BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006;23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Cited by in Crossref: 596] [Cited by in F6Publishing: 478] [Article Influence: 39.7] [Reference Citation Analysis]
Number Citing Articles
1 Paswan SK, Saini TR. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique. Pharm Res 2017;34:2779-86. [DOI: 10.1007/s11095-017-2257-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
2 Anhorn MG, Wagner S, Kreuter J, Langer K, von Briesen H. Specific Targeting of HER2 Overexpressing Breast Cancer Cells with Doxorubicin-Loaded Trastuzumab-Modified Human Serum Albumin Nanoparticles. Bioconjugate Chem 2008;19:2321-31. [DOI: 10.1021/bc8002452] [Cited by in Crossref: 89] [Cited by in F6Publishing: 88] [Article Influence: 6.8] [Reference Citation Analysis]
3 Rakshit T, Banerjee S, Mukhopadhyay R. Near-Metallic Behavior of Warm Holoferritin Molecules on a Gold(111) Surface. Langmuir 2010;26:16005-12. [DOI: 10.1021/la101776m] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
4 Ungaro F, Conte C, Ostacolo L, Maglio G, Barbieri A, Arra C, Misso G, Abbruzzese A, Caraglia M, Quaglia F. Core-shell biodegradable nanoassemblies for the passive targeting of docetaxel: features, antiproliferative activity and in vivo toxicity. Nanomedicine 2012;8:637-46. [PMID: 21889924 DOI: 10.1016/j.nano.2011.08.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
5 Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano 2017;11:8560-78. [DOI: 10.1021/acsnano.7b04092] [Cited by in Crossref: 94] [Cited by in F6Publishing: 81] [Article Influence: 23.5] [Reference Citation Analysis]
6 V R, Pal K, Zaheer T, Kalarikkal N, Thomas S, de Souza FG, Si A. Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Ther Deliv 2020;11:521-34. [PMID: 32757745 DOI: 10.4155/tde-2020-0071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
7 Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 2007;18:405102. [DOI: 10.1088/0957-4484/18/40/405102] [Cited by in Crossref: 89] [Cited by in F6Publishing: 55] [Article Influence: 6.4] [Reference Citation Analysis]
8 Hocine S, Li M. Thermoresponsive self-assembled polymer colloids in water. Soft Matter 2013;9:5839. [DOI: 10.1039/c3sm50428j] [Cited by in Crossref: 112] [Cited by in F6Publishing: 79] [Article Influence: 14.0] [Reference Citation Analysis]
9 Adesina SK, Akala EO. Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy. Mol Pharm 2015;12:4175-87. [PMID: 26524196 DOI: 10.1021/acs.molpharmaceut.5b00335] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
10 Gong G, Zhi F, Wang K, Tang X, Yuan A, Zhao L, Ding D, Hu Y. Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting. Nanotechnology 2011;22:295603. [DOI: 10.1088/0957-4484/22/29/295603] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
11 Fumagalli G, Mazza D, Christodoulou MS, Damia G, Ricci F, Perdicchia D, Stella B, Dosio F, Sotiropoulou PA, Passarella D. Cyclopamine-Paclitaxel-Containing Nanoparticles: Internalization in Cells Detected by Confocal and Super-Resolution Microscopy. ChemPlusChem 2015;80:1380-3. [DOI: 10.1002/cplu.201500156] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yu S, Liu Y, Sun A, Hsu J. Determining the size distribution of magnetic nanoparticles based on analysis of magnetization curves. Journal of Applied Physics 2009;106:103905. [DOI: 10.1063/1.3259424] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
13 Wang S, Yang W, Du H, Guo F, Wang H, Chang J, Gong X, Zhang B. Multifunctional reduction-responsive SPIO&DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery. Nanotechnology 2016;27:165101. [DOI: 10.1088/0957-4484/27/16/165101] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
14 Kong MG, Keidar M, Ostrikov K. Plasmas meet nanoparticles—where synergies can advance the frontier of medicine. J Phys D: Appl Phys 2011;44:174018. [DOI: 10.1088/0022-3727/44/17/174018] [Cited by in Crossref: 85] [Cited by in F6Publishing: 43] [Article Influence: 8.5] [Reference Citation Analysis]
15 Peer D. Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev 2012;64:1738-48. [PMID: 22820531 DOI: 10.1016/j.addr.2012.06.013] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 6.9] [Reference Citation Analysis]
16 Liang P, Shi H, Zhu W, Gui Q, Xu Y, Meng J, Guo X, Gong Z, Chen H. Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells. Oncotarget 2017;8:7533-9. [PMID: 27893419 DOI: 10.18632/oncotarget.13503] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
17 Sivasubramanian M, Hsia Y, Lo LW. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front Mol Biosci 2014;1:15. [PMID: 25988156 DOI: 10.3389/fmolb.2014.00015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
18 Raissi H, Mollania F. Immunosuppressive agent leflunomide: A SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices. European Journal of Pharmaceutical Sciences 2014;56:37-54. [DOI: 10.1016/j.ejps.2014.02.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 4.7] [Reference Citation Analysis]
19 Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control 2020;10:e00156. [PMID: 32566773 DOI: 10.1016/j.parepi.2020.e00156] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
20 Panczyk T, Warzocha TP, Camp PJ. A Magnetically Controlled Molecular Nanocontainer as a Drug Delivery System: The Effects of Carbon Nanotube and Magnetic Nanoparticle Parameters from Monte Carlo Simulations. J Phys Chem C 2010;114:21299-308. [DOI: 10.1021/jp1088405] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
21 Eskandari S, Pattinson DJ, Stephenson RJ, Groves PL, Apte SH, Sedaghat B, Chandurudu S, Doolan DL, Toth I. Influence of Physicochemical Properties of Lipopeptide Adjuvants on the Immune Response: A Rationale for Engineering a Potent Vaccine. Chemistry 2018;24:9892-902. [PMID: 29707835 DOI: 10.1002/chem.201801378] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomedicine: Nanotechnology, Biology and Medicine 2008;4:127-38. [DOI: 10.1016/j.nano.2008.03.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
23 Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2015;16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Cited by in Crossref: 74] [Cited by in F6Publishing: 70] [Article Influence: 10.6] [Reference Citation Analysis]
24 Qian X, Peng X, Ansari DO, Yin-goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26:83-90. [DOI: 10.1038/nbt1377] [Cited by in Crossref: 1783] [Cited by in F6Publishing: 1509] [Article Influence: 127.4] [Reference Citation Analysis]
25 Gèze A, Chau LT, Choisnard L, Mathieu J, Marti-batlle D, Riou L, Putaux J, Wouessidjewe D. Biodistribution of intravenously administered amphiphilic β-cyclodextrin nanospheres. International Journal of Pharmaceutics 2007;344:135-42. [DOI: 10.1016/j.ijpharm.2007.06.050] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
26 Pant MP, Mariam J, Joshi A, Dongre P. UV radiation sensitivity of bovine serum albumin bound to silver nanoparticles. Journal of Radiation Research and Applied Sciences 2019;7:399-405. [DOI: 10.1016/j.jrras.2014.07.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
27 Chou WH, Gamboa A, Morales JO. Inkjet printing of small molecules, biologics, and nanoparticles. Int J Pharm 2021;600:120462. [PMID: 33711471 DOI: 10.1016/j.ijpharm.2021.120462] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
28 Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021;10:685. [PMID: 33925605 DOI: 10.3390/antiox10050685] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Najer A, Thamboo S, Duskey JT, Palivan CG, Beck HP, Meier W. Analysis of Molecular Parameters Determining the Antimalarial Activity of Polymer-Based Nanomimics. Macromol Rapid Commun 2015;36:1923-8. [PMID: 29971878 DOI: 10.1002/marc.201500267] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
30 Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016;4:5078-100. [DOI: 10.1039/c6tb00900j] [Cited by in Crossref: 27] [Cited by in F6Publishing: 3] [Article Influence: 5.4] [Reference Citation Analysis]
31 Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011;28:215-36. [PMID: 20721603 DOI: 10.1007/s11095-010-0241-4] [Cited by in Crossref: 142] [Cited by in F6Publishing: 122] [Article Influence: 12.9] [Reference Citation Analysis]
32 Martins A, Ferreira H, Reis RL, Neves NM. Delivery Systems Made of Natural-Origin Polymers for Tissue Engineering and Regenerative Medicine Applications. In: Neves NM, Reis RL, editors. Biomaterials from Nature for Advanced Devices and Therapies. Hoboken: John Wiley & Sons, Inc.; 2016. pp. 581-611. [DOI: 10.1002/9781119126218.ch31] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
33 Maghrebi S, Joyce P, Jambhrunkar M, Thomas N, Prestidge CA. Poly(lactic-co-glycolic) Acid-Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin. ACS Appl Mater Interfaces 2020;12:8030-9. [PMID: 32013379 DOI: 10.1021/acsami.9b22991] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
34 Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Int J Mol Sci 2020;21:E6721. [PMID: 32937817 DOI: 10.3390/ijms21186721] [Reference Citation Analysis]
35 Tiwari DK, Jin T, Behari J. Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats. Int J Nanomedicine 2011;6:463-75. [PMID: 21499435 DOI: 10.2147/IJN.S15124] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
36 Patil S, Gawali S, Patil S, Basu S. Synthesis, characterization and in vitro evaluation of novel vitamin D3 nanoparticles as a versatile platform for drug delivery in cancer therapy. J Mater Chem B 2013;1:5742-50. [PMID: 32261230 DOI: 10.1039/c3tb21176b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
37 Hood RR, Shao C, Omiatek DM, Vreeland WN, DeVoe DL. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 2013;30:1597-607. [PMID: 23386106 DOI: 10.1007/s11095-013-0998-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
38 Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, Patarroyo MA, Patarroyo ME. Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar J 2020;19:56. [PMID: 32013956 DOI: 10.1186/s12936-020-3141-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
39 Lin WJ, Chien WH. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery. J Nanopart Res 2015;17. [DOI: 10.1007/s11051-015-3132-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
40 Manju S, Sreenivasan K. Functionalised nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials. Elsevier; 2010. pp. 267-97. [DOI: 10.1533/9781845699802.2.267] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Kaur H, Singh J, Chopra S, Kaur N. Calix[4]arene based dipodal receptor nanohybrids for selective determination of chloride ions in aqueous media. Talanta 2016;146:122-9. [DOI: 10.1016/j.talanta.2015.08.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
42 Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 2014;66:26-41. [PMID: 24270008 DOI: 10.1016/j.addr.2013.11.004] [Cited by in Crossref: 167] [Cited by in F6Publishing: 161] [Article Influence: 20.9] [Reference Citation Analysis]
43 Denchev Z, Tomanova M, Lederer A. On the anionic homo‐ and copolymerization of ethyl‐ and butyl‐2‐cyanoacrylates. J Polym Sci A Polym Chem 2008;46:5142-56. [DOI: 10.1002/pola.22842] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
44 Arias JL, Reddy LH, Couvreur P. Magnetoresponsive squalenoyl gemcitabine composite nanoparticles for cancer active targeting. Langmuir 2008;24:7512-9. [PMID: 18540685 DOI: 10.1021/la800547s] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 3.5] [Reference Citation Analysis]
45 Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:696-716. [PMID: 26762467 DOI: 10.1002/wnan.1389] [Cited by in Crossref: 97] [Cited by in F6Publishing: 78] [Article Influence: 19.4] [Reference Citation Analysis]
46 Kapse SV, Gaikwad RV, Samad A, Devarajan PV. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability. International Journal of Pharmaceutics 2012;429:104-12. [DOI: 10.1016/j.ijpharm.2012.02.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
47 Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int J Mol Sci 2018;19:E3264. [PMID: 30347840 DOI: 10.3390/ijms19103264] [Cited by in Crossref: 104] [Cited by in F6Publishing: 80] [Article Influence: 34.7] [Reference Citation Analysis]
48 Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012;64:943-52. [PMID: 22210135 DOI: 10.1016/j.addr.2011.12.007] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 5.6] [Reference Citation Analysis]
49 Monsky WL, Vien DS, Link DP. Nanotechnology Development and Utilization: A Primer for Diagnostic and Interventional Radiologists. RadioGraphics 2011;31:1449-62. [DOI: 10.1148/rg.315105238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
50 Tasciotti E, Cabrera FJ, Evangelopoulos M, Martinez JO, Thekkedath UR, Kloc M, Ghobrial RM, Li XC, Grattoni A, Ferrari M. The Emerging Role of Nanotechnology in Cell and Organ Transplantation. Transplantation 2016;100:1629-38. [PMID: 27257995 DOI: 10.1097/TP.0000000000001100] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 6.8] [Reference Citation Analysis]
51 Richard A, Barras A, Younes AB, Monfilliette-dupont N, Melnyk P. Minimal Chemical Modification of Reductive End of Dextran to Produce an Amphiphilic Polysaccharide Able to Incorporate onto Lipid Nanocapsules. Bioconjugate Chem 2008;19:1491-5. [DOI: 10.1021/bc700444t] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
52 Oh KT, Yin H, Lee ES, Bae YH. Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. J Mater Chem 2007;17:3987. [DOI: 10.1039/b707142f] [Cited by in Crossref: 160] [Cited by in F6Publishing: 121] [Article Influence: 11.4] [Reference Citation Analysis]
53 Mulet X, Boyd BJ, Drummond CJ. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. Journal of Colloid and Interface Science 2013;393:1-20. [DOI: 10.1016/j.jcis.2012.10.014] [Cited by in Crossref: 213] [Cited by in F6Publishing: 194] [Article Influence: 26.6] [Reference Citation Analysis]
54 Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm 2013;63:335-58. [PMID: 24152895 DOI: 10.2478/acph-2013-0021] [Cited by in Crossref: 99] [Cited by in F6Publishing: 70] [Article Influence: 14.1] [Reference Citation Analysis]
55 Yasinzai M, Khan M, Nadhman A, Shahnaz G. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives. Future Medicinal Chemistry 2013;5:1877-88. [DOI: 10.4155/fmc.13.143] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 6.9] [Reference Citation Analysis]
56 Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. International Journal of Pharmaceutics 2011;417:120-37. [DOI: 10.1016/j.ijpharm.2011.02.001] [Cited by in Crossref: 185] [Cited by in F6Publishing: 147] [Article Influence: 18.5] [Reference Citation Analysis]
57 Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in cancer therapy. J Control Release 2015;208:25-41. [PMID: 25617724 DOI: 10.1016/j.jconrel.2015.01.021] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 10.8] [Reference Citation Analysis]
58 Najer A, Wu D, Vasquez D, Palivan CG, Meier W. Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine 2013;8:425-47. [DOI: 10.2217/nnm.13.11] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
59 Zhang L, Fang Y, Yang J, Kopeček J. Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. J Control Release 2017;263:139-50. [PMID: 28024916 DOI: 10.1016/j.jconrel.2016.12.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
60 Pourgholi F, Hajivalili M, Farhad JN, Kafil HS, Yousefi M. Nanoparticles: Novel vehicles in treatment of Glioblastoma. Biomed Pharmacother 2016;77:98-107. [PMID: 26796272 DOI: 10.1016/j.biopha.2015.12.014] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
61 Naczynski DJ, Andelman T, Pal D, Chen S, Riman RE, Roth CM, Moghe PV. Albumin Nanoshell Encapsulation of Near-Infrared-Excitable Rare-Earth Nanoparticles Enhances Biocompatibility and Enables Targeted Cell Imaging. Small 2010;6:1631-40. [DOI: 10.1002/smll.200902403] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
62 Kanber E, Yamada H, Loretz B, Lepeltier E, Lehr CM. Design of Polyamine-Grafted Starches for Nucleotide Analogue Delivery: In Vitro Evaluation of the Anticancer Activity. Bioconjug Chem 2016;27:2431-40. [PMID: 27633934 DOI: 10.1021/acs.bioconjchem.6b00396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
63 Elkot HA, Ragab I, Saleh NM, Amin MN, Al-Rashood ST, El-Messery SM, Hassan GS. Design, synthesis, and antitumor activity of PLGA nanoparticles incorporating a discovered benzimidazole derivative as EZH2 inhibitor. Chem Biol Interact 2021;344:109530. [PMID: 34029540 DOI: 10.1016/j.cbi.2021.109530] [Reference Citation Analysis]
64 Vinciguerra D, Degrassi A, Mancini L, Mura S, Mougin J, Couvreur P, Nicolas J. Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for in Vivo Imaging and Cancer Cell Targeting. Biomacromolecules 2019;20:2464-76. [DOI: 10.1021/acs.biomac.9b00148] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
65 Löw K, Wacker M, Wagner S, Langer K, von Briesen H. Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine 2011;7:454-63. [PMID: 21215330 DOI: 10.1016/j.nano.2010.12.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
66 Sasikala ARK, Unnithan AR, Park CH, Kim CS. Nanofiber-based anticancer drug delivery platform. Biomimetic Nanoengineered Materials for Advanced Drug Delivery. Elsevier; 2019. pp. 11-36. [DOI: 10.1016/b978-0-12-814944-7.00002-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Chen Y, Sun J, Huang Y, Liu Y, Liang L, Yang D, Lu B, Li S. Targeted codelivery of doxorubicin and IL-36γ expression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. Nanomedicine 2019;15:129-41. [PMID: 30308300 DOI: 10.1016/j.nano.2018.09.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
68 Banerjee D, Sengupta S. Nanoparticles in Cancer Chemotherapy. Nanoparticles in Translational Science and Medicine. Elsevier; 2011. pp. 489-507. [DOI: 10.1016/b978-0-12-416020-0.00012-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
69 Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Advanced Drug Delivery Reviews 2019;151-152:130-51. [DOI: 10.1016/j.addr.2019.01.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
70 Altintas I, Kok RJ, Schiffelers RM. Targeting epidermal growth factor receptor in tumors: from conventional monoclonal antibodies via heavy chain-only antibodies to nanobodies. Eur J Pharm Sci. 2012;45:399-407. [PMID: 22064454 DOI: 10.1016/j.ejps.2011.10.015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
71 Altmeyer C, Karam TK, Khalil NM, Mainardes RM. Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity. Mater Sci Eng C Mater Biol Appl 2016;60:135-42. [PMID: 26706516 DOI: 10.1016/j.msec.2015.11.019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
72 Chen DW, Liu SJ. Nanofibers used for delivery of antimicrobial agents. Nanomedicine (Lond) 2015;10:1959-71. [PMID: 26139128 DOI: 10.2217/nnm.15.28] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
73 Škalko-basnet N, Vanić Ž. Lipid-Based Nanopharmaceuticals in Antimicrobial Therapy. Functionalized Nanomaterials for the Management of Microbial Infection. Elsevier; 2017. pp. 111-52. [DOI: 10.1016/b978-0-323-41625-2.00005-3] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
74 Bimbo LM, Sarparanta M, Mäkilä E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA. Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 2012;4:3184. [DOI: 10.1039/c2nr30397c] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 5.9] [Reference Citation Analysis]
75 Landesman-Milo D, Peer D. Altering the immune response with lipid-based nanoparticles. J Control Release 2012;161:600-8. [PMID: 22230342 DOI: 10.1016/j.jconrel.2011.12.034] [Cited by in Crossref: 76] [Cited by in F6Publishing: 70] [Article Influence: 7.6] [Reference Citation Analysis]
76 Villalba BT, Ianiski FR, Wilhelm EA, Fernandes RS, Alves MP, Luchese C. Meloxicam-loaded nanocapsules have antinociceptive and antiedematogenic effects in acute models of nociception. Life Sciences 2014;115:36-43. [DOI: 10.1016/j.lfs.2014.09.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
77 Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. Fighting tuberculosis: old drugs, new formulations. Expert Opin Drug Deliv 2009;6:977-93. [PMID: 19678791 DOI: 10.1517/17425240903130577] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
78 Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 2018;46:295-305. [PMID: 30043651 DOI: 10.1080/21691401.2018.1457039] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
79 Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020;15:4899-918. [PMID: 32764924 DOI: 10.2147/IJN.S244712] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Kaur G, Raj T, Kaur N, Singh N. A Biginelli-based organic nanoprobe for simultaneous estimation of tyramine and 1,2-diaminopropane: application in real samples. New J Chem 2016;40:10536-44. [DOI: 10.1039/c6nj02196d] [Cited by in Crossref: 14] [Article Influence: 2.8] [Reference Citation Analysis]
81 Vibe CB, Fenaroli F, Pires D, Wilson SR, Bogoeva V, Kalluru R, Speth M, Anes E, Griffiths G, Hildahl J. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology 2015;10:680-8. [DOI: 10.3109/17435390.2015.1107146] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
82 Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Wang X, Xie S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine 2018;13:7333-47. [PMID: 30519018 DOI: 10.2147/IJN.S169935] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 10.7] [Reference Citation Analysis]
83 Daou TJ, Li L, Reiss P, Josserand V, Texier I. Effect of Poly(ethylene glycol) Length on the in Vivo Behavior of Coated Quantum Dots. Langmuir 2009;25:3040-4. [DOI: 10.1021/la8035083] [Cited by in Crossref: 112] [Cited by in F6Publishing: 101] [Article Influence: 9.3] [Reference Citation Analysis]
84 Syed A, Devi VK. Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. Journal of Drug Delivery Science and Technology 2019;53:101217. [DOI: 10.1016/j.jddst.2019.101217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
85 Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010;62:1094-124. [PMID: 20858520 DOI: 10.1016/j.addr.2010.09.002] [Cited by in Crossref: 364] [Cited by in F6Publishing: 327] [Article Influence: 33.1] [Reference Citation Analysis]
86 Rems L. Applicative Use of Electroporation Models. Elsevier; 2017. pp. 1-50. [DOI: 10.1016/bs.abl.2017.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
87 Kumar S, Randhawa JK. Preparation and characterization of Paliperidone loaded solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces 2013;102:562-8. [DOI: 10.1016/j.colsurfb.2012.08.052] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
88 Amorim CDM, Couto AG, Netz DJ, de Freitas RA, Bresolin TM. Antioxidant idebenone-loaded nanoparticles based on chitosan and N-carboxymethylchitosan. Nanomedicine: Nanotechnology, Biology and Medicine 2010;6:745-52. [DOI: 10.1016/j.nano.2010.06.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
89 Ilhan-Ayisigi E, Yaldiz B, Bor G, Yaghmur A, Yesil-Celiktas O. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021;201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Vinogradov SV. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 2007;4:5-17. [PMID: 17184158 DOI: 10.1517/17425247.4.1.5] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 3.9] [Reference Citation Analysis]
91 Yaghmur A, Rappolt M. Structural characterization of lipidic systems under nonequilibrium conditions. Eur Biophys J 2012;41:831-40. [PMID: 22569535 DOI: 10.1007/s00249-012-0815-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
92 Jiang T, Jin K, Liu X, Pang Z. Nanoparticles for tumor targeting. Biopolymer-Based Composites. Elsevier; 2017. pp. 221-67. [DOI: 10.1016/b978-0-08-101914-6.00008-9] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
93 Yan S, Zhang H, Piao J, Chen Y, Gao S, Lu C, Niu L, Xia Y, Hu Y, Ji R, Wang H, Xu X. Studies on the Preparation, Characterization and Intracellular Kinetics of JD27-loaded Human Serum Albumin Nanoparticles. Procedia Engineering 2015;102:590-601. [DOI: 10.1016/j.proeng.2015.01.133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
94 Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)‐based colloidal nanomedicines. WIREs Nanomed Nanobiotechnol 2009;1:111-27. [DOI: 10.1002/wnan.15] [Cited by in Crossref: 80] [Cited by in F6Publishing: 63] [Article Influence: 6.2] [Reference Citation Analysis]
95 Avila-olias M, Pegoraro C, Battaglia G, Canton I. Inspired by nature: fundamentals in nanotechnology design to overcome biological barriers. Therapeutic Delivery 2013;4:27-43. [DOI: 10.4155/tde.12.126] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
96 Perry JL, Guo P, Johnson SK, Mukaibo H, Stewart JD, Martin CR. Fabrication of biodegradable nano test tubes by template synthesis. Nanomedicine 2010;5:1151-60. [DOI: 10.2217/nnm.10.110] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
97 Robles J, López MJ, Alonso JA. Modeling of the functionalization of single-wall carbon nanotubes towards its solubilization in an aqueous medium. Eur Phys J D 2011;61:381-8. [DOI: 10.1140/epjd/e2010-10299-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
98 Boyd BJ, Fong W. Stimuli-Responsive Lipid-Based Self-Assembled Systems. In: Garti N, Somasundaran P, Mezzenga R, editors. Self-Assembled Supramolecular Architectures. Hoboken: John Wiley & Sons, Inc.; 2012. pp. 257-88. [DOI: 10.1002/9781118336632.ch9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
99 Hu CM, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 2010;1:323-34. [PMID: 22816135 DOI: 10.4155/tde.10.13] [Cited by in Crossref: 327] [Cited by in F6Publishing: 299] [Article Influence: 36.3] [Reference Citation Analysis]
100 Lakkireddy HR, Bazile DV. Nano-carriers for drug routeing - towards a new era. J Drug Target 2019;27:525-41. [PMID: 30570365 DOI: 10.1080/1061186X.2018.1561891] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
101 Amaral AC, Bocca AL, Ribeiro AM, Nunes J, Peixoto DL, Simioni AR, Primo FL, Lacava ZG, Bentes R, Titze-de-Almeida R, Tedesco AC, Morais PC, Felipe MS. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J Antimicrob Chemother 2009;63:526-33. [PMID: 19151037 DOI: 10.1093/jac/dkn539] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 4.6] [Reference Citation Analysis]
102 Srinivas Naik L, Devi CVR. Induction of extrinsic and intrinsic apoptosis in cervical cancer cells by Momordica dioica mediated gold nanoparticles. IET Nanobiotechnol 2020;14:172-9. [PMID: 32433036 DOI: 10.1049/iet-nbt.2019.0075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
103 Bermúdez JM, Cid AG, Romero AI, Villegas M, Villegas NA, Palma SD. New Trends in the Antimicrobial Agents Delivery Using Nanoparticles. Antimicrobial Nanoarchitectonics. Elsevier; 2017. pp. 1-28. [DOI: 10.1016/b978-0-323-52733-0.00001-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
104 Nicolas J, Bensaid F, Desmaële D, Grogna M, Detrembleur C, Andrieux K, Couvreur P. Synthesis of Highly Functionalized Poly(alkyl cyanoacrylate) Nanoparticles by Means of Click Chemistry. Macromolecules 2008;41:8418-28. [DOI: 10.1021/ma8013349] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 2.9] [Reference Citation Analysis]
105 Quaglia F, Ostacolo L, De Rosa G, La Rotonda MI, Ammendola M, Nese G, Maglio G, Palumbo R, Vauthier C. Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. International Journal of Pharmaceutics 2006;324:56-66. [DOI: 10.1016/j.ijpharm.2006.07.020] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
106 Ostermann J, Schmidtke C, Wolter C, Merkl JP, Kloust H, Weller H. Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals. Beilstein J Nanotechnol 2015;6:232-42. [PMID: 25671167 DOI: 10.3762/bjnano.6.22] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
107 Tebaldi ML, Maia ALC, Poletto F, de Andrade FV, Soares DCF. Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility. Journal of Drug Delivery Science and Technology 2019;51:115-26. [DOI: 10.1016/j.jddst.2019.02.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 14.5] [Reference Citation Analysis]
108 Guleria A, Priyatharchini K, Kumar D. Biomedical Applications of Magnetic Nanomaterials. Applications of Nanomaterials. Elsevier; 2018. pp. 345-89. [DOI: 10.1016/b978-0-08-101971-9.00013-2] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
109 Pusuluri A, Wu D, Mitragotri S. Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. Journal of Controlled Release 2019;305:130-54. [DOI: 10.1016/j.jconrel.2019.04.020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
110 Kane J, Ong J, Saraf RF. Chemistry, physics, and engineering of electrically percolating arrays of nanoparticles: a mini review. J Mater Chem 2011;21:16846. [DOI: 10.1039/c1jm12005k] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
111 Silva R, Ferreira H, Cavaco-paulo A. Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules 2011;12:3353-68. [DOI: 10.1021/bm200658b] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
112 Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021;21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Reference Citation Analysis]
113 Ciofani G, Raffa V, Menciassi A, Dario P. Alginate and chitosan particles as drug delivery system for cell therapy. Biomed Microdevices 2008;10:131-40. [DOI: 10.1007/s10544-007-9118-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
114 Herrmann IK, Grass RN, Mazunin D, Stark WJ. Synthesis and Covalent Surface Functionalization of Nonoxidic Iron Core−Shell Nanomagnets. Chem Mater 2009;21:3275-81. [DOI: 10.1021/cm900785u] [Cited by in Crossref: 119] [Cited by in F6Publishing: 88] [Article Influence: 9.9] [Reference Citation Analysis]
115 Cao Y, Li Y, Hu X, Zou X, Xiong S, Lin C, Wang L. Supramolecular Nanoparticles Constructed by DOX-Based Prodrug with Water-Soluble Pillar[6]arene for Self-Catalyzed Rapid Drug Release. Chem Mater 2015;27:1110-9. [DOI: 10.1021/cm504445r] [Cited by in Crossref: 83] [Cited by in F6Publishing: 66] [Article Influence: 13.8] [Reference Citation Analysis]
116 Pascu SI, Arrowsmith RL, Bayly SR, Brayshaw S, Hu Z. Towards nanomedicines: design protocols to assemble, visualize and test carbon nanotube probes for multi-modality biomedical imaging. Philos Trans A Math Phys Eng Sci 2010;368:3683-712. [PMID: 20603377 DOI: 10.1098/rsta.2010.0081] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
117 Suda K, Murakami T, Gotoh N, Fukuda R, Hashida Y, Hashida M, Tsujikawa A, Yoshimura N. High-density lipoprotein mutant eye drops for the treatment of posterior eye diseases. J Control Release 2017;266:301-9. [PMID: 28987881 DOI: 10.1016/j.jconrel.2017.09.036] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
118 Gindy ME, Prud'homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opinion on Drug Delivery 2009;6:865-78. [DOI: 10.1517/17425240902932908] [Cited by in Crossref: 194] [Cited by in F6Publishing: 184] [Article Influence: 16.2] [Reference Citation Analysis]
119 Alqahtani MS, Syed R, Alshehri M. Size-Dependent Phagocytic Uptake and Immunogenicity of Gliadin Nanoparticles. Polymers (Basel) 2020;12:E2576. [PMID: 33147852 DOI: 10.3390/polym12112576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Kafka AP, Kleffmann T, Rades T, Mcdowell A. The application of MALDI TOF MS in biopharmaceutical research. International Journal of Pharmaceutics 2011;417:70-82. [DOI: 10.1016/j.ijpharm.2010.12.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
121 Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017;46:4218-44. [PMID: 28585944 DOI: 10.1039/c6cs00636a] [Cited by in Crossref: 778] [Cited by in F6Publishing: 266] [Article Influence: 259.3] [Reference Citation Analysis]
122 Gao G, Heo H, Lee J, Lee D. An acidic pH-triggered polymeric micelle for dual-modality MR and optical imaging. J Mater Chem 2010;20:5454. [DOI: 10.1039/c0jm00317d] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
123 Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm 2017;530:387-400. [PMID: 28774852 DOI: 10.1016/j.ijpharm.2017.07.079] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
124 Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 2011;32:173-87. [PMID: 20934475 DOI: 10.1016/j.peptides.2010.10.003] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 7.2] [Reference Citation Analysis]
125 Rezaei G, Daghighi SM, Raoufi M, Esfandyari-Manesh M, Rahimifard M, Mobarakeh VI, Kamalzare S, Ghahremani MH, Atyabi F, Abdollahi M, Rezaee F, Dinarvand R. Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: An immunological link. J Colloid Interface Sci 2019;556:476-91. [PMID: 31473538 DOI: 10.1016/j.jcis.2019.08.060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
126 de Martimprey H, Vauthier C, Malvy C, Couvreur P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 2009;71:490-504. [PMID: 18977435 DOI: 10.1016/j.ejpb.2008.09.024] [Cited by in Crossref: 83] [Cited by in F6Publishing: 67] [Article Influence: 6.4] [Reference Citation Analysis]
127 Gaspar R, Duncan R. Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev 2009;61:1220-31. [PMID: 19682513 DOI: 10.1016/j.addr.2009.06.003] [Cited by in Crossref: 187] [Cited by in F6Publishing: 156] [Article Influence: 15.6] [Reference Citation Analysis]
128 Rao N V, Dinda H, Venu P, Sarma JD, Shunmugam R. Smart nanocarrier from norbornene based triblock copolymers for the sustained release of multi-cancer drugs. RSC Adv 2014;4:45625-34. [DOI: 10.1039/c4ra07549h] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
129 Fornaguera C, Feiner-gracia N, Dols-perez A, García-celma MJ, Solans C. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating. Pharm Res 2017;34:1093-103. [DOI: 10.1007/s11095-017-2119-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
130 Costa Lima S, Rodrigues V, Garrido J, Borges F, Kong Thoo Lin P, Cordeiro da Silva A. In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. International Journal of Antimicrobial Agents 2012;39:424-30. [DOI: 10.1016/j.ijantimicag.2012.01.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
131 Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 2008;29:4546-53. [PMID: 18774604 DOI: 10.1016/j.biomaterials.2008.07.050] [Cited by in Crossref: 73] [Cited by in F6Publishing: 62] [Article Influence: 5.6] [Reference Citation Analysis]
132 Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment. Mol Pharmaceutics 2018;15:1791-9. [DOI: 10.1021/acs.molpharmaceut.7b01103] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
133 Johnson RN, Kopecková P, Kopecek J. Synthesis and evaluation of multivalent branched HPMA copolymer-Fab' conjugates targeted to the B-cell antigen CD20. Bioconjug Chem 2009;20:129-37. [PMID: 19154157 DOI: 10.1021/bc800351m] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
134 Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 2014;5:1529-44. [DOI: 10.1039/c3py01384g] [Cited by in Crossref: 189] [Cited by in F6Publishing: 1] [Article Influence: 27.0] [Reference Citation Analysis]
135 Guo B, Wen B, Cheng W, Zhou X, Duan X, Zhao M, Xia Q, Ding S. An enzyme-free and label-free surface plasmon resonance biosensor for ultrasensitive detection of fusion gene based on DNA self-assembly hydrogel with streptavidin encapsulation. Biosens Bioelectron 2018;112:120-6. [PMID: 29702383 DOI: 10.1016/j.bios.2018.04.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
136 Petersen S, Steiniger F, Fischer D, Fahr A, Bunjes H. The physical state of lipid nanoparticles influences their effect on in vitro cell viability. Eur J Pharm Biopharm 2011;79:150-61. [PMID: 21458564 DOI: 10.1016/j.ejpb.2011.03.022] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
137 Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2020;26:5134-51. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
138 Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int J Pharm 2012;431:120-9. [PMID: 22569226 DOI: 10.1016/j.ijpharm.2012.04.054] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
139 Aberoumandi SM, Mohammadhosseini M, Abasi E, Saghati S, Nikzamir N, Akbarzadeh A, Panahi Y, Davaran S. An update on applications of nanostructured drug delivery systems in cancer therapy: a review. Artif Cells Nanomed Biotechnol 2017;45:1-11. [PMID: 27632797 DOI: 10.1080/21691401.2016.1228658] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
140 Reddy LH, Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J Hepatol 2011;55:1461-6. [PMID: 21801699 DOI: 10.1016/j.jhep.2011.05.039] [Cited by in Crossref: 82] [Cited by in F6Publishing: 71] [Article Influence: 8.2] [Reference Citation Analysis]
141 Pinho SLC, Laurent S, Rocha J, Roch A, Delville M, Mornet S, Carlos LD, Vander Elst L, Muller RN, Geraldes CFGC. Relaxometric Studies of γ-Fe 2 O 3 @SiO 2 Core Shell Nanoparticles: When the Coating Matters. J Phys Chem C 2012;116:2285-91. [DOI: 10.1021/jp2086413] [Cited by in Crossref: 53] [Cited by in F6Publishing: 32] [Article Influence: 5.9] [Reference Citation Analysis]
142 Kaur H, Chaudhary A, Kaur I, Singh K, Bharadwaj LM. Transportation of drug–gold nanocomposites by actinomyosin motor system. J Nanopart Res 2011;13:2295-303. [DOI: 10.1007/s11051-010-9987-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
143 Jia S, Fong W, Graham B, Boyd BJ. Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications. Chem Mater 2018;30:2873-87. [DOI: 10.1021/acs.chemmater.8b00357] [Cited by in Crossref: 77] [Cited by in F6Publishing: 39] [Article Influence: 25.7] [Reference Citation Analysis]
144 Ingebrigtsen SG, Škalko-basnet N, Holsæter AM. Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation. Drug Development and Industrial Pharmacy 2016;42:1375-83. [DOI: 10.3109/03639045.2015.1135940] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
145 Coty J, Eleamen Oliveira E, Vauthier C. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona. International Journal of Pharmaceutics 2017;532:769-78. [DOI: 10.1016/j.ijpharm.2017.04.048] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
146 Kempe S, Mäder K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. Journal of Controlled Release 2012;161:668-79. [DOI: 10.1016/j.jconrel.2012.04.016] [Cited by in Crossref: 152] [Cited by in F6Publishing: 140] [Article Influence: 16.9] [Reference Citation Analysis]
147 Palvai S, Nagraj J, Mapara N, Chowdhury R, Basu S. Dual drug loaded vitamin D3 nanoparticle to target drug resistance in cancer. RSC Adv 2014;4:57271-81. [DOI: 10.1039/c4ra06475e] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
148 Karmakar A, Iancu C, Bartos DM, Mahmood MW, Ghosh A, Xu Y, Dervishi E, Collom SL, Khodakovskaya M, Mustafa T, Watanabe F, Biris AR, Zhang Y, Ali SF, Casciano D, Hassen S, Nima Z, Biris AS. Raman spectroscopy as a detection and analysis tool for in vitro specific targeting of pancreatic cancer cells by EGF-conjugated, single-walled carbon nanotubes: Conjugated nanotubes targeting specific cancer cells. J Appl Toxicol 2012;32:365-75. [DOI: 10.1002/jat.1742] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
149 Beck-Broichsitter M, Nicolas J, Couvreur P. Design attributes of long-circulating polymeric drug delivery vehicles. Eur J Pharm Biopharm 2015;97:304-17. [PMID: 25857838 DOI: 10.1016/j.ejpb.2015.03.033] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
150 Angsantikul P, Fang RH, Zhang L. Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjug Chem 2018;29:604-12. [PMID: 29241006 DOI: 10.1021/acs.bioconjchem.7b00692] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
151 Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 2008;60:1226-40. [PMID: 18495291 DOI: 10.1016/j.addr.2008.03.015] [Cited by in Crossref: 873] [Cited by in F6Publishing: 745] [Article Influence: 67.2] [Reference Citation Analysis]
152 Houshyari A, Heydari M, Bagheri M, Nezafati N. Preparation of gelatin nanoparticles by a water-in-oil emulsion method for water-soluble model drug encapsulation. Materials Today: Proceedings 2018;5:15800-5. [DOI: 10.1016/j.matpr.2018.05.077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
153 Dong X, Luo J, Lan P, Guo X, Zhao X, Wang X, Zhou F, Wang Q, Yuan H, Sun J. Magnetic resonance colonography with intestine-absorbable nanoparticle contrast agents in evaluation of colorectal inflammation. Eur Radiol 2021;31:4615-24. [PMID: 33409796 DOI: 10.1007/s00330-020-07609-8] [Reference Citation Analysis]
154 Wu M, Dellacherie E, Durand A, Marie E. Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization. 2. PEG-based surfactants. Colloids and Surfaces B: Biointerfaces 2009;69:147-51. [DOI: 10.1016/j.colsurfb.2008.10.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
155 Hirsjärvi S, Peltonen L, Hirvonen J. Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of poly(lactic acid) nanoparticles. AAPS PharmSciTech 2009;10:488-94. [PMID: 19381823 DOI: 10.1208/s12249-009-9236-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
156 Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014;43:485-96. [PMID: 24721232 DOI: 10.1016/j.ijantimicag.2014.02.009] [Cited by in Crossref: 161] [Cited by in F6Publishing: 149] [Article Influence: 23.0] [Reference Citation Analysis]
157 Loureiro A, Bernardes GJ, Shimanovich U, Sárria MP, Nogueira E, Preto A, Gomes AC, Cavaco-Paulo A. Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomedicine 2015;11:1077-83. [PMID: 25791804 DOI: 10.1016/j.nano.2015.02.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
158 Mahmoodi M, Behzad-Behbahani A, Sharifzadeh S, Abolmaali SS, Tamaddon A. Co-condensation synthesis of well-defined mesoporous silica nanoparticles: effect of surface chemical modification on plasmid DNA condensation and transfection. IET Nanobiotechnol 2017;11:995-1004. [PMID: 29155400 DOI: 10.1049/iet-nbt.2017.0078] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
159 Papadimitriou S, Bikiaris D. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release 2009;138:177-84. [PMID: 19446585 DOI: 10.1016/j.jconrel.2009.05.013] [Cited by in Crossref: 108] [Cited by in F6Publishing: 97] [Article Influence: 9.0] [Reference Citation Analysis]
160 Gratieri T, Gelfuso GM, Lopez RF, Souto EB. Current efforts and the potential of nanomedicine in treating fungal keratitis. Expert Review of Ophthalmology 2014;5:365-84. [DOI: 10.1586/eop.10.19] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
161 Varan G, Öncül S, Ercan A, Benito JM, Ortiz Mellet C, Bilensoy E. Cholesterol-Targeted Anticancer and Apoptotic Effects of Anionic and Polycationic Amphiphilic Cyclodextrin Nanoparticles. Journal of Pharmaceutical Sciences 2016;105:3172-82. [DOI: 10.1016/j.xphs.2016.06.021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
162 das Neves J, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Advanced Drug Delivery Reviews 2010;62:458-77. [DOI: 10.1016/j.addr.2009.11.017] [Cited by in Crossref: 137] [Cited by in F6Publishing: 121] [Article Influence: 12.5] [Reference Citation Analysis]
163 Bensaude Vincent B, Loeve S. Metaphors in Nanomedicine: The Case of Targeted Drug Delivery. Nanoethics 2014;8:1-17. [DOI: 10.1007/s11569-013-0183-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
164 Power S, Slattery MM, Lee MJ. Nanotechnology and its Relationship to Interventional Radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention. Cardiovasc Intervent Radiol 2011;34:676-90. [DOI: 10.1007/s00270-010-9967-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
165 Zhang P, Huang W, Xu H, Chang S, Cao C, Kong M, He Y. Magnetic cylindrical ordered mesoporous nanocarriers for targeted drug delivery. Microporous and Mesoporous Materials 2014;188:86-92. [DOI: 10.1016/j.micromeso.2014.01.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
166 Sonia TA, Sharma CP. Chitosan and Its Derivatives for Drug Delivery Perspective. In: Jayakumar R, Prabaharan M, Muzzarelli RAA, editors. Chitosan for Biomaterials I. Berlin: Springer Berlin Heidelberg; 2011. pp. 23-53. [DOI: 10.1007/12_2011_117] [Cited by in Crossref: 134] [Cited by in F6Publishing: 74] [Article Influence: 13.4] [Reference Citation Analysis]
167 Merhi M, Dombu CY, Brient A, Chang J, Platel A, Le Curieux F, Marzin D, Nesslany F, Betbeder D. Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int J Pharm 2012;423:37-44. [PMID: 21801821 DOI: 10.1016/j.ijpharm.2011.07.014] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
168 Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011;31:295-302. [PMID: 21360197 DOI: 10.1007/s10059-011-0051-5] [Cited by in Crossref: 187] [Cited by in F6Publishing: 150] [Article Influence: 18.7] [Reference Citation Analysis]
169 Panda AK. Nanotechnology in Vaccine Development. Proc Natl Acad Sci , India, Sect B Biol Sci 2012;82:13-27. [DOI: 10.1007/s40011-012-0073-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
170 Mananghaya MR, Santos GN, Yu D. Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: A density functional based tight binding molecular dynamics study: Solubility of Aminotriethylene Glycol Functionalized Single Wall Carbon Nanotubes: A Density Functional Based Tight Binding Molecular Dynamics Study. J Comput Chem 2019;40:952-8. [DOI: 10.1002/jcc.25776] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
171 Adesina SK, Wight SA, Akala EO. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design. Drug Dev Ind Pharm 2014;40:1547-56. [PMID: 24059281 DOI: 10.3109/03639045.2013.838578] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
172 Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017;4:105-31. [PMID: 28748089 DOI: 10.1177/2049936117713593] [Cited by in Crossref: 78] [Cited by in F6Publishing: 87] [Article Influence: 19.5] [Reference Citation Analysis]
173 Elizondo E, Veciana J, Ventosa N. Nanostructuring molecular materials as particles and vesicles for drug delivery, using compressed and supercritical fluids. Nanomedicine 2012;7:1391-408. [DOI: 10.2217/nnm.12.110] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
174 Caldorera-Moore M, Vela Ramirez JE, Peppas NA. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J Drug Target 2019;27:582-9. [PMID: 30457357 DOI: 10.1080/1061186X.2018.1547732] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
175 Lee T, Kim S, Kim J, Park SC, Yoon J, Park C, Sohn H, Ahn JH, Min J. Recent Advances in Biomolecule-Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials (Basel) 2020;13:E3520. [PMID: 32784985 DOI: 10.3390/ma13163520] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Lee ES, Kim JH, Sim T, Youn YS, Lee B, Oh YT, Oh KT. A feasibility study of a pH sensitive nanomedicine using doxorubicin loaded poly(aspartic acid-graft-imidazole)-block-poly(ethylene glycol) micelles. J Mater Chem B 2014;2:1152. [DOI: 10.1039/c3tb21379j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
177 Miller RD, Yusoff RM, Swope WC, Rice JE, Carr AC, Parker AJ, Sly J, Appel EA, Nguyen T, Piunova V. Water soluble, biodegradable amphiphilic polymeric nanoparticles and the molecular environment of hydrophobic encapsulates: Consistency between simulation and experiment. Polymer 2015;79:255-61. [DOI: 10.1016/j.polymer.2015.10.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
178 Gossmann R, Fahrländer E, Hummel M, Mulac D, Brockmeyer J, Langer K. Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS–PAGE and LC–MS. European Journal of Pharmaceutics and Biopharmaceutics 2015;93:80-7. [DOI: 10.1016/j.ejpb.2015.03.021] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
179 Prato M, Kostarelos K, Bianco A. Functionalized Carbon Nanotubes in Drug Design and Discovery. Acc Chem Res 2008;41:60-8. [DOI: 10.1021/ar700089b] [Cited by in Crossref: 810] [Cited by in F6Publishing: 633] [Article Influence: 57.9] [Reference Citation Analysis]
180 Bai G, Nichifor M, Bastos M. Cationic Polyelectrolytes as Drug Delivery Vectors: Calorimetric and Fluorescence Study of Rutin Partitioning. J Phys Chem B 2010;114:16236-43. [DOI: 10.1021/jp1071555] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
181 Arias JL, Reddy LH, Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Mater Chem 2012;22:7622. [DOI: 10.1039/c2jm15339d] [Cited by in Crossref: 97] [Cited by in F6Publishing: 57] [Article Influence: 10.8] [Reference Citation Analysis]
182 Wu M, Dellacherie E, Durand A, Marie E. Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization (1): dextran-based surfactants. Colloids Surf B Biointerfaces 2009;69:141-6. [PMID: 19147334 DOI: 10.1016/j.colsurfb.2008.12.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
183 Thangavelu M, Adithan A, Thotapalli Parvathaleswara S, Munusamy C. Morphological Modification of Carbon Nanoparticles after Interacting with Methotrexate as a Potential Anticancer Agent. Pharm Res 2018;35:184. [PMID: 30073628 DOI: 10.1007/s11095-018-2468-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
184 Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez Duque MDM, Guari Y, Larionova J, Guérin C, Montero JG, Barragan-montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C. Water-Dispersible Sugar-Coated Iron Oxide Nanoparticles. An Evaluation of their Relaxometric and Magnetic Hyperthermia Properties. J Am Chem Soc 2011;133:10459-72. [DOI: 10.1021/ja111448t] [Cited by in Crossref: 189] [Cited by in F6Publishing: 166] [Article Influence: 18.9] [Reference Citation Analysis]
185 Kalluru R, Fenaroli F, Westmoreland D, Ulanova L, Maleki A, Roos N, Paulsen Madsen M, Koster G, Egge-Jacobsen W, Wilson S, Roberg-Larsen H, Khuller GK, Singh A, Nyström B, Griffiths G. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J Cell Sci 2013;126:3043-54. [PMID: 23687375 DOI: 10.1242/jcs.121814] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 9.6] [Reference Citation Analysis]
186 Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Nanoformulation of natural products for prevention and therapy of prostate cancer. Cancer Lett 2013;334:142-51. [PMID: 23201598 DOI: 10.1016/j.canlet.2012.11.037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
187 Booysen LL, Kalombo L, Brooks E, Hansen R, Gilliland J, Gruppo V, Lungenhofer P, Semete-Makokotlela B, Swai HS, Kotze AF. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int J Pharm. 2013;444:10-17. [PMID: 23357255 DOI: 10.1016/j.ijpharm.2013.01.038] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
188 Lee C, Hwang A, Jose L, Park JH, Jang S, Song JK, Kim Y, Cho Y, Jeon HB, Jin J, Paik H. RAFT/PISA based Ni-NTA polymeric particles for virus-mimetic influenza vaccines. Journal of Industrial and Engineering Chemistry 2020;86:35-8. [DOI: 10.1016/j.jiec.2020.03.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
189 Nosrati H, Adinehvand R, Manjili HK, Rostamizadeh K, Danafar H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG–PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharmaceutical Development and Technology 2017;24:89-98. [DOI: 10.1080/10837450.2018.1425433] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
190 Cui W, Li J, Decher G. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. Adv Mater 2016;28:1302-11. [DOI: 10.1002/adma.201502479] [Cited by in Crossref: 144] [Cited by in F6Publishing: 127] [Article Influence: 24.0] [Reference Citation Analysis]
191 Bergonzi MC, Guccione C, Grossi C, Piazzini V, Torracchi A, Luccarini I, Casamenti F, Bilia AR. Albumin Nanoparticles for Brain Delivery: A Comparison of Chemical versus Thermal Methods and in vivo Behavior. ChemMedChem 2016;11:1840-9. [PMID: 26947767 DOI: 10.1002/cmdc.201600080] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
192 Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 2013;31:563-92. [PMID: 23022622 DOI: 10.1016/j.biotechadv.2012.09.005] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 9.2] [Reference Citation Analysis]
193 Sizochenko N, Leszczynska D, Leszczynski J. Modeling of Interactions between the Zebrafish Hatching Enzyme ZHE1 and A Series of Metal Oxide Nanoparticles: Nano-QSAR and Causal Analysis of Inactivation Mechanisms. Nanomaterials (Basel) 2017;7:E330. [PMID: 29035311 DOI: 10.3390/nano7100330] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
194 Vodovozova EL, Kuznetsova NR, Kadykov VA, Khutsyan SS, Gaenko GP, Molotkovsky YG. Liposomes as nanocarriers of lipid-conjugated antitumor drugs melphalan and methotrexate. Nanotechnol Russia 2008;3:228-39. [DOI: 10.1134/s1995078008030105] [Cited by in Crossref: 11] [Article Influence: 0.8] [Reference Citation Analysis]
195 Gupta S, Kumar P. Drug Delivery Using Nanocarriers: Indian Perspective. Proc Natl Acad Sci , India, Sect B Biol Sci 2012;82:167-206. [DOI: 10.1007/s40011-012-0080-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
196 Muheem A, Baboota S, Ali J. An in-depth analysis of novel combinatorial drug therapy via nanocarriers against HIV/AIDS infection and their clinical perspectives: a systematic review. Expert Opin Drug Deliv 2021;18:1025-46. [PMID: 33460332 DOI: 10.1080/17425247.2021.1876660] [Reference Citation Analysis]
197 Jenkins R, Burdette MK, Foulger SH. Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Adv 2016;6:65459-74. [DOI: 10.1039/c6ra10473h] [Cited by in Crossref: 31] [Article Influence: 6.2] [Reference Citation Analysis]
198 Zhao L, Seth A, Wibowo N, Zhao C, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine 2014;32:327-37. [DOI: 10.1016/j.vaccine.2013.11.069] [Cited by in Crossref: 488] [Cited by in F6Publishing: 442] [Article Influence: 69.7] [Reference Citation Analysis]
199 Zarrabi A, Vossoughi M, Alemzadeh I, Chitsazi MR. Monodispersed Polymeric Nanoparticles Fabrication by Electrospray Atomization. International Journal of Polymeric Materials 2012;61:611-26. [DOI: 10.1080/00914037.2011.610048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
200 Cavalcanti A, Shirinzadeh B, Freitas Jr RA, Hogg T. Nanorobot architecture for medical target identification. Nanotechnology 2008;19:015103. [DOI: 10.1088/0957-4484/19/01/015103] [Cited by in Crossref: 96] [Cited by in F6Publishing: 34] [Article Influence: 6.9] [Reference Citation Analysis]
201 Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018;13:5561-76. [PMID: 30271147 DOI: 10.2147/IJN.S149022] [Cited by in Crossref: 50] [Cited by in F6Publishing: 21] [Article Influence: 16.7] [Reference Citation Analysis]
202 Curcio M, Cirillo G, Parisi OI, Iemma F, Picci N, Puoci F. Quercetin-imprinted nanospheres as novel drug delivery devices. J Funct Biomater 2012;3:269-82. [PMID: 24955531 DOI: 10.3390/jfb3020269] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
203 Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2007;15:641-63. [PMID: 18041633 DOI: 10.1080/10611860701603372] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 6.2] [Reference Citation Analysis]
204 Hansali F, Wu M, Bendedouch D, Marie E. n-Butyl cyanoacrylate miniemulsion polymerization via the phase inversion composition method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012;393:133-8. [DOI: 10.1016/j.colsurfa.2011.11.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
205 Sortino S. Photoactivated nanomaterials for biomedical release applications. J Mater Chem 2012;22:301-18. [DOI: 10.1039/c1jm13288a] [Cited by in Crossref: 164] [Cited by in F6Publishing: 4] [Article Influence: 18.2] [Reference Citation Analysis]
206 Mohammad AK, Reineke JJ. Quantitative Detection of PLGA Nanoparticle Degradation in Tissues following Intravenous Administration. Mol Pharmaceutics 2013;10:2183-9. [DOI: 10.1021/mp300559v] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 7.8] [Reference Citation Analysis]
207 Cheng J, Wu W, Chen BA, Gao F, Xu W, Gao C, Ding J, Sun Y, Song H, Bao W, Sun X, Xu C, Chen W, Chen N, Liu L, Xia G, Li X, Wang X. Effect of magnetic nanoparticles of Fe3O4 and 5-bromotetrandrine on reversal of multidrug resistance in K562/A02 leukemic cells. Int J Nanomedicine 2009;4:209-16. [PMID: 19918367 DOI: 10.2147/ijn.s7090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
208 Zolnik BS, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Advanced Drug Delivery Reviews 2009;61:422-7. [DOI: 10.1016/j.addr.2009.03.006] [Cited by in Crossref: 79] [Cited by in F6Publishing: 61] [Article Influence: 6.6] [Reference Citation Analysis]
209 Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019;7:7639-55. [DOI: 10.1039/c9tb01842e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
210 Vauthier C, Lindner P, Cabane B. Configuration of bovine serum albumin adsorbed on polymer particles with grafted dextran corona. Colloids and Surfaces B: Biointerfaces 2009;69:207-15. [DOI: 10.1016/j.colsurfb.2008.11.017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
211 Sun J, Zheng W, Zhang H, Wu T, Yuan H, Yang X, Zhang S. Development of nanoparticle-based magnetic resonance colonography. Magn Reson Med 2011;65:673-9. [PMID: 21337401 DOI: 10.1002/mrm.22654] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
212 Duncan R, Veronese FM. Preface PEGylated protein conjugates: A new class of therapeutics for the 21st century. In: Veronese FM, editor. PEGylated Protein Drugs: Basic Science and Clinical Applications. Basel: Birkhäuser; 2009. pp. 1-9. [DOI: 10.1007/978-3-7643-8679-5_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
213 Mo AH, Landon PB, Gomez KS, Kang H, Lee J, Zhang C, Janetanakit W, Sant V, Lu T, Colburn DA, Akkiraju S, Dossou S, Cao Y, Lee KF, Varghese S, Glinsky G, Lal R. Magnetically-responsive silica-gold nanobowls for targeted delivery and SERS-based sensing. Nanoscale 2016;8:11840-50. [PMID: 27228391 DOI: 10.1039/c6nr02445a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 6.7] [Reference Citation Analysis]
214 Maksimenko O, Pavlov E, Toushov E, Molin A, Stukalov Y, Prudskova T, Feldman V, Kreuter J, Gelperina S. Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles. International Journal of Pharmaceutics 2008;356:325-32. [DOI: 10.1016/j.ijpharm.2008.01.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
215 Moradzadeh Khiavi M, Rostami A, Hamishekar H, Mesgari Abassi M, Aghbali A, Salehi R, Abdollahi B, Fotoohi S, Sina M. Therapeutic Efficacy of Orally Delivered Doxorubicin Nanoparticles in Rat Tongue Cancer Induced by 4-Nitroquinoline 1-Oxide. Adv Pharm Bull 2015;5:209-16. [PMID: 26236659 DOI: 10.15171/apb.2015.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
216 Bridot J, Stanicki D, Laurent S, Boutry S, Gossuin Y, Leclère P, Lazzaroni R, Vander Elst L, Muller RN. New carboxysilane-coated iron oxide nanoparticles for nonspecific cell labelling: NEW USPIO FOR CELL LABELLING. Contrast Media Mol Imaging 2013;8:466-74. [DOI: 10.1002/cmmi.1552] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
217 Lee E, Kim J, Yun J, Lee K, Park G, Lee B, Oh K. Functional Polymers for Drug Delivery Systems in Nanomedicines. Journal of Pharmaceutical Investigation 2010;40:45-61. [DOI: 10.4333/kps.2010.40.s.045] [Cited by in Crossref: 11] [Article Influence: 1.0] [Reference Citation Analysis]
218 Ben David-Naim M, Grad E, Aizik G, Nordling-David MM, Moshel O, Granot Z, Golomb G. Polymeric nanoparticles of siRNA prepared by a double-emulsion solvent-diffusion technique: Physicochemical properties, toxicity, biodistribution and efficacy in a mammary carcinoma mice model. Biomaterials 2017;145:154-67. [PMID: 28863309 DOI: 10.1016/j.biomaterials.2017.08.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
219 Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC. Nanorobot Hardware Architecture for Medical Defense. Sensors (Basel) 2008;8:2932-58. [PMID: 27879858 DOI: 10.3390/s8052932] [Cited by in Crossref: 56] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
220 Mananghaya M, Promentilla MA, Aviso K, Tan R. Theoretical investigation of the solubilization of COOH-functionalized single wall carbon nanotubes in water. Journal of Molecular Liquids 2016;215:780-6. [DOI: 10.1016/j.molliq.2016.01.041] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 5.4] [Reference Citation Analysis]
221 Clemente-Napimoga JT, Moreira JA, Grillo R, de Melo NF, Fraceto LF, Napimoga MH. 15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sci 2012;90:944-9. [PMID: 22564409 DOI: 10.1016/j.lfs.2012.04.035] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
222 Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opinion on Drug Delivery 2013;10:927-55. [DOI: 10.1517/17425247.2013.762354] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 5.5] [Reference Citation Analysis]
223 Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An Implantable Active-Targeting Micelle-in-Nanofiber Device for Efficient and Safe Cancer Therapy. ACS Nano 2015;9:1161-74. [DOI: 10.1021/nn504573u] [Cited by in Crossref: 137] [Cited by in F6Publishing: 129] [Article Influence: 22.8] [Reference Citation Analysis]
224 Oroujeni M, Kaboudin B, Xia W, Jönsson P, Ossipov DA. Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Progress in Organic Coatings 2018;114:154-61. [DOI: 10.1016/j.porgcoat.2017.10.007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
225 Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008;126:187-204. [PMID: 18261822 DOI: 10.1016/j.jconrel.2007.12.017] [Cited by in Crossref: 1663] [Cited by in F6Publishing: 1478] [Article Influence: 127.9] [Reference Citation Analysis]
226 Uchida M, Willits DA, Muller K, Willis AF, Jackiw L, Jutila M, Young MJ, Porter AE, Douglas T. Intracellular Distribution of Macrophage Targeting Ferritin-Iron Oxide Nanocomposite. Adv Mater 2009;21:458-62. [DOI: 10.1002/adma.200801209] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
227 Akhter S, Amin S, Ahmad J, Khan S, Anwar M, Ahmad MZ, Rahman Z, Ahmad FJ. Nanotechnology to Combat Multidrug Resistance in Cancer. In: Efferth T, editor. Resistance to Targeted ABC Transporters in Cancer. Cham: Springer International Publishing; 2015. pp. 245-72. [DOI: 10.1007/978-3-319-09801-2_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
228 Ciofani G, Raffa V, Menciassi A, Cuschieri A, Micera S. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor. Biomed Microdevices 2009;11:517-27. [DOI: 10.1007/s10544-008-9258-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
229 Zheng H, Xing L, Cao Y, Che S. Coordination bonding based pH-responsive drug delivery systems. Coordination Chemistry Reviews 2013;257:1933-44. [DOI: 10.1016/j.ccr.2013.03.007] [Cited by in Crossref: 97] [Cited by in F6Publishing: 72] [Article Influence: 12.1] [Reference Citation Analysis]
230 Liu CW, Lin WJ. Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. Journal of Drug Targeting 2013;21:776-86. [DOI: 10.3109/1061186x.2013.811511] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.9] [Reference Citation Analysis]
231 Johnson RN, Kopečková P, Kopeček J. Biological Activity of Anti-CD20 Multivalent HPMA Copolymer-Fab’ Conjugates. Biomacromolecules 2012;13:727-35. [DOI: 10.1021/bm201656k] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
232 Zarate J, Virdis L, Orive G, Igartua M, Hernández R, Pedraz J. Design and characterization of calcium alginate microparticles coated with polycations as protein delivery system. Journal of Microencapsulation 2011;28:614-20. [DOI: 10.3109/02652048.2011.599439] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
233 Graf A, Mcdowell A, Rades T. Poly(alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics – is there real potential? Expert Opinion on Drug Delivery 2009;6:371-87. [DOI: 10.1517/17425240902870413] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 3.9] [Reference Citation Analysis]
234 Zubris KA, Khullar OV, Griset AP, Gibbs-Strauss S, Frangioni JV, Colson YL, Grinstaff MW. Ease of synthesis, controllable sizes, and in vivo large-animal-lymph migration of polymeric nanoparticles. ChemMedChem 2010;5:1435-8. [PMID: 20593440 DOI: 10.1002/cmdc.201000250] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
235 Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009;66:2873-96. [PMID: 19499185 DOI: 10.1007/s00018-009-0053-z] [Cited by in Crossref: 999] [Cited by in F6Publishing: 920] [Article Influence: 83.3] [Reference Citation Analysis]
236 Ratheesh G, Tian L, Venugopal JR, Ezhilarasu H, Sadiq A, Fan T, Ramakrishna S. Role of medicinal plants in neurodegenerative diseases. Biomanuf Rev 2017;2. [DOI: 10.1007/s40898-017-0004-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
237 Vardhan H, Mittal P, Adena SKR, Mishra B. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: Formulation, optimization and in vitro characterization. European Journal of Pharmaceutical Sciences 2017;99:85-94. [DOI: 10.1016/j.ejps.2016.12.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
238 Rajendran K, Anwar A, Khan NA, Aslam Z, Raza Shah M, Siddiqui R. Oleic Acid Coated Silver Nanoparticles Showed Better in Vitro Amoebicidal Effects against Naegleria fowleri than Amphotericin B. ACS Chem Neurosci 2020;11:2431-7. [PMID: 31347828 DOI: 10.1021/acschemneuro.9b00289] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
239 Maksimenko A, Bui DT, Desmaële D, Couvreur P, Nicolas J. Significant Tumor Growth Inhibition from Naturally Occurring Lipid-Containing Polymer Prodrug Nanoparticles Obtained by the Drug-Initiated Method. Chem Mater 2014;26:3606-9. [DOI: 10.1021/cm501500k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
240 Cayre F, Mura S, Andreiuk B, Sobot D, Gouazou S, Desmaële D, Klymchenko AS, Couvreur P. In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles. Adv Healthcare Mater 2018;7:1700830. [DOI: 10.1002/adhm.201700830] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
241 Parandian A, Rip A, Te Kulve H. Dual dynamics of promises, and waiting games around emerging nanotechnologies. Technology Analysis & Strategic Management 2012;24:565-82. [DOI: 10.1080/09537325.2012.693668] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
242 Mura S, Couvreur P. Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews 2012;64:1394-416. [DOI: 10.1016/j.addr.2012.06.006] [Cited by in Crossref: 291] [Cited by in F6Publishing: 267] [Article Influence: 32.3] [Reference Citation Analysis]
243 Barba AA, Dalmoro A, d’Amore M, Vascello C, Lamberti G. Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique. J Mater Sci 2014;49:5160-70. [DOI: 10.1007/s10853-014-8224-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
244 Teleki A, Haufe FL, Hirt AM, Pratsinis SE, Sotiriou GA. Highly scalable production of uniformly-coated superparamagnetic nanoparticles for triggered drug release from alginate hydrogels. RSC Adv 2016;6:21503-10. [DOI: 10.1039/c6ra03115c] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
245 Yu F, Wang J, Dou J, Yang H, He X, Xu W, Zhang Y, Hu K, Gu N. Nanoparticle-based adjuvant for enhanced protective efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 against Mycobacterium tuberculosis infection. Nanomedicine 2012;8:1337-44. [PMID: 22406425 DOI: 10.1016/j.nano.2012.02.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
246 Siafaka P, Betsiou M, Tsolou A, Angelou E, Agianian B, Koffa M, Chaitidou S, Karavas E, Avgoustakis K, Bikiaris D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J Mater Sci: Mater Med 2015;26. [DOI: 10.1007/s10856-015-5609-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
247 Kairdolf BA, Mancini MC, Smith AM, Nie S. Minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings. Anal Chem 2008;80:3029-34. [PMID: 18324840 DOI: 10.1021/ac800068q] [Cited by in Crossref: 114] [Cited by in F6Publishing: 101] [Article Influence: 8.8] [Reference Citation Analysis]
248 Öcal H, Arıca-yegin B, Vural İ, Goracinova K, Çalış S. 5-Fluorouracil-loaded PLA/PLGA PEG–PPG–PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Development and Industrial Pharmacy 2013;40:560-7. [DOI: 10.3109/03639045.2013.775581] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
249 Aryal S, Hu CM, Zhang L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm 2011;8:1401-7. [PMID: 21696189 DOI: 10.1021/mp200243k] [Cited by in Crossref: 133] [Cited by in F6Publishing: 125] [Article Influence: 13.3] [Reference Citation Analysis]
250 Son S, Lim SM, Chae SY, Kim K, Park EJ, Lee KC, Na DH. Mono-lithocholated exendin-4-loaded glycol chitosan nanoparticles with prolonged antidiabetic effects. International Journal of Pharmaceutics 2015;495:81-6. [DOI: 10.1016/j.ijpharm.2015.08.084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
251 Arias JL, López-viota M, López-viota J, Delgado ÁV. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. International Journal of Pharmaceutics 2009;382:270-6. [DOI: 10.1016/j.ijpharm.2009.08.019] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 4.5] [Reference Citation Analysis]
252 Hilder TA, Hill JM. Carbon nanotubes as drug delivery nanocapsules. Current Applied Physics 2008;8:258-61. [DOI: 10.1016/j.cap.2007.10.011] [Cited by in Crossref: 104] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
253 Gu Z, Atherton JJ, Xu ZP. Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications. Chem Commun (Camb) 2015;51:3024-36. [PMID: 25562489 DOI: 10.1039/c4cc07715f] [Cited by in Crossref: 221] [Cited by in F6Publishing: 15] [Article Influence: 44.2] [Reference Citation Analysis]
254 Pezzini I, Mattoli V, Ciofani G. Mitochondria and neurodegenerative diseases: the promising role of nanotechnology in targeted drug delivery. Expert Opin Drug Deliv 2017;14:513-23. [PMID: 27467010 DOI: 10.1080/17425247.2016.1218461] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
255 Tarasi R, Ramazani A, Ghorbanloo M, Khoobi M, Aghahosseini H, Joo SW, Shafiee A. Synthesis of Magnetic Fe 3 O 4 @polyethyleneimine.Mn(II) from Fe 3 O 4 , [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane, Polyethyleneimine and Mn(II) Acetate as a Novel Silicon-Containing Polymeric Organic-Inorganic Hybrid Nanomaterial and Its Catalytic Investigation Towards the Oxidation of Cyclohexene, Ethyl Benzene and Toluene in the Presence of H 2 O 2 as an Oxidant. Silicon 2018;10:257-65. [DOI: 10.1007/s12633-016-9436-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
256 Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020;12:E1184. [PMID: 33291312 DOI: 10.3390/pharmaceutics12121184] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
257 Chaurasia S, Patel RR, Vure P, Mishra B. Potential of Cationic-Polymeric Nanoparticles for Oral Delivery of Naringenin: In Vitro and In Vivo Investigations. J Pharm Sci 2018;107:706-16. [PMID: 29031951 DOI: 10.1016/j.xphs.2017.10.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
258 Julien DC, Behnke S, Wang G, Murdoch GK, Hill RA. Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer. MAbs 2011;3:467-78. [PMID: 21814040 DOI: 10.4161/mabs.3.5.16089] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
259 Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: More than a tour de force. European Journal of Pharmaceutical Sciences 2014;62:227-42. [DOI: 10.1016/j.ejps.2014.05.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
260 Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomater Sci 2016;4:785-802. [PMID: 26891972 DOI: 10.1039/c5bm00507h] [Cited by in Crossref: 37] [Cited by in F6Publishing: 13] [Article Influence: 7.4] [Reference Citation Analysis]
261 Durand A, Marie E. Macromolecular surfactants for miniemulsion polymerization. Advances in Colloid and Interface Science 2009;150:90-105. [DOI: 10.1016/j.cis.2009.07.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
262 Naz S, Shahzad H, Ali A, Zia M. Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment. Artif Cells Nanomed Biotechnol 2018;46:899-916. [PMID: 28914553 DOI: 10.1080/21691401.2017.1375937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
263 Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Advances in Colloid and Interface Science 2017;249:248-71. [DOI: 10.1016/j.cis.2017.04.016] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
264 Biray Avcı Ç, Özcan İ, Balcı T, Özer Ö, Gündüz C. Design of polyethylene glycol-polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells. Cell Biol Int 2013;37:1205-14. [PMID: 23881828 DOI: 10.1002/cbin.10157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 0.3] [Reference Citation Analysis]
265 Antônio E, Antunes ODR, de Araújo IS, Khalil NM, Mainardes RM. Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity. Materials Science and Engineering: C 2017;71:156-66. [DOI: 10.1016/j.msec.2016.09.080] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
266 Chu TW, Kopeček J. Drug-Free Macromolecular Therapeutics--A New Paradigm in Polymeric Nanomedicines. Biomater Sci 2015;3:908-22. [PMID: 26191406 DOI: 10.1039/C4BM00442F] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 6.6] [Reference Citation Analysis]
267 Goutayer M, Dufort S, Josserand V, Royère A, Heinrich E, Vinet F, Bibette J, Coll JL, Texier I. Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 2010;75:137-47. [PMID: 20149869 DOI: 10.1016/j.ejpb.2010.02.007] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 8.5] [Reference Citation Analysis]
268 Mura S, Buchy E, Askin G, Cayre F, Mougin J, Gouazou S, Sobot D, Valetti S, Stella B, Desmaele D, Couvreur P. In vitro investigation of multidrug nanoparticles for combined therapy with gemcitabine and a tyrosine kinase inhibitor: Together is not better. Biochimie 2016;130:4-13. [DOI: 10.1016/j.biochi.2016.08.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
269 Böttger R, Pauli G, Chao P, Al Fayez N, Hohenwarter L, Li S. Lipid-based nanoparticle technologies for liver targeting. Advanced Drug Delivery Reviews 2020;154-155:79-101. [DOI: 10.1016/j.addr.2020.06.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
270 Langer K, Anhorn M, Steinhauser I, Dreis S, Celebi D, Schrickel N, Faust S, Vogel V. Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics 2008;347:109-17. [DOI: 10.1016/j.ijpharm.2007.06.028] [Cited by in Crossref: 152] [Cited by in F6Publishing: 146] [Article Influence: 11.7] [Reference Citation Analysis]
271 Beck-Broichsitter M, Knuedeler MC, Schmehl T, Seeger W. Following the concentration of polymeric nanoparticles during nebulization. Pharm Res 2013;30:16-24. [PMID: 22806406 DOI: 10.1007/s11095-012-0819-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
272 Kalashnikova I, Ivanova N, Tennikova T. Development of a Strategy of Influenza Virus Separation Based on Pseudoaffinity Chromatography on Short Monolithic Columns. Anal Chem 2008;80:2188-98. [DOI: 10.1021/ac702258t] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 2.8] [Reference Citation Analysis]
273 Reddy LH, Couvreur P. Squalene: A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 2009;61:1412-26. [PMID: 19804806 DOI: 10.1016/j.addr.2009.09.005] [Cited by in Crossref: 189] [Cited by in F6Publishing: 158] [Article Influence: 15.8] [Reference Citation Analysis]
274 Saha RN, Vasanthakumar S, Bende G, Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Molecular Membrane Biology 2010;27:215-31. [DOI: 10.3109/09687688.2010.510804] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 7.9] [Reference Citation Analysis]
275 Al-ghafli H, Al-hajoj S. Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches. CPB 2019;20:272-84. [DOI: 10.2174/1389201019666180731120544] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
276 Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 2007;66:303-17. [PMID: 17481869 DOI: 10.1016/j.ejpb.2007.03.022] [Cited by in Crossref: 394] [Cited by in F6Publishing: 340] [Article Influence: 28.1] [Reference Citation Analysis]
277 Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF. Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci: Nanosci Nanotechnol 2014;5:043001. [DOI: 10.1088/2043-6262/5/4/043001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 15] [Article Influence: 5.6] [Reference Citation Analysis]
278 Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V, Neumann E, Bibette J, Vinet F. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. J Biomed Opt 2009;14:054005. [DOI: 10.1117/1.3213606] [Cited by in Crossref: 96] [Cited by in F6Publishing: 89] [Article Influence: 8.0] [Reference Citation Analysis]
279 Hilder TA, Hill JM. Modeling the loading and unloading of drugs into nanotubes. Small 2009;5:300-8. [PMID: 19058282 DOI: 10.1002/smll.200800321] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 8.4] [Reference Citation Analysis]
280 Yaméogo JB, Gèze A, Choisnard L, Putaux J, Mazet R, Passirani C, Keramidas M, Coll J, Lautram N, Bejaud J, Semdé R, Wouessidjewe D. Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2014;88:683-94. [DOI: 10.1016/j.ejpb.2014.08.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
281 Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol 2010;8:827-34. [DOI: 10.1038/nrmicro2437] [Cited by in Crossref: 99] [Cited by in F6Publishing: 88] [Article Influence: 9.0] [Reference Citation Analysis]
282 Boissière M, Allouche J, Chanéac C, Brayner R, Devoisselle J, Livage J, Coradin T. Potentialities of silica/alginate nanoparticles as Hybrid Magnetic Carriers. International Journal of Pharmaceutics 2007;344:128-34. [DOI: 10.1016/j.ijpharm.2007.05.055] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
283 Steinhauser IM, Langer K, Strebhardt KM, Spänkuch B. Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials 2008;29:4022-8. [PMID: 18653231 DOI: 10.1016/j.biomaterials.2008.07.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 3.6] [Reference Citation Analysis]
284 Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Advances in Colloid and Interface Science 2009;147-148:333-42. [DOI: 10.1016/j.cis.2008.07.007] [Cited by in Crossref: 280] [Cited by in F6Publishing: 250] [Article Influence: 23.3] [Reference Citation Analysis]
285 Helvig S, D. M. Azmi I, M. Moghimi S, Yaghmur A; 1 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2,2100 Copenhagen Ø, Denmark;. . AIMS Biophysics 2015;2:116-30. [DOI: 10.3934/biophy.2015.2.116] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
286 Naczynski DJ, Tan MC, Riman RE, Moghe PV. Rare Earth Nanoprobes for Functional Biomolecular Imaging and Theranostics. J Mater Chem B 2014;2:2958-73. [PMID: 24921049 DOI: 10.1039/C4TB00094C] [Cited by in Crossref: 57] [Cited by in F6Publishing: 22] [Article Influence: 8.1] [Reference Citation Analysis]
287 Mananghaya M, Rodulfo E, Santos GN, Villagracia AR. Theoretical Investigation on the Solubilization in Water of Functionalized Single-Wall Carbon Nanotubes. Journal of Nanotechnology 2012;2012:1-6. [DOI: 10.1155/2012/780815] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
288 Svenskaya Y, Parakhonskiy B, Haase A, Atkin V, Lukyanets E, Gorin D, Antolini R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical Chemistry 2013;182:11-5. [DOI: 10.1016/j.bpc.2013.07.006] [Cited by in Crossref: 108] [Cited by in F6Publishing: 85] [Article Influence: 13.5] [Reference Citation Analysis]
289 Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012;112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Cited by in Crossref: 1330] [Cited by in F6Publishing: 1006] [Article Influence: 147.8] [Reference Citation Analysis]
290 Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horiz 2021;6:676-95. [PMID: 34264247 DOI: 10.1039/d1nh00260k] [Reference Citation Analysis]
291 Shevchenko KG, Cherkasov VR, Tregubov AA, Nikitin PI, Nikitin MP. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems. Biosensors and Bioelectronics 2017;88:3-8. [DOI: 10.1016/j.bios.2016.09.042] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
292 Ariotti N, Rae J, Leneva N, Ferguson C, Loo D, Okano S, Hill MM, Walser P, Collins BM, Parton RG. Molecular Characterization of Caveolin-induced Membrane Curvature. J Biol Chem 2015;290:24875-90. [PMID: 26304117 DOI: 10.1074/jbc.M115.644336] [Cited by in Crossref: 56] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
293 Cao W, Liu B, Xia F, Duan M, Hong Y, Niu J, Wang L, Liu Y, Li C, Cui D. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale 2020;12:3090-102. [PMID: 31965129 DOI: 10.1039/c9nr07947e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 21.0] [Reference Citation Analysis]
294 Mishra B, Chaurasia S. Design of novel chemotherapeutic delivery systems for colon cancer therapy based on oral polymeric nanoparticles. Therapeutic Delivery 2017;8:29-47. [DOI: 10.4155/tde-2016-0058] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
295 Tiwari R, Takhistov P. Nanotechnology-Enabled Delivery Systems for Food Functionalization and Fortification. In: Padua GW, Wang Q, editors. Nanotechnology Research Methods for Foods and Bioproducts. Oxford: Wiley-Blackwell; 2012. pp. 55-101. [DOI: 10.1002/9781118229347.ch5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
296 Goyal AK, Rath G, Faujdar C, Malik B. Application and Perspective of pH-Responsive Nano Drug Delivery Systems. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019. pp. 15-33. [DOI: 10.1016/b978-0-12-814029-1.00002-8] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
297 Barbosa MV, Monteiro LO, Carneiro G, Malagutti AR, Vilela JM, Andrade MS, Oliveira MC, Carvalho-Junior AD, Leite EA. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf B Biointerfaces 2015;136:553-61. [PMID: 26454545 DOI: 10.1016/j.colsurfb.2015.09.055] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
298 Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019;27:502-24. [PMID: 30889991 DOI: 10.1080/1061186X.2019.1588280] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
299 Lince F, Bolognesi S, Stella B, Marchisio DL, Dosio F. Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery. Chemical Engineering Research and Design 2011;89:2410-9. [DOI: 10.1016/j.cherd.2011.03.010] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
300 Najer A, Wu D, Bieri A, Brand F, Palivan CG, Beck HP, Meier W. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites. ACS Nano 2014;8:12560-71. [PMID: 25435059 DOI: 10.1021/nn5054206] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
301 Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi H, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2018;41:111-29. [DOI: 10.1007/s12272-017-0995-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
302 Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009;26:1025-58. [PMID: 19107579 DOI: 10.1007/s11095-008-9800-3] [Cited by in Crossref: 515] [Cited by in F6Publishing: 418] [Article Influence: 39.6] [Reference Citation Analysis]
303 Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. Journal of Pharmacy and Pharmacology 2011;63:141-63. [DOI: 10.1111/j.2042-7158.2010.01167.x] [Cited by in Crossref: 170] [Cited by in F6Publishing: 123] [Article Influence: 15.5] [Reference Citation Analysis]
304 Nguyen HN, Romero Jovel S, Nguyen THK. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery. Journal of Nanomaterials 2017;2017:1-10. [DOI: 10.1155/2017/6847297] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
305 Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020;12:E1397. [PMID: 32580366 DOI: 10.3390/polym12061397] [Cited by in Crossref: 67] [Cited by in F6Publishing: 47] [Article Influence: 67.0] [Reference Citation Analysis]
306 Gervaise C, Bonnet V, Sarazin C, Djedaïni-pilard F. Synthesis of glycerolipidyl derivatives of permethylated β-cyclodextrin as potential nanovectors. New J Chem 2012;36:2417. [DOI: 10.1039/c2nj40689f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
307 Zubair S, Azhar A, Khan N, Ahmad E, Ajmal M, Owais M. Nanoparticle-Based Mycosis Vaccine. Methods Mol Biol 2017;1625:169-211. [PMID: 28584991 DOI: 10.1007/978-1-4939-7104-6_13] [Reference Citation Analysis]
308 Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2019;107:251-85. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
309 Dombu CY, Kroubi M, Zibouche R, Matran R, Betbeder D. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nanotechnology 2010;21:355102. [PMID: 20689164 DOI: 10.1088/0957-4484/21/35/355102] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 6.9] [Reference Citation Analysis]
310 Ferreira-Silva M, Faria-Silva C, Baptista PV, Fernandes E, Fernandes AR, Corvo ML. Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury. Drug Deliv Transl Res 2021;11:397-410. [PMID: 33660214 DOI: 10.1007/s13346-021-00915-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
311 Liechty WB, Peppas NA. Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm 2012;80:241-6. [PMID: 21888972 DOI: 10.1016/j.ejpb.2011.08.004] [Cited by in Crossref: 130] [Cited by in F6Publishing: 120] [Article Influence: 13.0] [Reference Citation Analysis]
312 Valetti S, Mura S, Stella B, Couvreur P. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. J Nanobiotechnology 2013;11 Suppl 1:S6. [PMID: 24564841 DOI: 10.1186/1477-3155-11-S1-S6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
313 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751-760. [PMID: 18654426 DOI: 10.1038/nnano.2007.387] [Cited by in Crossref: 5806] [Cited by in F6Publishing: 5290] [Article Influence: 446.6] [Reference Citation Analysis]
314 Mansur HS. Quantum dots and nanocomposites: Quantum dots and nanocomposites. WIREs Nanomed Nanobiotechnol 2010;2:113-29. [DOI: 10.1002/wnan.78] [Cited by in Crossref: 96] [Cited by in F6Publishing: 65] [Article Influence: 8.7] [Reference Citation Analysis]
315 Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017;8:4947-69. [DOI: 10.1039/c7py00559h] [Cited by in Crossref: 77] [Cited by in F6Publishing: 3] [Article Influence: 19.3] [Reference Citation Analysis]
316 Ivanova MV, Lamprecht C, Loureiro MJ, Huzil JT, Foldvari M. Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients. Int J Nanomedicine 2012;7:403-15. [PMID: 22334774 DOI: 10.2147/IJN.S27442] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
317 Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG — A versatile conjugating ligand for drugs and drug delivery systems. Journal of Controlled Release 2014;192:67-81. [DOI: 10.1016/j.jconrel.2014.06.046] [Cited by in Crossref: 349] [Cited by in F6Publishing: 313] [Article Influence: 49.9] [Reference Citation Analysis]
318 Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F, Halas N, Surrey S, Waldman SA. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends in Biotechnology 2007;25:145-52. [DOI: 10.1016/j.tibtech.2007.02.005] [Cited by in Crossref: 102] [Cited by in F6Publishing: 72] [Article Influence: 7.3] [Reference Citation Analysis]
319 Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Advanced Drug Delivery Reviews 2019;151-152:169-90. [DOI: 10.1016/j.addr.2019.05.001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 20.0] [Reference Citation Analysis]
320 Campbell R, Shim H, Choi J, Park M, Byun E, Islam S, Song SH, Kim A. Implantable Cisplatin Synthesis Microdevice for Regional Chemotherapy. Adv Healthc Mater 2021;10:e2001582. [PMID: 33326178 DOI: 10.1002/adhm.202001582] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
321 Gaspar MM, Cruz A, Penha AF, Reymão J, Sousa AC, Eleutério CV, Domingues SA, Fraga AG, Filho AL, Cruz ME, Pedrosa J. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int J Antimicrob Agents 2008;31:37-45. [PMID: 18006283 DOI: 10.1016/j.ijantimicag.2007.08.008] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
322 Pierron-bohnes V, Tamion A, Tournus F, Dupuis V. Magnetism of Low-Dimension Alloys. In: Alloyeau D, Mottet C, Ricolleau C, editors. Nanoalloys. London: Springer; 2012. pp. 287-330. [DOI: 10.1007/978-1-4471-4014-6_9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
323 Kunda NK, Alfagih IM, Miyaji EN, Figueiredo DB, Gonçalves VM, Ferreira DM, Dennison SR, Somavarapu S, Hutcheon GA, Saleem IY. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. International Journal of Pharmaceutics 2015;495:903-12. [DOI: 10.1016/j.ijpharm.2015.09.034] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
324 Bardhan R, Chen W, Bartels M, Perez-Torres C, Botero MF, McAninch RW, Contreras A, Schiff R, Pautler RG, Halas NJ, Joshi A. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 2010;10:4920-8. [PMID: 21090693 DOI: 10.1021/nl102889y] [Cited by in Crossref: 125] [Cited by in F6Publishing: 103] [Article Influence: 11.4] [Reference Citation Analysis]
325 Maksimenko A, Mougin J, Mura S, Sliwinski E, Lepeltier E, Bourgaux C, Lepêtre S, Zouhiri F, Desmaële D, Couvreur P. Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer Lett 2013;334:346-53. [PMID: 22935679 DOI: 10.1016/j.canlet.2012.08.023] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 5.3] [Reference Citation Analysis]
326 Gaikwad PS, Banerjee R. Nanotechnology-based strategies as novel therapies in gliomas. Ther Deliv 2018;9:571-92. [PMID: 30071804 DOI: 10.4155/tde-2018-0022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
327 Arias JL, López-viota M, Sáez-fernández E, Ruiz MA. Formulation and physicochemical characterization of poly(ɛ-caprolactone) nanoparticles loaded with ftorafur and diclofenac sodium. Colloids and Surfaces B: Biointerfaces 2010;75:204-8. [DOI: 10.1016/j.colsurfb.2009.08.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
328 Chernenko T, Sawant RR, Miljkovic M, Quintero L, Diem M, Torchilin V. Raman microscopy for noninvasive imaging of pharmaceutical nanocarriers: intracellular distribution of cationic liposomes of different composition. Mol Pharm 2012;9:930-6. [PMID: 22376068 DOI: 10.1021/mp200519y] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 4.2] [Reference Citation Analysis]
329 Bazile D. Nanotechnologies in Drug Delivery - An Industrial Perspective. Journal of Drug Delivery Science and Technology 2014;24:12-21. [DOI: 10.1016/s1773-2247(14)50002-0] [Cited by in Crossref: 26] [Article Influence: 3.7] [Reference Citation Analysis]
330 Oliveira MB, Villa Nova M, Bruschi ML. A review of recent developments on micro/nanostructured pharmaceutical systems for intravesical therapy of the bladder cancer. Pharmaceutical Development and Technology 2018;23:1-12. [DOI: 10.1080/10837450.2017.1312441] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
331 Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res 2009;26:746-69. [PMID: 19142717 DOI: 10.1007/s11095-008-9811-0] [Cited by in Crossref: 124] [Cited by in F6Publishing: 94] [Article Influence: 10.3] [Reference Citation Analysis]
332 Oliveira MF, Guimarães PP, Gomes AD, Suárez D, Sinisterra RD. Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. J Chem Biol 2012;6:7-23. [PMID: 24294318 DOI: 10.1007/s12154-012-0086-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
333 Ekinci M, Ilem-ozdemir D, Gundogdu E, Asikoglu M. Methotrexate loaded chitosan nanoparticles: Preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis. Journal of Drug Delivery Science and Technology 2015;30:107-13. [DOI: 10.1016/j.jddst.2015.10.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
334 Dutta RK, Sharma PK, Kobayashi H, Pandey AC. Functionalized Biocompatible Nanoparticles for Site-Specific Imaging and Therapeutics. In: Kunugi S, Yamaoka T, editors. Polymers in Nanomedicine. Berlin: Springer Berlin Heidelberg; 2012. pp. 233-75. [DOI: 10.1007/12_2011_155] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
335 Wu M, Frochot C, Dellacherie E, Marie E. Well-Defined Poly(butyl cyanoacrylate) Nanoparticles via Miniemulsion Polymerization. Macromol Symp 2009;281:39-46. [DOI: 10.1002/masy.200950705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
336 Hosseini M, Haji-fatahaliha M, Jadidi-niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artificial Cells, Nanomedicine, and Biotechnology 2016. [DOI: 10.3109/21691401.2014.998830] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
337 Marianecci C, Rinaldi F, Di Marzio L, Pozzi D, Caracciolo G, Manno D, Dini L, Paolino D, Celia C, Carafa M. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomed Microdevices 2013;15:299-309. [PMID: 23239124 DOI: 10.1007/s10544-012-9731-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
338 Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M. Effect of Tumor Suppressor MiR-34a Loaded on ZSM-5 Nanozeolite in Hepatocellular Carcinoma: In Vitro and In Vivo Approach. Curr Gene Ther 2019;19:342-54. [PMID: 31701846 DOI: 10.2174/1566523219666191108103739] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
339 Filippousi M, Papadimitriou SA, Bikiaris DN, Pavlidou E, Angelakeris M, Zamboulis D, Tian H, Van Tendeloo G. Novel core–shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. International Journal of Pharmaceutics 2013;448:221-30. [DOI: 10.1016/j.ijpharm.2013.03.025] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
340 Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016;107:163-75. [PMID: 27426411 DOI: 10.1016/j.addr.2016.06.018] [Cited by in Crossref: 369] [Cited by in F6Publishing: 245] [Article Influence: 73.8] [Reference Citation Analysis]
341 Gaudin A, Andrieux K, Couvreur P. Nanomedicines and stroke: Toward translational research. Journal of Drug Delivery Science and Technology 2015;30:278-99. [DOI: 10.1016/j.jddst.2015.07.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
342 Zheng C, Zhao Y, Liu Y. Recent Advances in Self-assembled Nano-therapeutics. Chin J Polym Sci 2018;36:322-46. [DOI: 10.1007/s10118-018-2078-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
343 Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, Jiang S. Functionalizable and ultrastable zwitterionic nanogels. Langmuir 2010;26:6883-6. [PMID: 20405859 DOI: 10.1021/la100664g] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 5.5] [Reference Citation Analysis]
344 He Z, Xu Q, Newland B, Foley R, Lara-Sáez I, Curtin JF, Wang W. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. J Mater Chem B 2021;9:6326-46. [PMID: 34304256 DOI: 10.1039/d1tb00728a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
345 Arias JL, Reddy LH, Couvreur P. Superior Preclinical Efficacy of Gemcitabine Developed As Chitosan Nanoparticulate System. Biomacromolecules 2011;12:97-104. [DOI: 10.1021/bm101044h] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
346 Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, Marzouk A, El Habak K, Mostafa R, Ali MA, Ellithy M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother 2017;95:1209-18. [PMID: 28931213 DOI: 10.1016/j.biopha.2017.09.059] [Cited by in Crossref: 95] [Cited by in F6Publishing: 90] [Article Influence: 23.8] [Reference Citation Analysis]
347 Perry JL, Martin CR, Stewart JD. Drug‐Delivery Strategies by Using Template‐Synthesized Nanotubes. Chem Eur J 2011;17:6296-302. [DOI: 10.1002/chem.201002835] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
348 Li F, Weng Y, Wang L, He H, Yang J, Tang X. The efficacy and safety of bufadienolides-loaded nanostructured lipid carriers. International Journal of Pharmaceutics 2010;393:204-12. [DOI: 10.1016/j.ijpharm.2010.04.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
349 Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J 2013;15:85-94. [PMID: 23054976 DOI: 10.1208/s12248-012-9418-6] [Cited by in Crossref: 137] [Cited by in F6Publishing: 129] [Article Influence: 15.2] [Reference Citation Analysis]
350 Thapa R, Mondal S, Riikonen J, Rantanen J, Näkki S, Nissinen T, Närvänen A, Lehto VP. Biogenic nanoporous silicon carrier improves the efficacy of buparvaquone against resistant visceral leishmaniasis. PLoS Negl Trop Dis 2021;15:e0009533. [PMID: 34185780 DOI: 10.1371/journal.pntd.0009533] [Reference Citation Analysis]
351 te Kulve H, Rip A. Economic and societal dimensions of nanotechnology-enabled drug delivery. Expert Opinion on Drug Delivery 2013;10:611-22. [DOI: 10.1517/17425247.2013.770467] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
352 Nicolas J, Brambilla D, Carion O, Pons T, Maksimovic I, Larquet E, Le Droumaguet B, Andrieux K, Dubertret B, Couvreur P. Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. Soft Matter 2011;7:6187. [DOI: 10.1039/c1sm05529a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
353 He Z, Liu K, Byrne HJ, Cullen PJ, Tian F, Curtin JF. Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019. pp. 191-219. [DOI: 10.1016/b978-0-12-814029-1.00008-9] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
354 Ortiz R, Prados J, Melguizo C, Arias JL, Ruiz MA, Alvarez PJ, Caba O, Luque R, Segura A, Aránega A. 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int J Nanomedicine 2012;7:95-107. [PMID: 22275826 DOI: 10.2147/IJN.S26401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
355 Chu TW, Yang J, Kopeček J. Anti-CD20 multivalent HPMA copolymer-Fab' conjugates for the direct induction of apoptosis. Biomaterials 2012;33:7174-81. [PMID: 22795544 DOI: 10.1016/j.biomaterials.2012.06.024] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
356 Allouche J. Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: A Danger or a Promise?. London: Springer; 2013. pp. 27-74. [DOI: 10.1007/978-1-4471-4213-3_2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
357 Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 2009;6:323-36. [PMID: 19332327 DOI: 10.1016/j.nurt.2009.01.018] [Cited by in Crossref: 71] [Cited by in F6Publishing: 61] [Article Influence: 5.9] [Reference Citation Analysis]
358 Fornaguera C, Calderó G, Solans C. Electrolytes as a tuning parameter to control nano-emulsion and nanoparticle size. RSC Adv 2016;6:58203-11. [DOI: 10.1039/c6ra09123g] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
359 Kong SD, Sartor M, Hu CM, Zhang W, Zhang L, Jin S. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater 2013;9:5447-52. [PMID: 23149252 DOI: 10.1016/j.actbio.2012.11.006] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 8.7] [Reference Citation Analysis]
360 Bajerski L, Michels LR, Colomé LM, Bender EA, Freddo RJ, Bruxel F, Haas SE. The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications. Braz J Pharm Sci 2016;52:347-63. [DOI: 10.1590/s1984-82502016000300001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 5.6] [Reference Citation Analysis]
361 Joseph MM, Aravind SR, George SK, Pillai RK, Mini S, Sreelekha TT. Co-encapsulation of Doxorubicin with galactoxyloglucan nanoparticles for intracellular tumor-targeted delivery in murine ascites and solid tumors. Transl Oncol 2014;7:525-36. [PMID: 25389448 DOI: 10.1016/j.tranon.2014.07.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
362 Bilia AR, Piazzini V, Risaliti L, Vanti G, Casamonti M, Wang M, Bergonzi MC. Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents. Curr Med Chem 2019;26:4631-56. [PMID: 30381065 DOI: 10.2174/0929867325666181101110050] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 12.5] [Reference Citation Analysis]
363 Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012;157:168-82. [PMID: 21839127 DOI: 10.1016/j.jconrel.2011.07.031] [Cited by in Crossref: 791] [Cited by in F6Publishing: 722] [Article Influence: 79.1] [Reference Citation Analysis]
364 Costa Lima SA, Resende M, Silvestre R, Tavares J, Ouaissi A, Lin PK, Cordeiro-da-Silva A. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine (Lond) 2012;7:1839-49. [PMID: 22812711 DOI: 10.2217/nnm.12.74] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
365 Papadimitriou S, Papageorgiou GZ, Kanaze FI, Georgarakis M, Bikiaris DN. Nanoencapsulation of Nimodipine in Novel Biocompatible Poly(propylene-co-butylene succinate) Aliphatic Copolyesters for Sustained Release. Journal of Nanomaterials 2009;2009:1-11. [DOI: 10.1155/2009/716242] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
366 Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. Int Rev Neurobiol 2016;130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
367 Maan GK, Bajpai J, Bajpai AK. Investigation of In Vitro Release of Cisplatin from Electrostatically Crosslinked Chitosan-Alginate Nanoparticles. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2016;46:1532-40. [DOI: 10.1080/15533174.2015.1137012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
368 Arias JL, López-viota M, Sáez-fernández E, Ruiz MA, Delgado ÁV. Engineering of an antitumor (core/shell) magnetic nanoformulation based on the chemotherapy agent ftorafur. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011;384:157-63. [DOI: 10.1016/j.colsurfa.2011.03.051] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
369 Elder JB, Hoh DJ, Oh BC, Heller AC, Liu CY, Apuzzo ML. THE FUTURE OF CEREBRAL SURGERY: A KALEIDOSCOPE OF OPPORTUNITIES. Neurosurgery 2008;62:SHC1555-82. [DOI: 10.1227/01.neu.0000333820.33143.0d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
370 Aditya NP, Vathsala PG, Vieira V, Murthy RS, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci 2013;201-202:1-17. [PMID: 24192063 DOI: 10.1016/j.cis.2013.10.014] [Cited by in Crossref: 62] [Cited by in F6Publishing: 48] [Article Influence: 7.8] [Reference Citation Analysis]
371 Karavelidis V, Karavas E, Giliopoulos D, Papadimitriou S, Bikiaris D. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int J Nanomedicine 2011;6:3021-32. [PMID: 22162659 DOI: 10.2147/IJN.S26016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
372 Yaghmur A, Laggner P, Sartori B, Rappolt M. Calcium triggered L alpha-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS. PLoS One 2008;3:e2072. [PMID: 18446202 DOI: 10.1371/journal.pone.0002072] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 4.2] [Reference Citation Analysis]
373 Abbaspour M, Namayandeh Jorabchi M, Akbarzadeh H, Salemi S, Ebrahimi R. Molecular dynamics simulation of anticancer drug delivery from carbon nanotube using metal nanowires. J Comput Chem 2019;40:2179-90. [PMID: 31125147 DOI: 10.1002/jcc.25867] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
374 Allard-vannier E, Cohen-jonathan S, Gautier J, Hervé-aubert K, Munnier E, Soucé M, Legras P, Passirani C, Chourpa I. Pegylated magnetic nanocarriers for doxorubicin delivery: A quantitative determination of stealthiness in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics 2012;81:498-505. [DOI: 10.1016/j.ejpb.2012.04.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
375 Yuan F, Thiele GM, Wang D. Nanomedicine development for autoimmune diseases. Drug Dev Res 2011;72:703-16. [DOI: 10.1002/ddr.20479] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
376 Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Advanced Drug Delivery Reviews 2010;62:478-90. [DOI: 10.1016/j.addr.2009.11.018] [Cited by in Crossref: 94] [Cited by in F6Publishing: 81] [Article Influence: 8.5] [Reference Citation Analysis]
377 Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A. PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release. Journal of Controlled Release 2013;172:292-304. [DOI: 10.1016/j.jconrel.2013.08.024] [Cited by in Crossref: 118] [Cited by in F6Publishing: 100] [Article Influence: 14.8] [Reference Citation Analysis]
378 Lira M, Santos-magalhães N, Nicolas V, Marsaud V, Silva M, Ponchel G, Vauthier C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2011;79:162-70. [DOI: 10.1016/j.ejpb.2011.02.013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
379 Liu P, Situ J, Li W, Shan C, You J, Yuan H, Hu F, Du Y. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:855-66. [DOI: 10.1016/j.nano.2015.02.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
380 Youan BC. Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine 2008;3:401-6. [DOI: 10.2217/17435889.3.4.401] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.8] [Reference Citation Analysis]
381 Liu CW, Lin WJ. Systemic co-delivery of doxorubicin and siRNA using nanoparticles conjugated with EGFR-specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1956-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
382 Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 2011;15:31-51. [PMID: 21142802 DOI: 10.1517/14728222.2011.538682] [Cited by in Crossref: 157] [Cited by in F6Publishing: 150] [Article Influence: 15.7] [Reference Citation Analysis]
383 Wen M, Li B, Ouyang Y, Luo Y, Li S. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study. Ann Biomed Eng 2009;37:1240-50. [PMID: 19337837 DOI: 10.1007/s10439-009-9683-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
384 Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ, Fréchet JM. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A 2009;106:685-90. [PMID: 19129498 DOI: 10.1073/pnas.0811757106] [Cited by in Crossref: 189] [Cited by in F6Publishing: 152] [Article Influence: 15.8] [Reference Citation Analysis]
385 Adesina SK, Holly A, Kramer-Marek G, Capala J, Akala EO. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J Pharm Sci 2014;103:2546-55. [PMID: 24961596 DOI: 10.1002/jps.24061] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
386 Gaulding JC, South AB, Lyon LA. Hydrolytically degradable shells on thermoresponsive microgels. Colloid Polym Sci 2013;291:99-107. [DOI: 10.1007/s00396-012-2692-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
387 Narducci D. An introduction to nanotechnologies: what's in it for us? Vet Res Commun 2007;31 Suppl 1:131-7. [PMID: 17682860 DOI: 10.1007/s11259-007-0082-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
388 Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P. Highly Luminescent CuInS 2 /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging. Chem Mater 2009;21:2422-9. [DOI: 10.1021/cm900103b] [Cited by in Crossref: 569] [Cited by in F6Publishing: 402] [Article Influence: 47.4] [Reference Citation Analysis]
389 Varan G, Benito JM, Mellet CO, Bilensoy E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein J Nanotechnol 2017;8:1457-68. [PMID: 28900599 DOI: 10.3762/bjnano.8.145] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
390 Ratzinger G, Länger U, Neutsch L, Pittner F, Wirth M, Gabor F. Surface Modification of PLGA Particles: The Interplay between Stabilizer, Ligand Size, and Hydrophobic Interactions. Langmuir 2010;26:1855-9. [DOI: 10.1021/la902602z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
391 Witzigmann D, Camblin M, Huwyler J, Balasubramanian V. Nanomaterials: Therapeutic Applications. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis; 2015. pp. 5364-78. [DOI: 10.1081/e-ebpp-120050055] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
392 Ulanova LS, Isapour G, Maleki A, Fanaian S, Zhu K, Hoenen A, Xu C, Evensen Ø, Griffiths G, Nyström B. Development of methods for encapsulation of viruses into polymeric nano- and microparticles for aquaculture vaccines. J Appl Polym Sci 2014;131:n/a-n/a. [DOI: 10.1002/app.40714] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
393 Omokawa Y, Miyazaki T, Walde P, Akiyama K, Sugahara T, Masuda S, Inada A, Ohnishi Y, Saeki T, Kato K. In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. Int J Pharm 2010;389:157-67. [PMID: 20100554 DOI: 10.1016/j.ijpharm.2010.01.033] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
394 Arias JL, López-Viota M, Gallardo V, Adolfina Ruiz M. Chitosan nanoparticles as a new delivery system for the chemotherapy agent tegafur. Drug Dev Ind Pharm 2010;36:744-50. [PMID: 20345283 DOI: 10.3109/03639040903517914] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
395 Ribeiro J, Ribeiro W, Camurça-vasconcelos A, Macedo I, Santos J, Paula H, Araújo Filho J, Magalhães R, Bevilaqua C. Efficacy of free and nanoencapsulated Eucalyptus citriodora essential oils on sheep gastrointestinal nematodes and toxicity for mice. Veterinary Parasitology 2014;204:243-8. [DOI: 10.1016/j.vetpar.2014.05.026] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
396 Guhagarkar SA, Malshe VC, Devarajan PV. Nanoparticles of polyethylene sebacate: a new biodegradable polymer. AAPS PharmSciTech 2009;10:935-42. [PMID: 19629708 DOI: 10.1208/s12249-009-9284-4] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
397 Turov VV, Chehun VF, Barvinchenko VN, Krupskaya TV, Prylutskyy YI, Scharff P, Ritter U. Low-temperature 1H-NMR spectroscopic study of doxorubicin influence on the hydrated properties of nanosilica modified by DNA. J Mater Sci Mater Med 2011;22:525-32. [PMID: 21287246 DOI: 10.1007/s10856-011-4237-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
398 Wacker M. Nanocarriers for intravenous injection--the long hard road to the market. Int J Pharm 2013;457:50-62. [PMID: 24036012 DOI: 10.1016/j.ijpharm.2013.08.079] [Cited by in Crossref: 100] [Cited by in F6Publishing: 84] [Article Influence: 12.5] [Reference Citation Analysis]
399 Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology 2010;21:232001. [PMID: 20463388 DOI: 10.1088/0957-4484/21/23/232001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.5] [Reference Citation Analysis]
400 Yun JM, Park S, Lee ES, Youn YS, Park GY, Lim C, Lee B, Song H, Oh YT, Oh KT. Physicochemical characterizations of amphiphilic block copolymers with different MWs and micelles for development of anticancer drug nanocarriers. Macromol Res 2012;20:944-53. [DOI: 10.1007/s13233-012-0133-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
401 Patil S, Patil S, Gawali S, Shende S, Jadhav S, Basu S. Novel self-assembled lithocholic acid nanoparticles for drug delivery in cancer. RSC Adv 2013;3:19760. [DOI: 10.1039/c3ra42994f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
402 Chassot JM, Ferreira LM, Gomes FP, Cruz L, Tasso L. Stability-indicating RP-HPLC method for determination of beclomethasone dipropionate in nanocapsule suspensions. Braz J Pharm Sci 2015;51:803-10. [DOI: 10.1590/s1984-82502015000400006] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
403 Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–Organic Frameworks in Biomedicine. Chem Rev 2012;112:1232-68. [DOI: 10.1021/cr200256v] [Cited by in Crossref: 2885] [Cited by in F6Publishing: 2347] [Article Influence: 288.5] [Reference Citation Analysis]
404 Tagalakis AD, Castellaro S, Zhou H, Bienemann A, Munye MM, McCarthy D, White EA, Hart SL. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency. Int J Nanomedicine 2015;10:2673-83. [PMID: 25878500 DOI: 10.2147/IJN.S78935] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
405 Tohumeken S, Gunduz N, Demircan MB, Gunay G, Topal AE, Khalily MA, Tekinay T, Dana A, Guler MO, Tekinay AB. A Modular Antigen Presenting Peptide/Oligonucleotide Nanostructure Platform for Inducing Potent Immune Response. Adv Biosys 2017;1:1700015. [DOI: 10.1002/adbi.201700015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
406 Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine 2008;3:367-93. [DOI: 10.2217/17435889.3.3.367] [Cited by in Crossref: 76] [Cited by in F6Publishing: 64] [Article Influence: 5.8] [Reference Citation Analysis]
407 Avendaño C, Menéndez JC. Introduction. Medicinal Chemistry of Anticancer Drugs. Elsevier; 2008. pp. 1-8. [DOI: 10.1016/b978-0-444-52824-7.00001-9] [Cited by in Crossref: 12] [Article Influence: 0.9] [Reference Citation Analysis]
408 Mérian J, Gravier J, Navarro F, Texier I. Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 2012;17:5564-91. [PMID: 22576228 DOI: 10.3390/molecules17055564] [Cited by in Crossref: 113] [Cited by in F6Publishing: 101] [Article Influence: 12.6] [Reference Citation Analysis]
409 Liu X, Zhang Y, Ma D, Tang H, Tan L, Xie Q, Yao S. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces 2013;111:224-31. [PMID: 23831590 DOI: 10.1016/j.colsurfb.2013.06.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
410 Balducci AG, Magosso E, Colombo G, Sonvico F. From tablets to pharmaceutical nanotechnologies: Innovation in drug delivery strategies for the administration of antimalarial drugs. Journal of Drug Delivery Science and Technology 2016;32:167-73. [DOI: 10.1016/j.jddst.2015.06.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
411 Styliari ID, Conte C, Pearce AK, Hüsler A, Cavanagh RJ, Limo MJ, Gordhan D, Nieto-orellana A, Suksiriworapong J, Couturaud B, Williams P, Hook AL, Alexander MR, Garnett MC, Alexander C, Burley JC, Taresco V. High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing. Macromol Mater Eng 2018;303:1800146. [DOI: 10.1002/mame.201800146] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
412 Milcovich G, Lettieri S, Antunes FE, Medronho B, Fonseca AC, Coelho JF, Marizza P, Perrone F, Farra R, Dapas B, Grassi G, Grassi M, Giordani S. Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Advances in Colloid and Interface Science 2017;249:163-80. [DOI: 10.1016/j.cis.2017.05.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
413 Banerjee SS, Chen D. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. Nanotechnology 2008;19:265602. [DOI: 10.1088/0957-4484/19/26/265602] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 3.3] [Reference Citation Analysis]
414 Patel BK, Parikh RH, Aboti PS. Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. J Drug Deliv 2013;2013:370938. [PMID: 24024034 DOI: 10.1155/2013/370938] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 4.9] [Reference Citation Analysis]
415 Palvai S, More P, Mapara N, Basu S. Chimeric Nanoparticle: A Platform for Simultaneous Targeting of Phosphatidylinositol-3-Kinase Signaling and Damaging DNA in Cancer Cells. ACS Appl Mater Interfaces 2015;7:18327-35. [PMID: 26258746 DOI: 10.1021/acsami.5b04015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
416 Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021;11:871-85. [PMID: 33996404 DOI: 10.1016/j.apsb.2021.02.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
417 Vauthier C, Labarre D. Modular biomimetic drug delivery systems. Journal of Drug Delivery Science and Technology 2008;18:59-68. [DOI: 10.1016/s1773-2247(08)50008-6] [Cited by in Crossref: 23] [Article Influence: 1.8] [Reference Citation Analysis]
418 Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021;18:715-36. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
419 Arias JL. Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opinion on Drug Delivery 2011;8:1589-608. [DOI: 10.1517/17425247.2012.634794] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
420 Marze S. Bioaccessibility of Nutrients and Micronutrients from Dispersed Food Systems: Impact of the Multiscale Bulk and Interfacial Structures. Critical Reviews in Food Science and Nutrition 2013;53:76-108. [DOI: 10.1080/10408398.2010.525331] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
421 Kumar R. Lipid-Based Nanoparticles for Drug-Delivery Systems. Nanocarriers for Drug Delivery. Elsevier; 2019. pp. 249-84. [DOI: 10.1016/b978-0-12-814033-8.00008-4] [Cited by in Crossref: 22] [Article Influence: 11.0] [Reference Citation Analysis]
422 Sizochenko N, Mikolajczyk A, Jagiello K, Puzyn T, Leszczynski J, Rasulev B. How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. Nanoscale 2018;10:582-91. [DOI: 10.1039/c7nr05618d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 8.7] [Reference Citation Analysis]
423 Munjal S, Deka SR, Yadav S, Goyal P, Sharma AK, Kumar P. Core/shell nanoassembly of amphiphilic naproxen-polyethylene glycol: synthesis, characterisation and evaluation as drug delivery system. IET Nanobiotechnol 2018;12:814-21. [PMID: 30104456 DOI: 10.1049/iet-nbt.2017.0219] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
424 Guimarães PP, Oliveira SR, de Castro Rodrigues G, Gontijo SM, Lula IS, Cortés ME, Denadai ÂM, Sinisterra RD. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability. Molecules 2015;20:879-99. [PMID: 25580685 DOI: 10.3390/molecules20010879] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
425 Kang HJ, Kang YJ, Lee Y, Shin H, Chung SJ, Kang S. Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform. Biomaterials 2012;33:5423-30. [DOI: 10.1016/j.biomaterials.2012.03.055] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.7] [Reference Citation Analysis]
426 Zhu GY, Lin CT, Chen JM, Lei DM, Zhu GX. The study of size and stability of n-butylcyanoacrylate nanocapsule suspensions encapsulating green grass fragrance. IOP Conf Ser : Mater Sci Eng 2018;292:012094. [DOI: 10.1088/1757-899x/292/1/012094] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
427 Tavassolian F, Kamalinia G, Rouhani H, Amini M, Ostad SN, Khoshayand MR, Atyabi F, Tehrani MR, Dinarvand R. Targeted poly (L-γ-glutamyl glutamine) nanoparticles of docetaxel against folate over-expressed breast cancer cells. Int J Pharm 2014;467:123-38. [PMID: 24680951 DOI: 10.1016/j.ijpharm.2014.03.033] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
428 Abeylath SC, Ganta S, Iyer AK, Amiji M. Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res 2011;44:1009-17. [PMID: 21761902 DOI: 10.1021/ar2000106] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 8.3] [Reference Citation Analysis]
429 Dubernet C. Vectorisation à visée thérapeutique ou diagnostique : une synthèse de l’état de l’art dans le domaine du cancer. Bulletin du Cancer 2011;98:1363-71. [DOI: 10.1684/bdc.2011.1468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
430 Suresh A, Narayan R, Nayak UY. Recent advances in the development of asenapine formulations. Expert Opin Drug Deliv 2020;17:1377-93. [PMID: 32633149 DOI: 10.1080/17425247.2020.1792439] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
431 Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020;8:3747-71. [DOI: 10.1039/c9tb02871d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
432 Papa AL, Basu S, Sengupta P, Banerjee D, Sengupta S, Harfouche R. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer 2012;12:419. [PMID: 22998550 DOI: 10.1186/1471-2407-12-419] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
433 Gavini E, Spada G, Rassu G, Cerri G, Brundu A, Cossu M, Sorrenti M, Giunchedi P. Development of solid nanoparticles based on hydroxypropyl- β -cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. Journal of Pharmacy and Pharmacology 2011;63:472-82. [DOI: 10.1111/j.2042-7158.2010.01220.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
434 Chouhan R, Bajpai AK. Release dynamics of ciprofloxacin from swellable nanocarriers of poly(2-hydroxyethyl methacrylate): an in vitro study. Nanomedicine: Nanotechnology, Biology and Medicine 2010;6:453-62. [DOI: 10.1016/j.nano.2009.11.006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
435 Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013;42:1147-235. [DOI: 10.1039/c2cs35265f] [Cited by in Crossref: 871] [Cited by in F6Publishing: 154] [Article Influence: 108.9] [Reference Citation Analysis]
436 Arias J. Nanotheragnostic Colloids in Disease. In: Preedy V, editor. Nanomedicine in Health and Disease. Science Publishers; 2011. [DOI: 10.1201/b11076-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
437 Vauthier C, Cabane B, Labarre D. How to concentrate nanoparticles and avoid aggregation? European Journal of Pharmaceutics and Biopharmaceutics 2008;69:466-75. [DOI: 10.1016/j.ejpb.2008.01.025] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 4.0] [Reference Citation Analysis]
438 Bhardwaj A, Kumar L, Mehta S, Mehta A. Stimuli-sensitive Systems-an emerging delivery system for drugs. Artificial Cells, Nanomedicine, and Biotechnology 2013;43:299-310. [DOI: 10.3109/21691401.2013.856016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
439 Jones SJ, Taylor AF, Beales PA. Towards feedback-controlled nanomedicines for smart, adaptive delivery. Exp Biol Med (Maywood) 2019;244:283-93. [PMID: 30205721 DOI: 10.1177/1535370218800456] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
440 Kou J, Mei M, Lu H, Wu F, Fan J. Unidirectional motion of a water nanodroplet subjected to a surface energy gradient. Phys Rev E 2012;85. [DOI: 10.1103/physreve.85.056301] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
441 Elder JB, Liu CY, Apuzzo ML. Neurosurgery in the realm of 10(-9), part 1: stardust and nanotechnology in neuroscience. Neurosurgery 2008;62:1-20. [PMID: 18300888 DOI: 10.1227/01.NEU.0000311058.80249.6B] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
442 Palazzo C, Ponchel G, Vachon JJ, Villebrun S, Agnely F, Vauthier C. Obtaining nonspherical poly(alkylcyanoacrylate) nanoparticles by the stretching method applied with a marketed water-soluble film. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;66:416-24. [DOI: 10.1080/00914037.2016.1233420] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
443 Yao W, Bao Y, Chen Y. Formation of microcapsules by ultrasound stimulation for use in remote-controlled drug-eluting stents. Medical Engineering & Physics 2018;56:42-7. [DOI: 10.1016/j.medengphy.2018.04.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
444 Pastor M, Esquisabel A, Pedraz JL. Biomedical applications of immobilized enzymes: an update. Methods Mol Biol 2013;1051:285-99. [PMID: 23934812 DOI: 10.1007/978-1-62703-550-7_19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
445 Ehrhart J, Mingotaud A, Violleau F. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. Journal of Chromatography A 2011;1218:4249-56. [DOI: 10.1016/j.chroma.2011.01.048] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
446 Garello F, Arena F, Cutrin JC, Esposito G, D'angeli L, Cesano F, Filippi M, Figueiredo S, Terreno E. Glucan particles loaded with a NIRF agent for imaging monocytes/macrophages recruitment in a mouse model of rheumatoid arthritis. RSC Adv 2015;5:34078-87. [DOI: 10.1039/c5ra00720h] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
447 Irache JM, Esparza I, Gamazo C, Agüeros M, Espuelas S. Nanomedicine: Novel approaches in human and veterinary therapeutics. Veterinary Parasitology 2011;180:47-71. [DOI: 10.1016/j.vetpar.2011.05.028] [Cited by in Crossref: 78] [Cited by in F6Publishing: 64] [Article Influence: 7.8] [Reference Citation Analysis]
448 Le Droumaguet B, Nicolas J, Brambilla D, Mura S, Maksimenko A, De Kimpe L, Salvati E, Zona C, Airoldi C, Canovi M, Gobbi M, Magali N, La Ferla B, Nicotra F, Scheper W, Flores O, Masserini M, Andrieux K, Couvreur P. Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: Application to Cancer and Alzheimer’s Disease. ACS Nano 2012;6:5866-79. [DOI: 10.1021/nn3004372] [Cited by in Crossref: 107] [Cited by in F6Publishing: 98] [Article Influence: 11.9] [Reference Citation Analysis]
449 Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013;65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 8.5] [Reference Citation Analysis]
450 Pugno NM. A new concept for smart drug delivery: adhesion induced nanovector implosion. Open Med Chem J 2008;2:62-5. [PMID: 19662144 DOI: 10.2174/1874104500802010062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
451 Mananghaya MR, Santos GN, Yu DN. Solubility of amide functionalized single wall carbon nanotubes: A quantum mechanical study. Journal of Molecular Liquids 2017;242:1208-14. [DOI: 10.1016/j.molliq.2017.07.107] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
452 Sunoqrot S, Bae JW, Jin SE, M Pearson R, Liu Y, Hong S. Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjug Chem 2011;22:466-74. [PMID: 21344902 DOI: 10.1021/bc100484t] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
453 Mortazavifar A, Raissi H, Shahabi M. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. J Biomol Struct Dyn 2019;37:4852-62. [PMID: 30721644 DOI: 10.1080/07391102.2019.1567385] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
454 Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell 2011;3:3. [PMID: 21349160 DOI: 10.1186/2045-824X-3-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
455 Wu T, Huang H, Sheng Y, Shi H, Min Y, Liu Y. Transglutaminase mediated PEGylation of nanobodies for targeted nano-drug delivery. J Mater Chem B 2018;6:1011-7. [PMID: 32254288 DOI: 10.1039/c7tb03132g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 6.3] [Reference Citation Analysis]
456 Zhou P, Zhao H, Wang Q, Zhou Z, Wang J, Deng G, Wang X, Liu Q, Yang H, Yang S. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe 3 O 4 Nanoparticles for Theranostics In Vivo. Adv Healthcare Mater 2018;7:1701201. [DOI: 10.1002/adhm.201701201] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 10.3] [Reference Citation Analysis]
457 Chang Y, Liu K, Chao C, Chen S, Liu D. Synthesis and characterization of mesoporous Gd2O3 nanotube and its use as a drug-carrying vehicle. Acta Biomaterialia 2010;6:3713-9. [DOI: 10.1016/j.actbio.2010.03.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
458 Mosgoeller W, Prassl R, Zimmer A. Nanoparticle-Mediated Treatment of Pulmonary Arterial Hypertension. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases. Elsevier; 2012. pp. 325-54. [DOI: 10.1016/b978-0-12-391860-4.00017-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
459 Vauthier C. Methods for the Preparation of Nanoparticles by Polymerization. In: Vauthier C, Ponchel G, editors. Polymer Nanoparticles for Nanomedicines. Cham: Springer International Publishing; 2016. pp. 123-57. [DOI: 10.1007/978-3-319-41421-8_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
460 Videira M, Almeida AJ, Fabra A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine 2012;8:1208-15. [PMID: 22206945 DOI: 10.1016/j.nano.2011.12.007] [Cited by in Crossref: 75] [Cited by in F6Publishing: 66] [Article Influence: 7.5] [Reference Citation Analysis]
461 Videira MA, Arranja AG, Gouveia LF. Experimental design towards an optimal lipid nanosystem: A new opportunity for paclitaxel-based therapeutics. European Journal of Pharmaceutical Sciences 2013;49:302-10. [DOI: 10.1016/j.ejps.2013.03.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
462 Abdelghafour MM, Orbán Á, Deák Á, Lamch Ł, Frank É, Nagy R, Ádám A, Sipos P, Farkas E, Bari F, Janovák L. The Effect of Molecular Weight on the Solubility Properties of Biocompatible Poly(ethylene succinate) Polyester. Polymers (Basel) 2021;13:2725. [PMID: 34451264 DOI: 10.3390/polym13162725] [Reference Citation Analysis]
463 Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J Control Release 2021;335:437-48. [PMID: 34081996 DOI: 10.1016/j.jconrel.2021.05.042] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
464 Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021;9:3967-82. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Reference Citation Analysis]
465 Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto Calif). 2013;6:143-162. [PMID: 23527547 DOI: 10.1146/annurev-anchem-060908-155136] [Cited by in Crossref: 418] [Cited by in F6Publishing: 315] [Article Influence: 52.3] [Reference Citation Analysis]
466 Ma Z, Moulton B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coordination Chemistry Reviews 2011;255:1623-41. [DOI: 10.1016/j.ccr.2011.01.031] [Cited by in Crossref: 226] [Cited by in F6Publishing: 135] [Article Influence: 22.6] [Reference Citation Analysis]
467 Valero L, Alhareth K, Gil S, Lecarpentier E, Tsatsaris V, Mignet N, Fournier T, Andrieux K. Nanomedicine as a potential approach to empower the new strategies for the treatment of preeclampsia. Drug Discovery Today 2018;23:1099-107. [DOI: 10.1016/j.drudis.2018.01.048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
468 Vassiliou A, Papadimitriou S, Bikiaris D, Mattheolabakis G, Avgoustakis K. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. Journal of Controlled Release 2010;148:388-95. [DOI: 10.1016/j.jconrel.2010.09.017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
469 Reddy LH, Bazile D. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv Drug Deliv Rev 2014;71:34-57. [PMID: 24184489 DOI: 10.1016/j.addr.2013.10.007] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 6.9] [Reference Citation Analysis]
470 Grimaldi N, Andrade F, Segovia N, Ferrer-tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016;45:6520-45. [DOI: 10.1039/c6cs00409a] [Cited by in Crossref: 131] [Cited by in F6Publishing: 45] [Article Influence: 26.2] [Reference Citation Analysis]
471 Loeve S, Vincent BB, Gazeau F. Nanomedicine metaphors: From war to care. Emergence of an oecological approach. Nano Today 2013;8:560-5. [DOI: 10.1016/j.nantod.2013.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
472 Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang X. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. Journal of Controlled Release 2021;331:282-95. [DOI: 10.1016/j.jconrel.2020.08.045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
473 Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine 2018;13:1639-56. [DOI: 10.2217/nnm-2018-0007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
474 Di Marzio L, Marianecci C, Petrone M, Rinaldi F, Carafa M. Novel pH-sensitive non-ionic surfactant vesicles: comparison between Tween 21 and Tween 20. Colloids and Surfaces B: Biointerfaces 2011;82:18-24. [DOI: 10.1016/j.colsurfb.2010.08.004] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 7.3] [Reference Citation Analysis]
475 Nebhani L, Barner-kowollik C. Orthogonal Transformations on Solid Substrates: Efficient Avenues to Surface Modification. Adv Mater 2009;21:3442-68. [DOI: 10.1002/adma.200900238] [Cited by in Crossref: 125] [Cited by in F6Publishing: 100] [Article Influence: 10.4] [Reference Citation Analysis]
476 Lince F, Bolognesi S, Marchisio DL, Stella B, Dosio F, Barresi AA, Cattel L. Preparation of poly(MePEGCA-co-HDCA) nanoparticles with confined impinging jets reactor: experimental and modeling study. J Pharm Sci 2011;100:2391-405. [PMID: 21259236 DOI: 10.1002/jps.22451] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
477 Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine 2021;16:1313-30. [PMID: 33628022 DOI: 10.2147/IJN.S289443] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
478 Lin WJ, Kao LT. Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells. Expert Opin Drug Deliv 2014;11:1537-50. [PMID: 24950257 DOI: 10.1517/17425247.2014.930433] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]