BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res 2010;27:2283-95. [PMID: 20845067 DOI: 10.1007/s11095-010-0260-1] [Cited by in Crossref: 110] [Cited by in F6Publishing: 95] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Wang H, Shen J, Cao G, Gai Z, Hong K, Debata PR, Banerjee P, Zhou S. Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy. J Mater Chem B 2013;1:6225. [DOI: 10.1039/c3tb21055c] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 4.9] [Reference Citation Analysis]
2 Gunduz U, Keskin T, Tansık G, Mutlu P, Yalcin S, Unsoy G, Yakar A, Khodadust R, Gunduz G. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacother 2014;68:729-36. [PMID: 25194441 DOI: 10.1016/j.biopha.2014.08.013] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 5.8] [Reference Citation Analysis]
3 Thorat ND, Bohara RA, Malgras V, Tofail SA, Ahamad T, Alshehri SM, Wu KC, Yamauchi Y. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2016;8:14656-64. [PMID: 27197993 DOI: 10.1021/acsami.6b02616] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 9.5] [Reference Citation Analysis]
4 Haghniaz R, Bhayani KR, Umrani RD, Paknikar KM. Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging. RSC Adv 2013;3:18489. [DOI: 10.1039/c3ra40836a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
5 Vurro F, Jabalera Y, Mannucci S, Glorani G, Sola-Leyva A, Gerosa M, Romeo A, Romanelli MG, Malatesta M, Calderan L, Iglesias GR, Carrasco-Jiménez MP, Jimenez-Lopez C, Perduca M. Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. Nanomaterials (Basel) 2021;11:766. [PMID: 33803544 DOI: 10.3390/nano11030766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yallapu MM, Othman SF, Curtis ET, Bauer NA, Chauhan N, Kumar D, Jaggi M, Chauhan SC. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 2012;7:1761-79. [PMID: 22619526 DOI: 10.2147/IJN.S29290] [Cited by in Crossref: 17] [Cited by in F6Publishing: 35] [Article Influence: 1.7] [Reference Citation Analysis]
7 Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 2011;29:323-32. [PMID: 21489647 DOI: 10.1016/j.tibtech.2011.03.001] [Cited by in Crossref: 265] [Cited by in F6Publishing: 205] [Article Influence: 24.1] [Reference Citation Analysis]
8 Crețu BE, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021;26:3437. [PMID: 34198906 DOI: 10.3390/molecules26113437] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS Appl Bio Mater 2022. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Reference Citation Analysis]
10 Zhou Y, Sun J, Yang X. Molecular Imaging-Guided Interventional Hyperthermia in Treatment of Breast Cancer. Biomed Res Int 2015;2015:505269. [PMID: 26491673 DOI: 10.1155/2015/505269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Soenen SJ, Rivera-gil P, Montenegro J, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011;6:446-65. [DOI: 10.1016/j.nantod.2011.08.001] [Cited by in Crossref: 438] [Cited by in F6Publishing: 290] [Article Influence: 39.8] [Reference Citation Analysis]
12 Józefczak A, Hornowski T, Skumiel A, Závišová V, Koneracká M, Tomašovičová N, Timko M, Kopčanský P, Kelani HN. Effect of the Molecular Weight of Poly(ethylene glycol) on the Properties of Biocompatible Magnetic Fluids. Int J Thermophys 2012;33:640-52. [DOI: 10.1007/s10765-011-1061-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
13 Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2020;27:6015-56. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Rouhana LL, Schlenoff JB. Aggregation resistant zwitterated superparamagnetic nanoparticles. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-0835-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
15 Balas M, Dumitrache F, Badea MA, Fleaca C, Badoi A, Tanasa E, Dinischiotu A. Coating Dependent In Vitro Biocompatibility of New Fe-Si Nanoparticles. Nanomaterials (Basel) 2018;8:E495. [PMID: 29976868 DOI: 10.3390/nano8070495] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Arteaga-cardona F, Gutiérrez-garcía E, Hidalgo-tobón S, López-vasquez C, Brito-barrera YA, Flores-tochihuitl J, Angulo-molina A, Reyes-leyva JR, González-rodríguez R, Coffer JL, Pal U, Diaz-conti MP, Platas-neri D, Dies-suarez P, Fonseca RS, Arias-carrión O, Méndez-rojas MA. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3646-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
17 Chacko AM, Hood ED, Zern BJ, Muzykantov VR. Targeted Nanocarriers for Imaging and Therapy of Vascular Inflammation. Curr Opin Colloid Interface Sci 2011;16:215-27. [PMID: 21709761 DOI: 10.1016/j.cocis.2011.01.008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.2] [Reference Citation Analysis]
18 Jiang Q, Liu Y, Guo R, Yao X, Sung S, Pang Z, Yang W. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 2019;192:292-308. [PMID: 30465973 DOI: 10.1016/j.biomaterials.2018.11.021] [Cited by in Crossref: 96] [Cited by in F6Publishing: 82] [Article Influence: 24.0] [Reference Citation Analysis]
19 Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017;115:115-54. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Cited by in Crossref: 180] [Cited by in F6Publishing: 172] [Article Influence: 36.0] [Reference Citation Analysis]
20 Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. Journal of Controlled Release 2020;322:439-56. [DOI: 10.1016/j.jconrel.2020.04.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
21 Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 2013;19:1994-2010. [PMID: 23116309 DOI: 10.2174/138161213805289219] [Cited by in Crossref: 10] [Cited by in F6Publishing: 37] [Article Influence: 1.1] [Reference Citation Analysis]
22 Bolandparvaz A, Harriman R, Alvarez K, Lilova K, Zang Z, Lam A, Edmiston E, Navrotsky A, Vapniarsky N, Van De Water J, Lewis JS. Towards a nanoparticle-based prophylactic for maternal autoantibody-related autism. Nanomedicine 2019;21:102067. [PMID: 31349087 DOI: 10.1016/j.nano.2019.102067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
23 Semkina A, Abakumov M, Grinenko N, Abakumov A, Skorikov A, Mironova E, Davydova G, Majouga AG, Nukolova N, Kabanov A, Chekhonin V. Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics. Colloids Surf B Biointerfaces 2015;136:1073-80. [PMID: 26595387 DOI: 10.1016/j.colsurfb.2015.11.009] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 6.1] [Reference Citation Analysis]
24 Kovrigina E, Chubarov A, Dmitrienko E. High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. Magnetochemistry 2022;8:54. [DOI: 10.3390/magnetochemistry8050054] [Reference Citation Analysis]
25 Bakandritsos A, Fatourou AG, Fatouros DG. Magnetoliposomes and their potential in the intelligent drug-delivery field. Therapeutic Delivery 2012;3:1469-82. [DOI: 10.4155/tde.12.129] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
26 Chen W, Sun Z, Lu L. Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angew Chem 2021;133:5686-705. [DOI: 10.1002/ange.201914511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv 2015;6:1145-55. [PMID: 26446407 DOI: 10.4155/tde.15.56] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 7.1] [Reference Citation Analysis]
28 Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv Mater 2017;29. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Cited by in Crossref: 416] [Cited by in F6Publishing: 382] [Article Influence: 83.2] [Reference Citation Analysis]
29 Bakandritsos A, Papagiannopoulos A, Anagnostou EN, Avgoustakis K, Zboril R, Pispas S, Tucek J, Ryukhtin V, Bouropoulos N, Kolokithas-ntoukas A, Steriotis TA, Keiderling U, Winnefeld F. Merging High Doxorubicin Loading with Pronounced Magnetic Response and Bio-repellent Properties in Hybrid Drug Nanocarriers. Small 2012;8:2381-93. [DOI: 10.1002/smll.201102525] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
30 Wang C, Qiao L, Zhang Q, Yan H, Liu K. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles through direct chemisorption of FITC-Tat-PEG₆₀₀-b-poly(glycerol monoacrylate). Int J Pharm 2012;430:372-80. [PMID: 22531849 DOI: 10.1016/j.ijpharm.2012.04.035] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
31 Tan M, Burden-Gulley SM, Li W, Wu X, Lindner D, Brady-Kalnay SM, Gulani V, Lu ZR. MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in a mouse orthotopic prostate cancer model. Pharm Res 2012;29:953-60. [PMID: 22139536 DOI: 10.1007/s11095-011-0635-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
32 Pala R, Mohieldin AM, Sherpa RT, Kathem SH, Shamloo K, Luan Z, Zhou J, Zheng JG, Ahsan A, Nauli SM. Ciliotherapy: Remote Control of Primary Cilia Movement and Function by Magnetic Nanoparticles. ACS Nano 2019;13:3555-72. [PMID: 30860808 DOI: 10.1021/acsnano.9b00033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
33 Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 2013;4:1352-60. [PMID: 23919894 DOI: 10.1021/cn400093z] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
34 Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 2013;42:7816. [DOI: 10.1039/c3cs60149h] [Cited by in Crossref: 152] [Cited by in F6Publishing: 134] [Article Influence: 16.9] [Reference Citation Analysis]
35 Thorat ND, Bohara RA, Noor MR, Dhamecha D, Soulimane T, Tofail SAM. Effective Cancer Theranostics with Polymer Encapsulated Superparamagnetic Nanoparticles: Combined Effects of Magnetic Hyperthermia and Controlled Drug Release. ACS Biomater Sci Eng 2017;3:1332-40. [DOI: 10.1021/acsbiomaterials.6b00420] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
36 Chowdhury P, Roberts AM, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Magnetic nanoformulations for prostate cancer. Drug Discov Today 2017;22:1233-41. [PMID: 28526660 DOI: 10.1016/j.drudis.2017.04.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC. Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomedicine 2011;6:2779-90. [PMID: 22128249 DOI: 10.2147/IJN.S25534] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 0.5] [Reference Citation Analysis]
38 Hoang Thi TT, Nguyen Tran DH, Bach LG, Vu-Quang H, Nguyen DC, Park KD, Nguyen DH. Functional Magnetic Core-Shell System-Based Iron Oxide Nanoparticle Coated with Biocompatible Copolymer for Anticancer Drug Delivery. Pharmaceutics 2019;11:E120. [PMID: 30875948 DOI: 10.3390/pharmaceutics11030120] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
39 Maiti D, Mukhopadhyay S, Chandra Mohanta S, Saha A, Sujatha Devi P. A multifunctional nanocomposite of magnetic γ-Fe2O3 and mesoporous fluorescent ZnO. Journal of Alloys and Compounds 2015;653:187-94. [DOI: 10.1016/j.jallcom.2015.08.230] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
40 Pala R, Mohieldin AM, Shamloo K, Sherpa RT, Kathem SH, Zhou J, Luan Z, Zheng JG, Ahsan A, Nauli SM. Personalized Nanotherapy by Specifically Targeting Cell Organelles To Improve Vascular Hypertension. Nano Lett 2019;19:904-14. [PMID: 30582331 DOI: 10.1021/acs.nanolett.8b04138] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
41 Wang J, Chen B, Chen J, Cai X, Xia G, Liu R, Chen P, Zhang Y, Wang X. Synthesis and antitumor efficacy of daunorubicin-loaded magnetic nanoparticles. Int J Nanomedicine 2011;6:203-11. [PMID: 21445276 DOI: 10.2147/IJN.S16165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 0.1] [Reference Citation Analysis]
42 Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 2011;32:1890-905. [PMID: 21167595 DOI: 10.1016/j.biomaterials.2010.11.028] [Cited by in Crossref: 289] [Cited by in F6Publishing: 249] [Article Influence: 24.1] [Reference Citation Analysis]
43 Khoee S, Abedini N. One-pot synthesis of amphiphilic nanogels from vinylated SPIONs/HEMA/PEG via a combination of click chemistry and surfactant-free emulsion photopolymerization: Unveiling of the protein-nanoparticle interactions. Polymer 2014;55:5635-47. [DOI: 10.1016/j.polymer.2014.09.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
44 Ganju A, Yallapu MM, Khan S, Behrman SW, Chauhan SC, Jaggi M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Updat 2014;17:13-23. [PMID: 24853766 DOI: 10.1016/j.drup.2014.04.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 6.5] [Reference Citation Analysis]
45 Hajiramezanali M, Atyabi F, Mosayebnia M, Akhlaghi M, Geramifar P, Jalilian AR, Mazidi SM, Yousefnia H, Shahhosseini S, Beiki D. 68Ga-radiolabeled bombesin-conjugated to trimethyl chitosan-coated superparamagnetic nanoparticles for molecular imaging: preparation, characterization and biological evaluation. Int J Nanomedicine 2019;14:2591-605. [PMID: 31040674 DOI: 10.2147/IJN.S195223] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
46 Kurnaz Yetim N, Kurşun Baysak F, Koç MM, Nartop D. Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications. J Nanostruct Chem 2021;11:589-99. [DOI: 10.1007/s40097-021-00386-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Yallapu MM, Ebeling MC, Khan S, Sundram V, Chauhan N, Gupta BK, Puumala SE, Jaggi M, Chauhan SC. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther. 2013;12:1471-1480. [PMID: 23704793 DOI: 10.1158/1535-7163.mct-12-1227] [Cited by in Crossref: 77] [Cited by in F6Publishing: 40] [Article Influence: 8.6] [Reference Citation Analysis]
48 Lapitan LDS, Xu Y, Guo Y, Zhou D. Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. Nanoscale 2019;11:1195-204. [DOI: 10.1039/c8nr07641c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
49 Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, Dravid VP. Theranostic Magnetic Nanostructures (MNS) for Cancer. Cancer Treat Res 2015;166:51-83. [PMID: 25895864 DOI: 10.1007/978-3-319-16555-4_3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
50 Motaali S, Pashaeiasl M, Akbarzadeh A, Davaran S. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug. Artif Cells Nanomed Biotechnol 2017;45:560-7. [PMID: 27196716 DOI: 10.3109/21691401.2016.1161640] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
51 Vedernikova IA. Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy. Ref J Chem 2015;5:256-80. [DOI: 10.1134/s2079978015030036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
52 Hoseininasr AS, Tayebee R. Synthesis and characterization of superparamagnetic nanohybrid Fe 3 O 4 /NH 2 -Ag as an effective carrier for the delivery of acyclovir: Synthesis of Fe3O4/NH2-Ag as an effective carrier for drug. Appl Organometal Chem 2018;32:e4565. [DOI: 10.1002/aoc.4565] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
53 Qiu H, Cui B, Li G, Yang J, Peng H, Wang Y, Li N, Gao R, Chang Z, Wang Y. Novel Fe 3 O 4 @ZnO@mSiO 2 Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation. J Phys Chem C 2014;118:14929-37. [DOI: 10.1021/jp502820r] [Cited by in Crossref: 58] [Cited by in F6Publishing: 35] [Article Influence: 7.3] [Reference Citation Analysis]
54 Das AK, Marwal A, Sain D, Pareek V. One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies. Int Nano Lett 2015;5:125-32. [DOI: 10.1007/s40089-015-0144-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
55 Stergar J, Ban I, Maver U. The Potential Biomedical Application of NiCu Magnetic Nanoparticles. Magnetochemistry 2019;5:66. [DOI: 10.3390/magnetochemistry5040066] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts 2014;4:3-14. [PMID: 24790893 DOI: 10.5681/bi.2014.011] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
57 Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res 2013;3:352-63. [PMID: 23936754 DOI: 10.1007/s13346-013-0132-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
58 Keskin T, Yalcin S, Gunduz U. Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: Preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines. Inorganic and Nano-Metal Chemistry 2018;48:150-9. [DOI: 10.1080/24701556.2018.1453840] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
59 Zhang Y, Cao J, Yuan Z. Strategies and challenges to improve the performance of tumor-associated active targeting. J Mater Chem B 2020;8:3959-71. [PMID: 32222756 DOI: 10.1039/d0tb00289e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
60 Cai J, Dao P, Chen H, Yan L, Li YL, Zhang W, Li L, Du Z, Dong C, Meunier B. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer's disease. Dyes and Pigments 2020;173:107968. [DOI: 10.1016/j.dyepig.2019.107968] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
61 Guo Y, Huang L, Zhang Z, Fu D. Strategies for Precise Engineering and Conjugation of Antibody Targeted-nanoparticles for Cancer Therapy. CURR MED SCI 2020;40:463-73. [DOI: 10.1007/s11596-020-2200-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Huang S, Han Q, Wang L, Gong T, Yuan Q. One-pot Synthesis of PEGylated Gd-based Nanoparticles as High-performance and Biocompatibility Contrast Agents for T1-Weighted Magnetic Resonance Imaging In vivo. Chem Res Chin Univ 2019;35:537-41. [DOI: 10.1007/s40242-019-8327-y] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
63 Berdichevski A, Shachaf Y, Wechsler R, Seliktar D. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI. Biomaterials 2015;42:1-10. [DOI: 10.1016/j.biomaterials.2014.11.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
64 Chan A, Orme RP, Fricker RA, Roach P. Remote and local control of stimuli responsive materials for therapeutic applications. Advanced Drug Delivery Reviews 2013;65:497-514. [DOI: 10.1016/j.addr.2012.07.007] [Cited by in Crossref: 123] [Cited by in F6Publishing: 94] [Article Influence: 13.7] [Reference Citation Analysis]
65 Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Iqbal K, Rao K, Gul J, Abdullah M, Shah MR. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol 2021;26:291-301. [PMID: 33475034 DOI: 10.1080/10837450.2020.1866602] [Reference Citation Analysis]
66 Anand R, Ottani S, Manoli F, Manet I, Monti S. A close-up on doxorubicin binding to γ-cyclodextrin: an elucidating spectroscopic, photophysical and conformational study. RSC Adv 2012;2:2346. [DOI: 10.1039/c2ra01221a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
67 Ruiz A, Salas G, Calero M, Hernández Y, Villanueva A, Herranz F, Veintemillas-verdaguer S, Martínez E, Barber D, Morales M. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomaterialia 2013;9:6421-30. [DOI: 10.1016/j.actbio.2012.12.032] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 7.4] [Reference Citation Analysis]
68 Bu L, Xie J, Chen K, Huang J, Aguilar ZP, Wang A, Sun KW, Chua MS, So S, Cheng Z, Eden HS, Shen B, Chen X. Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media Mol Imaging 2012;7:363-72. [PMID: 22649042 DOI: 10.1002/cmmi.494] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
69 Sardo C, Craparo EF, Porsio B, Giammona G, Cavallaro G. Combining Inulin Multifunctional Polycation and Magnetic Nanoparticles: Redox-Responsive siRNA-Loaded Systems for Magnetofection. Polymers (Basel) 2019;11:E889. [PMID: 31096623 DOI: 10.3390/polym11050889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
70 Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, Jaggi M, Chauhan SC. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials 2015;46:1-12. [PMID: 25678111 DOI: 10.1016/j.biomaterials.2014.12.045] [Cited by in Crossref: 107] [Cited by in F6Publishing: 94] [Article Influence: 15.3] [Reference Citation Analysis]
71 He Y, Zhang L, Zhu D, Song C. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. Int J Nanomedicine 2014;9:4055-66. [PMID: 25187709 DOI: 10.2147/IJN.S61880] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
72 Farjadian F, Ghasemi S, Mohammadi-Samani S. Hydroxyl-modified magnetite nanoparticles as novel carrier for delivery of methotrexate. Int J Pharm 2016;504:110-6. [PMID: 26994523 DOI: 10.1016/j.ijpharm.2016.03.022] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
73 Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics 2015;5:1249-63. [PMID: 26379790 DOI: 10.7150/thno.11544] [Cited by in Crossref: 245] [Cited by in F6Publishing: 208] [Article Influence: 35.0] [Reference Citation Analysis]
74 Chen W, Sun Z, Lu L. Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2021;60:5626-43. [PMID: 32096328 DOI: 10.1002/anie.201914511] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
75 Park S, Kim HS, Kim WJ, Yoo HS. Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness. Int J Pharm 2012;424:107-14. [PMID: 22226875 DOI: 10.1016/j.ijpharm.2011.12.044] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
76 Stepanov A, Burilov V, Pinus M, Mustafina A, Rümmeli MH, Mendez RG, Amirov R, Lukashenko S, Zvereva E, Katsuba S, Elistratova J, Nizameev I, Kadirov M, Zairov R. Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014;443:450-8. [DOI: 10.1016/j.colsurfa.2013.12.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
77 Soenen SJ, De Meyer SF, Dresselaers T, Velde GV, Pareyn IM, Braeckmans K, De Cuyper M, Himmelreich U, Vanhoorelbeke KI. MRI assessment of blood outgrowth endothelial cell homing using cationic magnetoliposomes. Biomaterials 2011;32:4140-50. [DOI: 10.1016/j.biomaterials.2011.02.037] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
78 Helmy LA, Abdel-Halim M, Hassan R, Sebak A, Farghali HAM, Mansour S, Tammam SN. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces 2021;211:112289. [PMID: 34954516 DOI: 10.1016/j.colsurfb.2021.112289] [Reference Citation Analysis]
79 Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012;41:4306-34. [PMID: 22481569 DOI: 10.1039/c2cs15337h] [Cited by in Crossref: 844] [Cited by in F6Publishing: 647] [Article Influence: 84.4] [Reference Citation Analysis]
80 Salunkhe AB, Khot VM, Ruso JM, Patil S. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials 2016;419:533-42. [DOI: 10.1016/j.jmmm.2016.06.057] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
81 Li X, Liu Y, Xu Z, Yan H. Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer. European Polymer Journal 2011;47:1877-84. [DOI: 10.1016/j.eurpolymj.2011.07.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
82 Lee H, Thirunavukkarasu GK, Kim S, Lee JY. Remote induction of in situ hydrogelation in a deep tissue, using an alternating magnetic field and superparamagnetic nanoparticles. Nano Res 2018;11:5997-6009. [DOI: 10.1007/s12274-018-2114-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
83 Saeed M, Mansha A, Hamayun M, Ahmad A, Ulhaq A, Ashfaq M. Green Synthesis of CoFe 2 O 4 and Investigation of its Catalytic Efficiency for Degradation of Dyes in Aqueous Medium. Zeitschrift für Physikalische Chemie 2018;232:359-71. [DOI: 10.1515/zpch-2017-1065] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
84 Liu G, Gao J, Ai H, Chen X. Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small 2013;9:1533-45. [DOI: 10.1002/smll.201201531] [Cited by in Crossref: 318] [Cited by in F6Publishing: 276] [Article Influence: 31.8] [Reference Citation Analysis]
85 Hosseini nasr A, Akbarzadeh H, Tayebee R. Adsorption mechanism of different acyclovir concentrations on 1–2 nm sized magnetite nanoparticles: A molecular dynamics study. Journal of Molecular Liquids 2018;254:64-9. [DOI: 10.1016/j.molliq.2018.01.081] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
86 Gao H, Jiang X. Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging 2013;13:466-81. [PMID: 24334439 DOI: 10.1102/1470-7330.2013.0039] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
87 Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 13.5] [Reference Citation Analysis]
88 Qiu H, Cui B, Zhao W, Chen P, Peng H, Wang Y. A novel microwave stimulus remote controlled anticancer drug release system based on Fe 3 O 4 @ZnO@mGd 2 O 3 :Eu@P(NIPAm-co-MAA) multifunctional nanocarriers. J Mater Chem B 2015;3:6919-27. [DOI: 10.1039/c5tb00915d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
89 Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2021;180:114079. [PMID: 34902516 DOI: 10.1016/j.addr.2021.114079] [Reference Citation Analysis]
90 Howell M, Mallela J, Wang C, Ravi S, Dixit S, Garapati U, Mohapatra S. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J Control Release 2013;167:210-8. [PMID: 23395689 DOI: 10.1016/j.jconrel.2013.01.029] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
91 Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC. Therapeutic Applications of Curcumin Nanoformulations. AAPS J 2015;17:1341-56. [PMID: 26335307 DOI: 10.1208/s12248-015-9811-z] [Cited by in Crossref: 136] [Cited by in F6Publishing: 122] [Article Influence: 19.4] [Reference Citation Analysis]
92 Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul 2021;14:1285-97. [PMID: 34375694 DOI: 10.1016/j.brs.2021.08.001] [Reference Citation Analysis]
93 Ahmed M, Douek M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. Biomed Res Int 2013;2013:281230. [PMID: 23936784 DOI: 10.1155/2013/281230] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
94 Aftab S, Shah A, Nadhman A, Kurbanoglu S, Aysıl Ozkan S, Dionysiou DD, Shukla SS, Aminabhavi TM. Nanomedicine: An effective tool in cancer therapy. Int J Pharm 2018;540:132-49. [PMID: 29427746 DOI: 10.1016/j.ijpharm.2018.02.007] [Cited by in Crossref: 112] [Cited by in F6Publishing: 104] [Article Influence: 28.0] [Reference Citation Analysis]
95 Zhang X, Guo K, Li L, Zhang S, Li B. Multi-stimuli-responsive magnetic assemblies as tunable releasing carriers. J Mater Chem B 2015;3:6026-31. [DOI: 10.1039/c5tb00845j] [Cited by in Crossref: 22] [Article Influence: 3.1] [Reference Citation Analysis]
96 Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 2011;32:2183-93. [PMID: 21176955 DOI: 10.1016/j.biomaterials.2010.11.040] [Cited by in Crossref: 204] [Cited by in F6Publishing: 171] [Article Influence: 17.0] [Reference Citation Analysis]
97 Harris R. Chemotherapy drug temozolomide adsorbed onto iron-oxide (Fe3O4) nanoparticles as nanocarrier: A simulation study. Journal of Molecular Liquids 2019;288:111084. [DOI: 10.1016/j.molliq.2019.111084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
98 Dayyani N, Ramazani A, Khoee S, Shafiee A. Synthesis and Characterization of the First Generation of Polyamino-Ester Dendrimer-Grafted Magnetite Nanoparticles from 3-Aminopropyltriethoxysilane (APTES) via the Convergent Approach. Silicon 2018;10:595-601. [DOI: 10.1007/s12633-016-9497-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 3.2] [Reference Citation Analysis]
99 Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021;7:1914-32. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Reference Citation Analysis]
100 Kovář D, Malá A, Mlčochová J, Kalina M, Fohlerová Z, Hlaváček A, Farka Z, Skládal P, Starčuk Z, Jiřík R, Slabý O, Hubálek J. Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging. Journal of Nanomaterials 2017;2017:1-8. [DOI: 10.1155/2017/7859289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
101 Chowdhury P, Nagesh PKB, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer. Acta Pharm Sin B 2018;8:602-14. [PMID: 30109184 DOI: 10.1016/j.apsb.2017.10.004] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 7.2] [Reference Citation Analysis]
102 Yang H, Zou L, Zhang S, Gong M, Zhang D, Qi Y, Zhou S, Diao X. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles. Clinical Radiology 2013;68:1233-40. [DOI: 10.1016/j.crad.2013.06.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
103 Piraux H, Hai J, Verbeke P, Serradji N, Ammar S, Losno R, Ha-Duong NT, Hémadi M, El Hage Chahine JM. Transferrin receptor-1 iron-acquisition pathway - synthesis, kinetics, thermodynamics and rapid cellular internalization of a holotransferrin-maghemite nanoparticle construct. Biochim Biophys Acta 2013;1830:4254-64. [PMID: 23648413 DOI: 10.1016/j.bbagen.2013.04.035] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]