BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luderer MJ, de la Puente P, Azab AK. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm Res 2015;32:2824-36. [DOI: 10.1007/s11095-015-1718-y] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Gao Z, Horiguchi Y, Nakai K, Matsumura A, Suzuki M, Ono K, Nagasaki Y. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016;104:201-12. [DOI: 10.1016/j.biomaterials.2016.06.046] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
2 Mi P, Yanagie H, Dewi N, Yen H, Liu X, Suzuki M, Sakurai Y, Ono K, Takahashi H, Cabral H, Kataoka K, Nishiyama N. Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. Journal of Controlled Release 2017;254:1-9. [DOI: 10.1016/j.jconrel.2017.03.036] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 8.6] [Reference Citation Analysis]
3 Yao Q, Wu C, Chen J, Zhao Y, Gao Y. Enzyme-instructed supramolecular assemblies promote intracellular boron accumulation for boron neutron capture therapy. Nanotechnology 2021;32. [PMID: 34280913 DOI: 10.1088/1361-6528/ac15ca] [Reference Citation Analysis]
4 Quan H, Fan L, Huang Y, Xia X, He Y, Liu S, Yu J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: A potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf B Biointerfaces 2021;204:111826. [PMID: 33984611 DOI: 10.1016/j.colsurfb.2021.111826] [Reference Citation Analysis]
5 Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Lerchen HG, Köbberling J, Riedl B, Hey-Hawkins E, Beck-Sickinger AG. A Selective Carborane-Functionalized Gastrin-Releasing Peptide Receptor Agonist as Boron Delivery Agent for Boron Neutron Capture Therapy. J Org Chem 2020;85:1446-57. [PMID: 31813224 DOI: 10.1021/acs.joc.9b02406] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
6 Popova T, Dymova MA, Koroleva LS, Zakharova OD, Lisitskiy VA, Raskolupova VI, Sycheva T, Taskaev S, Silnikov VN, Godovikova TS. Homocystamide Conjugates of Human Serum Albumin as a Platform to Prepare Bimodal Multidrug Delivery Systems for Boron Neutron Capture Therapy. Molecules 2021;26:6537. [PMID: 34770947 DOI: 10.3390/molecules26216537] [Reference Citation Analysis]
7 Aldossari S, McMahon G, Lockyer NP, Moore KL. Microdistribution and quantification of the boron neutron capture therapy drug BPA in primary cell cultures of human glioblastoma tumour by NanoSIMS. Analyst 2019;144:6214-24. [PMID: 31528921 DOI: 10.1039/c9an01336a] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Nomoto T, Nishiyama N. Design of drug delivery systems for physical energy-induced chemical surgery. Biomaterials 2018;178:583-96. [DOI: 10.1016/j.biomaterials.2018.03.038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
9 Tojo T, Niiuchi A, Kondo T, Yuasa M. Evaluation of the Correlation between Porphyrin Accumulation in Cancer Cells and Functional Porphyrin Positions of the Phenyl Group. ChemMedChem 2021. [PMID: 34859953 DOI: 10.1002/cmdc.202100636] [Reference Citation Analysis]
10 Garabalino MA, Olaiz N, Portu A, Saint Martin G, Thorp SI, Pozzi ECC, Curotto P, Itoiz ME, Monti Hughes A, Colombo LL, Nigg DW, Trivillin VA, Marshall G, Schwint AE. Electroporation optimizes the uptake of boron-10 by tumor for boron neutron capture therapy (BNCT) mediated by GB-10: a boron biodistribution study in the hamster cheek pouch oral cancer model. Radiat Environ Biophys 2019;58:455-67. [PMID: 31123853 DOI: 10.1007/s00411-019-00796-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
11 Li R, Zhang J, Guo J, Xu Y, Duan K, Zheng J, Wan H, Yuan Z, Chen H. Application of Nitroimidazole-Carbobane-Modified Phenylalanine Derivatives as Dual-Target Boron Carriers in Boron Neutron Capture Therapy. Mol Pharm 2020;17:202-11. [PMID: 31763850 DOI: 10.1021/acs.molpharmaceut.9b00898] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Lopalco A, Lopedota AA, Laquintana V, Denora N, Stella VJ. Boric Acid, a Lewis Acid With Unique and Unusual Properties: Formulation Implications. Journal of Pharmaceutical Sciences 2020;109:2375-86. [DOI: 10.1016/j.xphs.2020.04.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Worm DJ, Els‐heindl S, Beck‐sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Peptide Science 2020;112. [DOI: 10.1002/pep2.24171] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
14 Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, Rosenfeld A. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep 2018;8:16257. [PMID: 30390002 DOI: 10.1038/s41598-018-34643-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Sun T, Li Y, Huang Y, Zhang Z, Yang W, Du Z, Zhou Y. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget 2016;7:43095-108. [PMID: 27191269 DOI: 10.18632/oncotarget.9355] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
16 Yamagami M, Tajima T, Ishimoto K, Miyake H, Michiue H, Takaguchi Y. Physical modification of carbon nanotubes with a dendrimer bearing terminal mercaptoundecahydrododecaborates (Na 2 B 12 H 11 S). Heteroatom Chem 2018. [DOI: 10.1002/hc.21467] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
17 Matović J, Järvinen J, Bland HC, Sokka IK, Imlimthan S, Ferrando RM, Huttunen KM, Timonen J, Peräniemi S, Aitio O, Airaksinen AJ, Sarparanta M, Johansson MP, Rautio J, Ekholm FS. Addressing the Biochemical Foundations of a Glucose-Based "Trojan Horse"-Strategy to Boron Neutron Capture Therapy: From Chemical Synthesis to In Vitro Assessment. Mol Pharm 2020;17:3885-99. [PMID: 32787269 DOI: 10.1021/acs.molpharmaceut.0c00630] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
18 Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Josephson L, Liang SH, Zhang M. Boron agents for neutron capture therapy. Coordination Chemistry Reviews 2020;405:213139. [DOI: 10.1016/j.ccr.2019.213139] [Cited by in Crossref: 34] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
19 Matović J, Järvinen J, Sokka IK, Imlimthan S, Raitanen JE, Montaser A, Maaheimo H, Huttunen KM, Peräniemi S, Airaksinen AJ, Sarparanta M, Johansson MP, Rautio J, Ekholm FS. Exploring the Biochemical Foundations of a Successful GLUT1-Targeting Strategy to BNCT: Chemical Synthesis and In Vitro Evaluation of the Entire Positional Isomer Library of ortho-Carboranylmethyl-Bearing Glucoconjugates. Mol Pharm 2021;18:285-304. [PMID: 33390018 DOI: 10.1021/acs.molpharmaceut.0c00917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Choi G, Jeon I, Piao H, Choy J. Highly Condensed Boron Cage Cluster Anions in 2D Carrier and Its Enhanced Antitumor Efficiency for Boron Neutron Capture Therapy. Adv Funct Mater 2018;28:1704470. [DOI: 10.1002/adfm.201704470] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 3.4] [Reference Citation Analysis]
21 Nishida K, Tojo T, Kondo T, Yuasa M. Evaluation of the correlation between porphyrin accumulation in cancer cells and functional positions for application as a drug carrier. Sci Rep 2021;11:2046. [PMID: 33479459 DOI: 10.1038/s41598-021-81725-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018;38:35. [PMID: 29914561 DOI: 10.1186/s40880-018-0299-7] [Cited by in Crossref: 119] [Cited by in F6Publishing: 97] [Article Influence: 29.8] [Reference Citation Analysis]
23 Luderer MJ, Muz B, Alhallak K, Sun J, Wasden K, Guenthner N, de la Puente P, Federico C, Azab AK. Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharm Res 2019;36:144. [PMID: 31392417 DOI: 10.1007/s11095-019-2670-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
24 Maitz CA, Khan AA, Kueffer PJ, Brockman JD, Dixson J, Jalisatgi SS, Nigg DW, Everett TA, Hawthorne MF. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Transl Oncol 2017;10:686-92. [PMID: 28683435 DOI: 10.1016/j.tranon.2017.05.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
25 Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front Chem 2020;8:571. [PMID: 32733853 DOI: 10.3389/fchem.2020.00571] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
26 Morimoto Y, Nagasawa H, Uto Y, Chatake T, Hori H. Structural Insight Into Protein Binding of Boron Tracedrug UTX-97 Revealed by the Co-Crystal Structure With Lysozyme at 1.26 Å Resolution. J Pharm Sci 2016;105:2298-301. [PMID: 27422088 DOI: 10.1016/j.xphs.2016.06.005] [Reference Citation Analysis]
27 Yeh CN, Chang CW, Chung YH, Tien SW, Chen YR, Chen TW, Huang YC, Wang HE, Chou YC, Chen MH, Chiang KC, Huang WS, Yu CS. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma. Eur J Pharm Sci 2017;107:217-29. [PMID: 28728977 DOI: 10.1016/j.ejps.2017.07.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
28 Chan WJ, Tseng FG. Nanomedicine in boron neutron capture therapy for cancer treatment: opportunities, challenges and future perspectives. Nanomedicine (Lond) 2021;16:1631-4. [PMID: 34264135 DOI: 10.2217/nnm-2021-0082] [Reference Citation Analysis]
29 Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci Adv 2020;6:eaaz1722. [PMID: 32010792 DOI: 10.1126/sciadv.aaz1722] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 12.5] [Reference Citation Analysis]
30 Kawasaki R, Sasaki Y, Akiyoshi K. Self-assembled Nanogels of Carborane-bearing Polysaccharides for Boron Neutron Capture Therapy. Chem Lett 2017;46:513-5. [DOI: 10.1246/cl.161137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
31 Protti N, Deagostino A, Boggio P, Alberti D, Crich SG. New Boronated Compounds for an Imaging-Guided Personalized Neutron Capture Therapy. In: Hey-hawkins E, Teixidor CV, editors. Boron-Based Compounds. Chichester: John Wiley & Sons, Ltd; 2018. pp. 389-415. [DOI: 10.1002/9781119275602.ch3.5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, Crich SG. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016;8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
33 Viñas Teixidor C, Teixidor F, Harwood AJ. Cobaltabisdicarbollide-based Synthetic Vesicles. In: Hey-hawkins E, Teixidor CV, editors. Boron-Based Compounds. Chichester: John Wiley & Sons, Ltd; 2018. pp. 159-73. [DOI: 10.1002/9781119275602.ch2.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Strominger AM, Sutherland BL, Flemming AS, Dutmer BC, Gilbert TM. Additivity of Diene Substituent Gibbs Free Energy Contributions for Diels-Alder Reactions between (F3C)2B = NMe2 and Substituted Cyclopentadienes. J Phys Chem A 2021;125:5456-69. [PMID: 34110819 DOI: 10.1021/acs.jpca.1c02880] [Reference Citation Analysis]
35 Sauerwein WAG, Sancey L, Hey-Hawkins E, Kellert M, Panza L, Imperio D, Balcerzyk M, Rizzo G, Scalco E, Herrmann K, Mauri P, De Palma A, Wittig A. Theranostics in Boron Neutron Capture Therapy. Life (Basel) 2021;11:330. [PMID: 33920126 DOI: 10.3390/life11040330] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Worm DJ, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Koebberling J, Riedl B, Hey-Hawkins E, Beck-Sickinger AG. A stable meta-carborane enables the generation of boron-rich peptide agonists targeting the ghrelin receptor. J Pept Sci 2018;24:e3119. [PMID: 30168238 DOI: 10.1002/psc.3119] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
37 Viñas C, Núñez R, Bennour I, Teixidor F. Periphery Decorated and Core Initiated Neutral and Polyanionic Borane Large Molecules: Forthcoming and Promising Properties for Medicinal Applications. CMC 2019;26:5036-76. [DOI: 10.2174/0929867326666190603123838] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
38 Worm DJ, Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Köbberling J, Riedl B, Hey-Hawkins E, Beck-Sickinger AG. Selective Neuropeptide Y Conjugates with Maximized Carborane Loading as Promising Boron Delivery Agents for Boron Neutron Capture Therapy. J Med Chem 2020;63:2358-71. [PMID: 31589041 DOI: 10.1021/acs.jmedchem.9b01136] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
39 Nakase I, Aoki A, Sakai Y, Hirase S, Ishimura M, Takatani-Nakase T, Hattori Y, Kirihata M. Antibody-Based Receptor Targeting Using an Fc-Binding Peptide-Dodecaborate Conjugate and Macropinocytosis Induction for Boron Neutron Capture Therapy. ACS Omega 2020;5:22731-8. [PMID: 32954120 DOI: 10.1021/acsomega.0c01377] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Oleshkevich E, Teixidor F, Rosell A, Viñas C. Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming toward Multifunctional Nanohybrid Materials. Inorg Chem 2018;57:462-70. [DOI: 10.1021/acs.inorgchem.7b02691] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
41 Yinghuai Z, Lin X, Xie H, Li J, Hosmane NS, Zhang Y. The Current Status and Perspectives of Delivery Strategy for Boron-based Drugs. Curr Med Chem 2018. [PMID: 30182851 DOI: 10.2174/0929867325666180904105212] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Ueda H, Suzuki M, Kuroda R, Tanaka T, Aoki S. Design, Synthesis, and Biological Evaluation of Boron-Containing Macrocyclic Polyamines and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. J Med Chem 2021;64:8523-44. [PMID: 34077212 DOI: 10.1021/acs.jmedchem.1c00445] [Reference Citation Analysis]
43 Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017;18:E1102. [PMID: 28531102 DOI: 10.3390/ijms18051102] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
44 Itoh T, Tamura K, Ueda H, Tanaka T, Sato K, Kuroda R, Aoki S. Design and synthesis of boron containing monosaccharides by the hydroboration of d-glucal for use in boron neutron capture therapy (BNCT). Bioorg Med Chem 2018;26:5922-33. [PMID: 30420329 DOI: 10.1016/j.bmc.2018.10.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Luderer MJ, Muz B, de la Puente P, Chavalmane S, Kapoor V, Marcelo R, Biswas P, Thotala D, Rogers B, Azab AK. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma. Pharm Res 2016;33:2530-9. [PMID: 27401411 DOI: 10.1007/s11095-016-1977-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
46 Nomoto T, Yao Y, Inoue Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Fructose-functionalized polymers to enhance therapeutic potential of p-boronophenylalanine for neutron capture therapy. J Control Release 2021;332:184-93. [PMID: 33636247 DOI: 10.1016/j.jconrel.2021.02.021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Xuan S, Vicente MDGH. Recent Advances in Boron Delivery Agents for Boron Neutron Capture Therapy (BNCT). In: Hey-hawkins E, Teixidor CV, editors. Boron-Based Compounds. Chichester: John Wiley & Sons, Ltd; 2018. pp. 298-342. [DOI: 10.1002/9781119275602.ch3.2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]