BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Martínez A, Olmo R, Iglesias I, Teijón JM, Blanco MD. Folate-Targeted Nanoparticles Based on Albumin and Albumin/Alginate Mixtures as Controlled Release Systems of Tamoxifen: Synthesis and In Vitro Characterization. Pharm Res 2014;31:182-93. [DOI: 10.1007/s11095-013-1151-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. Asian Biomedicine 2020;14:217-42. [DOI: 10.1515/abm-2020-0032] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Qi L, Guo Y, Luan J, Zhang D, Zhao Z, Luan Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system. J Mater Chem B 2014;2:8361-71. [DOI: 10.1039/c4tb01102c] [Cited by in Crossref: 38] [Cited by in F6Publishing: 3] [Article Influence: 4.8] [Reference Citation Analysis]
3 Chiu HI, Lim V. Wheat Germ Agglutinin-Conjugated Disulfide Cross-Linked Alginate Nanoparticles as a Docetaxel Carrier for Colon Cancer Therapy. Int J Nanomedicine 2021;16:2995-3020. [PMID: 33911862 DOI: 10.2147/IJN.S302238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Fontana MC, Beckenkamp A, Buffon A, Beck RC. Controlled release of raloxifene by nanoencapsulation: effect on in vitro antiproliferative activity of human breast cancer cells. Int J Nanomedicine 2014;9:2979-91. [PMID: 24971009 DOI: 10.2147/IJN.S62857] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
5 Ibrahim OM, El-Deeb NM, Abbas H, Elmasry SM, El-Aassar MR. Alginate based tamoxifen/metal dual core-folate decorated shell: Nanocomposite targeted therapy for breast cancer via ROS-driven NF-κB pathway modulation. Int J Biol Macromol 2020;146:119-31. [PMID: 31904460 DOI: 10.1016/j.ijbiomac.2019.12.266] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
6 Zhou Y, Petrova SP, Edgar KJ. Chemical synthesis of polysaccharide-protein and polysaccharide-peptide conjugates: A review. Carbohydr Polym 2021;274:118662. [PMID: 34702481 DOI: 10.1016/j.carbpol.2021.118662] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhu Z, Li Y, Yang X, Pan W, Pan H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol Res 2017;126:84-96. [PMID: 28734999 DOI: 10.1016/j.phrs.2017.07.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
8 Chiu HI, Ayub AD, Mat Yusuf SNA, Yahaya N, Abbd Kadir E, Lim V. Docetaxel-Loaded Disulfide Cross-Linked Nanoparticles Derived from Thiolated Sodium Alginate for Colon Cancer Drug Delivery. Pharmaceutics 2020;12:E38. [PMID: 31906511 DOI: 10.3390/pharmaceutics12010038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
9 Li G, Cao L, Zhou Z, Chen Z, Huang Y, Zhao Y. Rapamycin loaded magnetic Fe3O4/carboxymethylchitosan nanoparticles as tumor-targeted drug delivery system: Synthesis and in vitro characterization. Colloids Surf B Biointerfaces 2015;128:379-88. [PMID: 25779605 DOI: 10.1016/j.colsurfb.2015.02.035] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 4.9] [Reference Citation Analysis]
10 Martínez A, Muñiz E, Teijón C, Iglesias I, Teijón JM, Blanco MD. Targeting Tamoxifen to Breast Cancer Xenograft Tumours: Preclinical Efficacy of Folate-Attached Nanoparticles Based on Alginate-Cysteine/Disulphide-Bond-Reduced Albumin. Pharm Res 2014;31:1264-74. [DOI: 10.1007/s11095-013-1247-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
11 Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020;2020:8886095. [PMID: 32832902 DOI: 10.1155/2020/8886095] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
12 George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019;561:244-64. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Cited by in Crossref: 147] [Cited by in F6Publishing: 97] [Article Influence: 49.0] [Reference Citation Analysis]
13 Du J, Song Y, Ye W, Cheng Y, Cui H, Liu D, Liu M, Zhang B, Zhou S. PEG-detachable lipid–polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells. Anti-Cancer Drugs 2014;25:751-66. [DOI: 10.1097/cad.0000000000000092] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
14 Omrani I, Babanejad N, Shendi HK, Nabid MR. Preparation and evaluation of a novel sunflower oil-based waterborne polyurethane nanoparticles for sustained delivery of hydrophobic drug: Sunflower oil-based waterborne polyurethane. Eur J Lipid Sci Technol 2017;119:1600283. [DOI: 10.1002/ejlt.201600283] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gaber M, Mabrouk MT, Freag MS, Khiste SK, Fang JY, Elkhodairy KA, Elzoghby AO. Protein-polysaccharide nanohybrids: Hybridization techniques and drug delivery applications. Eur J Pharm Biopharm 2018;133:42-62. [PMID: 30300719 DOI: 10.1016/j.ejpb.2018.10.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
16 Martínez-Relimpio AM, Benito M, Pérez-Izquierdo E, Teijón C, Olmo RM, Blanco MD. Paclitaxel-Loaded Folate-Targeted Albumin-Alginate Nanoparticles Crosslinked with Ethylenediamine. Synthesis and In Vitro Characterization. Polymers (Basel) 2021;13:2083. [PMID: 34202848 DOI: 10.3390/polym13132083] [Reference Citation Analysis]
17 Sun L, Wei Z, Chen H, Liu J, Guo J, Cao M, Wen T, Shi L. Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and targeted imaging applications. Nanoscale 2014;6:8878-83. [PMID: 24961224 DOI: 10.1039/c4nr02312a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
18 Germershaus O, Lühmann T, Rybak J, Ritzer J, Meinel L. Application of natural and semi-synthetic polymers for the delivery of sensitive drugs. International Materials Reviews 2014;60:101-31. [DOI: 10.1179/1743280414y.0000000045] [Cited by in Crossref: 31] [Cited by in F6Publishing: 1] [Article Influence: 3.9] [Reference Citation Analysis]
19 Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev. 2014;79-80:107-118. [PMID: 24819216 DOI: 10.1016/j.addr.2014.05.005] [Cited by in Crossref: 147] [Cited by in F6Publishing: 138] [Article Influence: 18.4] [Reference Citation Analysis]