020;238:124683. [DOI: 10.1016/j.chemosphere.2019.124683] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
20 Ji B. Towards environment-sustainable wastewater treatment and reclamation by the non-aerated microalgal-bacterial granular sludge process: Recent advances and future directions. Sci Total Environ 2022;806:150707. [PMID: 34599950 DOI: 10.1016/j.scitotenv.2021.150707] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wrede D, Hussainy SU, Rajendram W, Gray S. Investigation and modelling of high rate algal ponds utilising secondary effluent at Western Water, Bacchus Marsh Recycled Water Plant. Water Sci Technol 2018;78:20-30. [PMID: 30101785 DOI: 10.2166/wst.2018.202] [Reference Citation Analysis]
22 Abeysiriwardana-arachchige IS, Nirmalakhandan N. Predicting removal kinetics of biochemical oxygen demand (BOD) and nutrients in a pilot scale fed-batch algal wastewater treatment system. Algal Research 2019;43:101643. [DOI: 10.1016/j.algal.2019.101643] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
23 Gao L, Zhang J, Liu G. Life cycle assessment for algae-based desalination system. Desalination 2021;512:115148. [DOI: 10.1016/j.desal.2021.115148] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
24 Ociński D, Augustynowicz J, Wołowski K, Mazur P, Sitek E, Raczyk J. Natural community of macroalgae from chromium-contaminated site for effective remediation of Cr(VI)-containing leachates. Sci Total Environ 2021;786:147501. [PMID: 33975106 DOI: 10.1016/j.scitotenv.2021.147501] [Reference Citation Analysis]
25 Buchanan NA, Young P, Cromar NJ, Fallowfield HJ. Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. Algal Research 2018;35:325-32. [DOI: 10.1016/j.algal.2018.08.036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
26 Nirmalakhandan N, Selvaratnam T, Henkanatte-gedera S, Tchinda D, Abeysiriwardana-arachchige I, Delanka-pedige H, Munasinghe-arachchige S, Zhang Y, Holguin F, Lammers P. Algal wastewater treatment: Photoautotrophic vs. mixotrophic processes. Algal Research 2019;41:101569. [DOI: 10.1016/j.algal.2019.101569] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
27 Zamri MFMA, Bahru R, Suja' F, Shamsuddin AH, Pramanik SK, Fattah IMR. Treatment strategies for enhancing the removal of endocrine-disrupting chemicals in water and wastewater systems. Journal of Water Process Engineering 2021;41:102017. [DOI: 10.1016/j.jwpe.2021.102017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
28 Fallowfield HJ, Young P, Taylor MJ, Buchanan N, Cromar N, Keegan A, Monis P. Independent validation and regulatory agency approval for high rate algal ponds to treat wastewater from rural communities. Environ Sci : Water Res Technol 2018;4:195-205. [DOI: 10.1039/c7ew00228a] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
29 Almeida JR, Serrano E, Fernandez M, Fradinho JC, Oehmen A, Reis MAM. Polyhydroxyalkanoates production from fermented domestic wastewater using phototrophic mixed cultures. Water Res 2021;197:117101. [PMID: 33857894 DOI: 10.1016/j.watres.2021.117101] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Couto E, Calijuri ML, Assemany P. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration. Sci Total Environ 2020;724:138104. [PMID: 32408433 DOI: 10.1016/j.scitotenv.2020.138104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
31 Arashiro LT, Ferrer I, Rousseau DP, Van Hulle SW, Garfí M. The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery. Bioresource Technology 2019;280:27-36. [DOI: 10.1016/j.biortech.2019.01.096] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 10.7] [Reference Citation Analysis]
32 Ahmad A, Priyadarshini M, Raj R, Das S, Ghangrekar MM. Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. Environ Sci Pollut Res Int 2022. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Panda S, Mishra S, Akcil A, Kucuker MA. Microalgal potential for nutrient-energy-wastewater nexus: Innovations, current trends and future directions. Energy & Environment 2021;32:604-34. [DOI: 10.1177/0958305x20955187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. Remediation (N Y) 2021. [PMID: 34539159 DOI: 10.1002/rem.21691] [Reference Citation Analysis]
35 Russell JN, Yost CK. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere 2021;263:128177. [PMID: 33297145 DOI: 10.1016/j.chemosphere.2020.128177] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
36 Mahesh N, Balakumar S, Danya U, Shyamalagowri S, Babu PS, Aravind J, Kamaraj M, Govarthanan M. A review on mitigation of emerging contaminants in an aqueous environment using microbial bio-machines as sustainable tools: Progress and limitations. Journal of Water Process Engineering 2022;47:102712. [DOI: 10.1016/j.jwpe.2022.102712] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sánchez IA, Bastos RKX, Lana EAT. Tilapia rearing with high rate algal pond effluent: ammonia surface loading rates and stocking densities effects. Water Sci Technol 2018;78:49-56. [PMID: 30101788 DOI: 10.2166/wst.2018.285] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
38 Delanka-pedige HMK, Munasinghe-arachchige SP, Abeysiriwardana-arachchige ISA, Zhang Y, Nirmalakhandan N. Algal pathway towards meeting United Nation’s sustainable development goal 6. International Journal of Sustainable Development & World Ecology 2020;27:678-86. [DOI: 10.1080/13504509.2020.1756977] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
39 Jimoh TA, Keshinro MO, Cowan KA. Microalgal–Bacterial Flocs and Extracellular Polymeric Substances: Two Essential and Valuable Products of Integrated Algal Pond Systems. Water Air Soil Pollut 2019;230. [DOI: 10.1007/s11270-019-4148-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
40 Park JBK, Meerman C, Craggs R. Continuous low dosing of cationic polyacrylamide (PAM) to enhance algal harvest from a hectare-scale wastewater treatment high rate algal pond. New Zealand Journal of Botany 2018;57:112-24. [DOI: 10.1080/0028825x.2018.1552159] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
41 Almasi A, Mahmoudi M, Mohammadi M, Dargahi A, Biglari H. Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol. Toxin Reviews 2021;40:189-97. [DOI: 10.1080/15569543.2019.1573433] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
42 Park JB, Craggs RJ, Tanner CC. Eco-friendly and low-cost Enhanced Pond and Wetland (EPW) system for the treatment of secondary wastewater effluent. Ecological Engineering 2018;120:170-9. [DOI: 10.1016/j.ecoleng.2018.05.029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
43 Mahapatra DM, Murthy G. Long term evaluation of a pilot scale multimodal algal bioprocess for treatment of municipal wastewater. Journal of Cleaner Production 2021;311:127690. [DOI: 10.1016/j.jclepro.2021.127690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
44 Molina-Grima E, García-Camacho F, Acién-Fernández FG, Sánchez-Mirón A, Plouviez M, Shene C, Chisti Y. Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnol Adv 2021;:107884. [PMID: 34896169 DOI: 10.1016/j.biotechadv.2021.107884] [Reference Citation Analysis]
45 Wollmann F, Dietze S, Ackermann JU, Bley T, Walther T, Steingroewer J, Krujatz F. Microalgae wastewater treatment: Biological and technological approaches. Eng Life Sci 2019;19:860-71. [PMID: 32624978 DOI: 10.1002/elsc.201900071] [Cited by in Crossref: 65] [Cited by in F6Publishing: 32] [Article Influence: 21.7] [Reference Citation Analysis]
46 Valchev D, Ribarova I, Uzunov B, Stoyneva-Gärtner M. Photo-sequencing batch reactor with Klebsormidium nitens: a promising microalgal biotechnology for sustainable phosphorus management in wastewater treatment plants. Water Sci Technol 2021;83:2463-76. [PMID: 34032623 DOI: 10.2166/wst.2021.149] [Reference Citation Analysis]
47 Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020;43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
48 Buchanan N, Young P, Cromar NJ, Fallowfield HJ. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia. Water Sci Technol 2018;78:3-11. [PMID: 30101783 DOI: 10.2166/wst.2018.201] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]