BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mulo P, Medina M. Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications. Photosynth Res 2017;134:265-80. [PMID: 28361449 DOI: 10.1007/s11120-017-0372-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Seo D, Muraki N, Kurisu G. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP+ oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP+/NADPH. Biochim Biophys Acta Bioenerg 2020;1861:148140. [PMID: 31838096 DOI: 10.1016/j.bbabio.2019.148140] [Reference Citation Analysis]
2 Monchietti P, López Rivero AS, Ceccarelli EA, Catalano-Dupuy DL. A new catalytic mechanism of bacterial ferredoxin-NADP+ reductases due to a particular NADP+ binding mode. Protein Sci 2021;30:2106-20. [PMID: 34382711 DOI: 10.1002/pro.4166] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Pérez-Amigot D, Taleb V, Boneta S, Anoz-Carbonell E, Sebastián M, Velázquez-Campoy A, Polo V, Martínez-Júlvez M, Medina M. Towards the competent conformation for catalysis in the ferredoxin-NADP+ reductase from the Brucella ovis pathogen. Biochim Biophys Acta Bioenerg 2019;1860:148058. [PMID: 31394095 DOI: 10.1016/j.bbabio.2019.148058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Okino-delgado CH, Zanutto-elgui MR, do Prado DZ, Pereira MS, Fleuri LF. Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications. In: Arora PK, editor. Microbial Metabolism of Xenobiotic Compounds. Singapore: Springer; 2019. pp. 79-101. [DOI: 10.1007/978-981-13-7462-3_4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
5 Koskela MM, Dahlström KM, Goñi G, Lehtimäki N, Nurmi M, Velazquez-Campoy A, Hanke G, Bölter B, Salminen TA, Medina M, Mulo P. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases. Physiol Plant 2018;162:177-90. [PMID: 28833218 DOI: 10.1111/ppl.12621] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
6 López Rivero AS, Rossi MA, Ceccarelli EA, Catalano-Dupuy DL. A bacterial 2[4Fe4S] ferredoxin as redox partner of the plastidic-type ferredoxin-NADP+ reductase from Leptospira interrogans. Biochim Biophys Acta Gen Subj 2019;1863:651-60. [PMID: 30639162 DOI: 10.1016/j.bbagen.2019.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
7 Kimata-Ariga Y, Chikuma Y, Saitoh T, Miyata M, Yanagihara Y, Yamane K, Hase T. NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin-NADP+ reductase. FEBS Open Bio 2019;9:2126-36. [PMID: 31665566 DOI: 10.1002/2211-5463.12752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
8 Kayama M, Chen JF, Nakada T, Nishimura Y, Shikanai T, Azuma T, Miyashita H, Takaichi S, Kashiyama Y, Kamikawa R. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol 2020;18:126. [PMID: 32938439 DOI: 10.1186/s12915-020-00853-w] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Kozuleva MA, Ivanov BN, Vetoshkina DV, Borisova-Mubarakshina MM. Minimizing an Electron Flow to Molecular Oxygen in Photosynthetic Electron Transfer Chain: An Evolutionary View. Front Plant Sci 2020;11:211. [PMID: 32231675 DOI: 10.3389/fpls.2020.00211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kean KM, Carpenter RA, Pandini V, Zanetti G, Hall AR, Faber R, Aliverti A, Karplus PA. High-resolution studies of hydride transfer in the ferredoxin:NADP+ reductase superfamily. FEBS J 2017;284:3302-19. [PMID: 28783258 DOI: 10.1111/febs.14190] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
11 Hammerstad M, Hersleth HP. Overview of structurally homologous flavoprotein oxidoreductases containing the low Mr thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021;702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chikuma Y, Miyata M, Lee YH, Hase T, Kimata-Ariga Y. Molecular mechanism of negative cooperativity of ferredoxin-NADP+ reductase by ferredoxin and NADP(H): involvement of a salt bridge between Asp60 of ferredoxin and Lys33 of FNR. Biosci Biotechnol Biochem 2021;85:860-5. [PMID: 33693505 DOI: 10.1093/bbb/zbaa102] [Reference Citation Analysis]
13 Seo D, Asano T. C-terminal residues of ferredoxin-NAD(P)+ reductase from Chlorobaculum tepidum are responsible for reaction dynamics in the hydride transfer and redox equilibria with NADP+/NADPH. Photosynth Res 2018;136:275-90. [PMID: 29119426 DOI: 10.1007/s11120-017-0462-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
14 Wang P, Zeng W, Du G, Zhou J, Chen J. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology 2019;301:24-34. [DOI: 10.1016/j.jbiotec.2019.05.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Kimata-Ariga Y, Morihisa R. Functional analyses of plasmodium ferredoxin Asp97Tyr mutant related to artemisinin resistance of human malaria parasites. J Biochem 2021;170:521-9. [PMID: 34415329 DOI: 10.1093/jb/mvab070] [Reference Citation Analysis]
16 Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021;54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Reference Citation Analysis]
17 Grabsztunowicz M, Rantala M, Ivanauskaite A, Blomster T, Koskela MM, Vuorinen K, Tyystjärvi E, Burow M, Overmyer K, Mähönen AP, Mulo P. Root-type ferredoxin-NADP+ oxidoreductase isoforms in Arabidopsis thaliana: Expression patterns, location and stress responses. Plant Cell Environ 2021;44:548-58. [PMID: 33131061 DOI: 10.1111/pce.13932] [Reference Citation Analysis]
18 Liu YL, Shen ZJ, Simon M, Li H, Ma DN, Zhu XY, Zheng HL. Comparative Proteomic Analysis Reveals the Regulatory Effects of H2S on Salt Tolerance of Mangrove Plant Kandelia obovata. Int J Mol Sci 2019;21:E118. [PMID: 31878013 DOI: 10.3390/ijms21010118] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
19 Fichman Y, Koncz Z, Reznik N, Miller G, Szabados L, Kramer K, Nakagami H, Fromm H, Koncz C, Zilberstein A. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Sci 2018;270:278-91. [PMID: 29576081 DOI: 10.1016/j.plantsci.2018.02.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
20 Zhang X, Hu Y, Peng W, Gao C, Xing Q, Wang B, Li A. Exploring the Potential of Cytochrome P450 CYP109B1 Catalyzed Regio-and Stereoselective Steroid Hydroxylation. Front Chem 2021;9:649000. [PMID: 33681151 DOI: 10.3389/fchem.2021.649000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB. Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model. Photosynth Res 2019;140:1-19. [DOI: 10.1007/s11120-019-00627-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
22 Brahmachari U, Pokkuluri PR, Tiede DM, Niklas J, Poluektov OG, Mulfort KL, Utschig LM. Interprotein electron transfer biohybrid system for photocatalytic H2 production. Photosynth Res 2020;143:183-92. [PMID: 31925629 DOI: 10.1007/s11120-019-00705-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]