BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chavanpatil MD, Khdair A, Panyam J. Surfactant-polymer Nanoparticles: A Novel Platform for Sustained and Enhanced Cellular Delivery of Water-soluble Molecules. Pharm Res 2007;24:803-10. [DOI: 10.1007/s11095-006-9203-2] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Eustaquio T, Leary JF. Nanobarcoding: detecting nanoparticles in biological samples using in situ polymerase chain reaction. Int J Nanomedicine 2012;7:5625-39. [PMID: 23144562 DOI: 10.2147/IJN.S37433] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
2 Alamzadeh Z, Beik J, Pirhajati Mahabadi V, Abbasian Ardekani A, Ghader A, Kamrava SK, Shiralizadeh Dezfuli A, Ghaznavi H, Shakeri-Zadeh A. Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J Photochem Photobiol B 2019;192:19-25. [PMID: 30665146 DOI: 10.1016/j.jphotobiol.2019.01.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
3 Stoppel WL, White JC, Horava SD, Bhatia SR, Roberts SC. Transport of biological molecules in surfactant-alginate composite hydrogels. Acta Biomater 2011;7:3988-98. [PMID: 21798381 DOI: 10.1016/j.actbio.2011.07.009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
4 Asadi N, Annabi N, Mostafavi E, Anzabi M, Khalilov R, Saghfi S, Mehrizadeh M, Akbarzadeh A. Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:938-45. [DOI: 10.1080/21691401.2018.1439839] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
5 Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010;7:1063-77. [PMID: 20716019 DOI: 10.1517/17425247.2010.502560] [Cited by in Crossref: 613] [Cited by in F6Publishing: 462] [Article Influence: 51.1] [Reference Citation Analysis]
6 Wang S, Huo Z, Liu K, Yu N, Ma Y, Qin Y, Li X, Yu J, Wang Z. Ligand-conjugated pH-sensitive polymeric micelles for the targeted delivery of gefitinib in lung cancers. RSC Adv 2015;5:73184-93. [DOI: 10.1039/c5ra09931e] [Cited by in Crossref: 13] [Article Influence: 1.9] [Reference Citation Analysis]
7 Scheler S, Kitzan M, Fahr A. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine. Int J Pharm 2011;403:207-18. [PMID: 20969936 DOI: 10.1016/j.ijpharm.2010.10.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
8 Miranda-calderón J, Macías-rosales L, Gracia-mora I, Ruiz-azuara L, Faustino-vega A, Gracia-mora J, Bernad-bernad M. Effect of casiopein III-ia loaded into chitosan nanoparticles on tumor growth inhibition. Journal of Drug Delivery Science and Technology 2018;48:1-8. [DOI: 10.1016/j.jddst.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
9 Choi J, Zhang Q, Reipa V, Wang NS, Stratmeyer ME, Hitchins VM, Goering PL. Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages. J Appl Toxicol 2009;29:52-60. [DOI: 10.1002/jat.1382] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 6.3] [Reference Citation Analysis]
10 Moreno-bautista G, Tam KC. Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011;389:299-303. [DOI: 10.1016/j.colsurfa.2011.07.032] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
11 Chiu CC, Lin YT, Sun SL, Sung KH, Wang LF. Anticancer Activity of Released Doxorubicin from a Folate-Mediated Polyelectrolyte Complex. Journal of Biomaterials Science, Polymer Edition 2012;22:1487-507. [DOI: 10.1163/092050610x512414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
12 Byrne GD, Vllasaliu D, Falcone FH, Somekh MG, Stolnik S. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy. Mol Pharm 2015;12:3862-70. [PMID: 26402436 DOI: 10.1021/acs.molpharmaceut.5b00215] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
13 Nehache S, Tyagi P, Semsarilar M, Deratani A, Phan TNT, Gigmes D, Quemener D. Translocation across a self-healing block copolymer membrane. Soft Matter 2017;13:6689-93. [DOI: 10.1039/c7sm01284e] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
14 Khdair A, Gerard B, Handa H, Mao G, Shekhar MPV, Panyam J. Surfactant−Polymer Nanoparticles Enhance the Effectiveness of Anticancer Photodynamic Therapy. Mol Pharmaceutics 2008;5:795-807. [DOI: 10.1021/mp800026t] [Cited by in Crossref: 83] [Cited by in F6Publishing: 76] [Article Influence: 5.9] [Reference Citation Analysis]
15 Wijetunge SS, Wen J, Yeh C, Sun Y. Lectin-Conjugated Liposomes as Biocompatible, Bioadhesive Drug Carriers for the Management of Oral Ulcerative Lesions. ACS Appl Bio Mater 2018;1:1487-95. [DOI: 10.1021/acsabm.8b00425] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Sintov AC, Enden G. New doxorubicin nanoparticles engineered from calcium-crosslinked carbomer and a microemulsion precursor. Drug Development and Industrial Pharmacy 2017;43:830-8. [DOI: 10.1080/03639045.2016.1239730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Sunasee R, Adokoh CK, Darkwa J, Narain R. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opinion on Drug Delivery 2014;11:867-84. [DOI: 10.1517/17425247.2014.902048] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
18 Vrignaud S, Benoit J, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011;32:8593-604. [DOI: 10.1016/j.biomaterials.2011.07.057] [Cited by in Crossref: 177] [Cited by in F6Publishing: 147] [Article Influence: 16.1] [Reference Citation Analysis]
19 Cao X, Deng WW, Fu M, Wang L, Tong SS, Wei YW, Xu Y, Su WY, Xu XM, Yu JN. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomedicine 2012;7:753-62. [PMID: 22393284 DOI: 10.2147/IJN.S28348] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
20 Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, Majumdar S, Agrawal GP. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 2010;148:359-67. [PMID: 20854859 DOI: 10.1016/j.jconrel.2010.09.003] [Cited by in Crossref: 139] [Cited by in F6Publishing: 129] [Article Influence: 11.6] [Reference Citation Analysis]
21 Keshavarz M, Moloudi K, Paydar R, Abed Z, Beik J, Ghaznavi H, Shakeri-Zadeh A. Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J Biomater Appl 2018;33:161-9. [PMID: 29933708 DOI: 10.1177/0885328218782355] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
22 Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2021;44:281-97. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Kirtane AR, Kalscheuer SM, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013;65:1731-47. [PMID: 24036273 DOI: 10.1016/j.addr.2013.09.001] [Cited by in Crossref: 163] [Cited by in F6Publishing: 157] [Article Influence: 18.1] [Reference Citation Analysis]
24 Yoncheva K, Merino M, Shenol A, Daskalov NT, Petkov PS, Vayssilov GN, Garrido MJ. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. International Journal of Pharmaceutics 2019;556:1-8. [DOI: 10.1016/j.ijpharm.2018.11.070] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
25 Amjadi I, Rabiee M, Hosseini MS, Mozafari M. Synthesis and characterization of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles as a sustained-release anticancer drug delivery system. Appl Biochem Biotechnol 2012;168:1434-47. [PMID: 22976852 DOI: 10.1007/s12010-012-9868-4] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
26 Jahangiri S, Akbarzadeh A. Preparation and in vitro evaluation of Methotrexate-loaded magnetic nanoparticles modified with biocompatible copolymers. Artif Cells Nanomed Biotechnol 2016;44:1733-40. [PMID: 26479846 DOI: 10.3109/21691401.2015.1090443] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zaki NM, Tirelli N. Assessment of nanomaterials cytotoxicity and internalization. Methods Mol Biol 2011;695:243-59. [PMID: 21042977 DOI: 10.1007/978-1-60761-984-0_16] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
28 Alamzadeh Z, Beik J, Mirrahimi M, Shakeri-zadeh A, Ebrahimi F, Komeili A, Ghalandari B, Ghaznavi H, Kamrava SK, Moustakis C. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences 2020;145:105235. [DOI: 10.1016/j.ejps.2020.105235] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
29 Gurjar R, Chan CYS, Curley P, Sharp J, Chiong J, Rannard S, Siccardi M, Owen A. Inhibitory Effects of Commonly Used Excipients on P-Glycoprotein in Vitro. Mol Pharm 2018;15:4835-42. [PMID: 30350641 DOI: 10.1021/acs.molpharmaceut.8b00482] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
30 Desai S, Perkins J, Harrison BS, Sankar J. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Materials Science and Engineering: B 2010;168:127-31. [DOI: 10.1016/j.mseb.2009.11.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
31 George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019;561:244-64. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Cited by in Crossref: 147] [Cited by in F6Publishing: 97] [Article Influence: 49.0] [Reference Citation Analysis]
32 Artykulnyi O, Petrenko V, Bulavin L, Ivankov O, Avdeev M. Impact of poly (ethylene glycol) on the structure and interaction parameters of aqueous micellar solutions of anionic surfactants. Journal of Molecular Liquids 2019;276:806-11. [DOI: 10.1016/j.molliq.2018.12.035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
33 Foldbjerg R, Irving ES, Wang J, Thorsen K, Sutherland DS, Autrup H, Beer C. The toxic effects of single-walled carbon nanotubes are linked to the phagocytic ability of cells. Toxicol Res 2014;3:228. [DOI: 10.1039/c3tx50099c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
34 Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther 2007;83:761-9. [DOI: 10.1038/sj.clpt.6100400] [Cited by in Crossref: 1587] [Cited by in F6Publishing: 1322] [Article Influence: 105.8] [Reference Citation Analysis]
35 Wang Y, Xu H, Wang J, Ge L, Zhu J. Development of a Thermally Responsive Nanogel Based on Chitosan–Poly(N-Isopropylacrylamide- co -Acrylamide) for Paclitaxel Delivery. Journal of Pharmaceutical Sciences 2014;103:2012-21. [DOI: 10.1002/jps.23995] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
36 García I, Marradi M, Penadés S. Glyconanoparticles: multifunctional nanomaterials for biomedical applications. Nanomedicine 2010;5:777-92. [DOI: 10.2217/nnm.10.48] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 5.7] [Reference Citation Analysis]
37 Chavanpatil MD, Khdair A, Gerard B, Bachmeier C, Miller DW, Shekhar MP, Panyam J. Surfactant-polymer nanoparticles overcome P-glycoprotein-mediated drug efflux. Mol Pharm 2007;4:730-8. [PMID: 17705442 DOI: 10.1021/mp070024d] [Cited by in Crossref: 83] [Cited by in F6Publishing: 76] [Article Influence: 5.5] [Reference Citation Analysis]
38 Kalhapure RS, Akamanchi KG. Synthesis, Characterization and Cytotoxicity Evaluation of an Oleic Acid Derived Novel Bicephalous Dianionic Surfactant. J Surfact Deterg 2015;18:537-45. [DOI: 10.1007/s11743-015-1678-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
39 Wang H, Chen L, Sun X, Fu A. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery. J Drug Target 2017;25:724-33. [PMID: 28447892 DOI: 10.1080/1061186X.2017.1323908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
40 Khdair A, Hamad I, Alkhatib H, Bustanji Y, Mohammad M, Tayem R, Aiedeh K. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. European Journal of Pharmaceutical Sciences 2016;93:38-44. [DOI: 10.1016/j.ejps.2016.07.012] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
41 Grima R, Yaliraki SN, Barahona M. Crowding-Induced Anisotropic Transport Modulates Reaction Kinetics in Nanoscale Porous Media. J Phys Chem B 2010;114:5380-5. [DOI: 10.1021/jp9025865] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
42 Jin H, Heller DA, Sharma R, Strano MS. Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles. ACS Nano 2009;3:149-58. [DOI: 10.1021/nn800532m] [Cited by in Crossref: 375] [Cited by in F6Publishing: 336] [Article Influence: 28.8] [Reference Citation Analysis]
43 Khdair A, Handa H, Mao G, Panyam J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. European Journal of Pharmaceutics and Biopharmaceutics 2009;71:214-22. [DOI: 10.1016/j.ejpb.2008.08.017] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 6.9] [Reference Citation Analysis]
44 Bhattacharjee J, Verma G, Aswal VK, Patravale V, Hassan PA. Microstructure, drug binding and cytotoxicity of Pluronic P123–aerosol OT mixed micelles. RSC Adv 2013;3:23080. [DOI: 10.1039/c3ra44983a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
45 Mirrahimi M, Abed Z, Beik J, Shiri I, Shiralizadeh Dezfuli A, Mahabadi VP, Kamran Kamrava S, Ghaznavi H, Shakeri-zadeh A. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacological Research 2019;143:178-85. [DOI: 10.1016/j.phrs.2019.01.005] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 20.0] [Reference Citation Analysis]
46 Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG 1000 copolymer. Artificial Cells, Nanomedicine, and Biotechnology 2014;44:290-7. [DOI: 10.3109/21691401.2014.944646] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.8] [Reference Citation Analysis]
47 Tsai H, Chiu C, Lin P, Chen S, Huang S, Wang L. Antitumor Efficacy of Doxorubicin Released from Crosslinked Nanoparticulate Chondroitin Sulfate/Chitosan Polyelectrolyte Complexes: Antitumor Efficacy of Doxorubicin Released from Crosslinked …. Macromol Biosci 2011;11:680-8. [DOI: 10.1002/mabi.201000456] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
48 Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MP, Panyam J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 2010;141:137-44. [PMID: 19751777 DOI: 10.1016/j.jconrel.2009.09.004] [Cited by in Crossref: 183] [Cited by in F6Publishing: 170] [Article Influence: 14.1] [Reference Citation Analysis]
49 Mirrahimi M, Khateri M, Beik J, Ghoreishi FS, Dezfuli AS, Ghaznavi H, Shakeri‐zadeh A. Enhancement of chemoradiation by co‐incorporation of gold nanoparticles and cisplatin into alginate hydrogel. J Biomed Mater Res 2019;107:2658-63. [DOI: 10.1002/jbm.b.34356] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
50 Park J, Ban S, Ahmed T, Choi HS, Yoon H, Yoon J, Choi H. Development of DH-I-180-3 loaded lipid nanoparticle for photodynamic therapy. International Journal of Pharmaceutics 2015;491:393-401. [DOI: 10.1016/j.ijpharm.2015.07.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
51 Ruman U, Buskaran K, Pastorin G, Masarudin MJ, Fakurazi S, Hussein MZ. Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells. Nanomaterials (Basel) 2021;11:497. [PMID: 33669332 DOI: 10.3390/nano11020497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Kundu K, Das A, Bardhan S, Chakraborty G, Ghosh D, Kar B, Saha SK, Senapati S, Mitra RK, Paul BK. The mixing behaviour of anionic and nonionic surfactant blends in aqueous environment correlates in fatty acid ester medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;504:331-42. [DOI: 10.1016/j.colsurfa.2016.05.078] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
53 Limeres MJ, Moretton MA, Bernabeu E, Chiappetta DA, Cuestas ML. Thinking small, doing big: Current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Materials Science and Engineering: C 2019;95:328-41. [DOI: 10.1016/j.msec.2018.11.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
54 Kirtane AR, Narayan P, Liu G, Panyam J. Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. Journal of Pharmaceutical Investigation 2017;47:65-73. [DOI: 10.1007/s40005-016-0293-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
55 Nogueira-librelotto DR, Scheeren LE, Vinardell MP, Mitjans M, Rolim CM. Chitosan-tripolyphosphate nanoparticles functionalized with a pH-responsive amphiphile improved the in vitro antineoplastic effects of doxorubicin. Colloids and Surfaces B: Biointerfaces 2016;147:326-35. [DOI: 10.1016/j.colsurfb.2016.08.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
56 Hassani Najafabadi A, Azodi-deilami S, Abdouss M, Payravand H, Farzaneh S. Synthesis and evaluation of hydroponically alginate nanoparticles as novel carrier for intravenous delivery of propofol. J Mater Sci: Mater Med 2015;26. [DOI: 10.1007/s10856-015-5452-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
57 Shan Y, Hao X, Shang X, Cai M, Jiang J, Tang Z, Wang H. Recording force events of single quantum-dot endocytosis. Chem Commun 2011;47:3377. [DOI: 10.1039/c1cc00040c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
58 Vrignaud S, Anton N, Gayet P, Benoit J, Saulnier P. Reverse micelle-loaded lipid nanocarriers: A novel drug delivery system for the sustained release of doxorubicin hydrochloride. European Journal of Pharmaceutics and Biopharmaceutics 2011;79:197-204. [DOI: 10.1016/j.ejpb.2011.02.015] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
59 Sathigari SK, Ober CA, Sanganwar GP, Gupta RB, Babu RJ. Single-Step Preparation and Deagglomeration of Itraconazole Microflakes by Supercritical Antisolvent Method for Dissolution Enhancement. Journal of Pharmaceutical Sciences 2011;100:2952-65. [DOI: 10.1002/jps.22524] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
60 Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 2010;7:895-913. [PMID: 20629604 DOI: 10.1517/17425247.2010.501792] [Cited by in Crossref: 91] [Cited by in F6Publishing: 83] [Article Influence: 7.6] [Reference Citation Analysis]
61 Lu L, Kang S, Sun C, Sun C, Guo Z, Li J, Zhang T, Luo X, Liu B. Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers. Curr Top Med Chem 2020;20:2427-41. [PMID: 32842941 DOI: 10.2174/1568026620666200825170030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Filatova LY, Oxenoyt YS, Yakovleva KS, Ivanova NI, Klyachko NL. Investigation of the activity and stability of papain in different micellar systems. Moscow Univ Chem Bull 2010;65:80-6. [DOI: 10.3103/s0027131410020057] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
63 Marradi M, García I, Penadés S. Carbohydrate-Based Nanoparticles for Potential Applications in Medicine. Nanoparticles in Translational Science and Medicine. Elsevier; 2011. pp. 141-73. [DOI: 10.1016/b978-0-12-416020-0.00004-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
64 Zamansky M, Zehavi N, Ben-Shabat S, Sintov AC. Characterization of nanoparticles made of ethyl cellulose and stabilizing lipids: Mode of manufacturing, size modulation, and study of their effect on keratinocytes. Int J Pharm 2021;607:121003. [PMID: 34391849 DOI: 10.1016/j.ijpharm.2021.121003] [Reference Citation Analysis]